<u>Professor</u>: J.D. Wilson <u>Value</u>: 10%

Instructions: All questions have equal value. Answers should be stated with two decimal point precision, and in identified SI units (e.g. 20.02°C, 278.16 K, 1.09 kg m⁻³). Please document your working tidily — there is potentially a one mark penalty for illegible or unintelligible working. Please drop off your assignment (labelled with your name and ID number) in the drop-off box outside Tory 3-40. A two mark penalty will be applied for late assignments received before noon Thursday 15 Oct. After that time, the late penalty will be five marks.

Task: Add together the last five digits of your student I.D. number, to form what we shall interpret as a ground-level temperature T_1 : e.g. I.D. number 1198765 $\rightarrow T_1 = 35$ °C. Then:

- 1. Assuming the emissivity of the ground surface is $\epsilon = 0.95$, compute the emitted longwave radiative flux density $L \uparrow$ corresponding to ground temperature T_1 .
- 2. Assuming ground-level pressure is $P_1 = 930$ hPa, compute the air density ρ_1 implied by this combination (P_1, T_1) .
- 3. Adopt the hydrostatic law, evaluating the right hand side as $-\rho_1 g$, to compute the vertical distance Δz between the ground and the 850 hPa surface (i.e. the altitude where pressure is $P_2 = 850$ hPa).
- 4. Assuming the temperature variation from ground to the P_2 level follows the dry adiabatic lapse rate (DALR), compute the temperature T_2 (in Celcius units) at this level.
- 5. Compute the density ρ_2 of air whose state is defined by (P_2, T_2) .

Data

- 1 hPa = 100 Pa, $T~[K] = T~[^{\rm o}{\rm C}] + 273.16$
- \bullet $\frac{\Delta P}{\Delta z} = -\rho g$

The hydrostatic law. ΔP [Pascals], the change in pressure as one ascends a distance Δz [m]; ρ [kg m⁻³] the air density; g=9.81 [m s⁻²] acceleration due to gravity.

• $P = \rho R T$

The ideal gas law. P [Pascals], pressure; ρ , [kg m⁻³] the density; T [Kelvin], the temperature; and R = 287 [J kg⁻¹ K⁻¹], the specific gas constant for air.

• $L \uparrow = \epsilon \sigma T^4$

Stefan-Boltzmann law. $L \uparrow [W m^{-2}]$, the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

• $\frac{\Delta T}{\Delta z} = -0.01 \, [\text{K m}^{-1}]$

The dry adiabatic lapse rate (DALR), i.e. for every one metre of ascent the temperature decreases by 0.01 degrees Kelvin. (Note that a *change* of one degree Kelvin is the same as a *change* of one degree Celcius).