Professor: J.D. Wilson

Instructions: All questions have equal value. Answers should be stated with two decimal point precision, and in identified SI units (e.g. $20.02^{\circ} \mathrm{C}, 278.16 \mathrm{~K}, 1.09 \mathrm{~kg} \mathrm{~m}^{-3}$ ). Please document your working tidily - there is potentially a one mark penalty for illegible or unintelligible working. Please drop off your assignment (labelled with your name and ID number) in the drop-off box outside Tory 3-40. A two mark penalty will be applied for late assignments received before noon Thursday 21 Oct. After that time, the late penalty will be five marks.

Task: Add together the last five digits of your student I.D. number, to form what we shall interpret as a ground-level temperature $T_{1}$ : e.g. I.D. number $1198765 \rightarrow T_{1}=35^{\circ} \mathrm{C}$. Then:

1. Assuming the emissivity of the ground surface is $\epsilon=0.96$, compute the emitted longwave radiative flux density $L \uparrow$ corresponding to ground temperature $T_{1}$.
2. Assuming ground-level pressure is $P_{1}=925 \mathrm{hPa}$, compute the air density $\rho_{1}$ implied by this combination $\left(P_{1}, T_{1}\right)$.
3. Adopt the hydrostatic law, evaluating the right hand side as $-\rho_{1} g$, to compute the vertical distance $\Delta z$ between the ground and the 850 hPa surface (i.e. the altitude where pressure is $P_{2}=850 \mathrm{hPa}$ ).
4. Assuming the temperature variation from ground to the $P_{2}$ level follows the dry adiabatic lapse rate (DALR), compute the temperature $T_{2}$ (in Celcius units) at this level.
5. Assuming the mixing ratio at ground level is $r_{1}=0.001$, compute the vapour pressure $e_{1}$

Note: each symbol has the same meaning and the same numerical value everywhere in this document.

## Data

- $1 \mathrm{hPa}=100 \mathrm{~Pa}, T[\mathrm{~K}]=T\left[{ }^{\circ} \mathrm{C}\right]+273.16$
- $\frac{\Delta P}{\Delta z}=-\rho g$

The hydrostatic law. $\Delta P$ [Pascals], the change in pressure as one ascends a distance $\Delta z$ $[\mathrm{m}] ; \rho\left[\mathrm{kg} \mathrm{m}^{-3}\right]$ the air density; $g=9.81\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ acceleration due to gravity.

- $P=\rho R T$

The ideal gas law. $P$ [Pascals], pressure; $\rho,\left[\mathrm{kg} \mathrm{m}^{-3}\right]$ the density; $T$ [Kelvin], the temperature; and $R=287 \quad\left[\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right]$, the specific gas constant for air.

- $e=\rho_{v} R_{v} T$

The ideal gas law for water vapor. $e$ [Pascals], the vapour pressure (i.e. partial pressure of water vapour); $\rho_{v},\left[\mathrm{~kg} \mathrm{~m}^{-3}\right]$ the absolute humidity (ie. vapor density); $T$ [Kelvin], the temperature; and $R_{v}=462 \quad\left[\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right]$, the specific gas constant for water vapor.

- $r \approx \rho_{v} / \rho$
the mixing ratio
- $L \uparrow=\epsilon \sigma T^{4}$

Stefan-Boltzmann law. $L \uparrow\left[\mathrm{~W} \mathrm{~m}^{-2}\right]$, the emitted longwave energy flux density; $\epsilon$, the emissivity of the surface (dimensionless); $\sigma=5.67 \times 10^{-8} \quad\left[\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right]$, the StefanBoltzmann constant; $T[\mathrm{~K}]$, the surface temperature.

- $\frac{\Delta T}{\Delta z}=-0.01\left[\mathrm{~K} \mathrm{~m}^{-1}\right]$

The dry adiabatic lapse rate (DALR), i.e. for every one metre of ascent the temperature decreases by 0.01 degrees Kelvin. (Note that a change of one degree Kelvin is the same as a change of one degree Celcius).

