
EAS270, “The Atmosphere” Assignment 1 Due 5 pm 19 Oct., 2011

Professor: J.D. Wilson Value: 10%

Instructions : All questions have equal value. Retain high precision in your calculations,
but please round your final answers to three significant digits1 and state the unit (examples:
20.1oC, 1.09 kgm−3, 391Wm−2, 4.11 × 102Wm−2). Document your working tidily — there
is potentially a one mark penalty for illegible or unintelligible working. Please drop off your
assignment (labelled with your name and ID number) in class, or in the drop-off box outside Tory
3-40. A two mark penalty will be applied for late assignments received before noon Thursday
20 Oct. After that time, the late penalty will be five marks.

Task : Add together the last five digits of your student I.D. number, to form what we shall in-
terpret as a ground-level temperature T1, as a latitude φ1, and as a surface shortwave reflectivity
(albedo) α1 expressed as a percentage, e.g.

I.D. number 1198765 → T1 = 35oC, φ1 = 35o, α1 = 35% ≡ 0.35.

In what follows, the subscript “1” denotes properties at level 1, which is ground level. Level 2
(denoted with subscript “2”) will be the 850 hPa level.

1. Assuming the emissivity of the ground surface is ǫ = 0.96, compute the emitted longwave

radiative flux density “L1 ↑” corresponding to your ground temperature T1.

2. Compute the ratio of this flux L1 ↑ to the flux “Lref ↑” that would be emitted by the same

surface if it had a temperature of 0oC (273.15 K).

3. Based on your L1 ↑ but neglecting incoming (i.e. downward) longwave radiation (L ↓),

compute the net radiation “Q∗1” at solar noon at the times of the equinox and express

this as a fraction of the solar constant Q∗1/S0. (To compute K ↓ assume the solar beam

is not subject to scattering or absorption by the atmosphere, i.e. is transmitted without

attenuation so that K ↓ depends only on the latitude φ1.)

4. Your net radiative energy supply Q∗1 would suffice to evaporate what depth d1 of water

over a period of one hour? (Take the density of liquid water to be ρw = 1000 kgm−3)

5. Assuming ground-level pressure is P1 = 925 hPa, compute the ground-level air density ρ1

implied by this combination (P1, T1).

6. Assuming the specific humidity at ground is q1 = 0.002, compute the vapour pressure e1.

7. Compute the mass of water m1 in one cubic metre of air at ground level.

1However if you are providing an answer in Kelvin units, it is appropriate to provide five significant figures,

e.g. 278.75 K.
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8. Adopt the hydrostatic law (given as data), evaluating the right hand side as −ρ1g, to

compute the vertical distance ∆z between the ground and the 850 hPa surface (i.e. the

altitude where pressure is P2 = 850 hPa). Note: here we are using the hydrostatic law in

an approximate way, by placing a fixed constant value of ρ (= ρ1) on the right hand side.

9. Assuming the temperature variation from ground to the P2 level follows the dry adiabatic

lapse rate (DALR), compute the temperature T2 (in Celcius units) at this level.

10. Again use the hydrostatic law, evaluating the right hand side as −ρ2g, to determine the

pressure P3 at a point that is 300 m above the 850 hPa surface.

Data

• 1 hPa = 100 Pa, T [K] = T [oC] + 273.15 (Note that a change of one degree Kelvin is the
same as a change of one degree Celcius).

• ∆P

∆z
= − ρ g

The hydrostatic law. ∆P [Pascals], the change in pressure as one ascends a distance ∆z
[m]; ρ [kg m−3] the air density; g = 9.81 [m s−2] acceleration due to gravity.

• P = ρ R T

The ideal gas law. P [Pascals], pressure; ρ, [kg m−3] the density; T [Kelvin], the temper-
ature; and R = 287 [J kg−1 K−1], the specific gas constant for air.

• e = ρv Rv T

The ideal gas law for water vapor. e [Pascals], the vapour pressure (i.e. partial pressure
of water vapour); ρv, [kg m−3] the absolute humidity (ie. vapor density); T [Kelvin], the
temperature; and Rv = 462 [J kg−1 K−1], the specific gas constant for water vapor.

• q = ρv/ρ

the specific humidity

• L ↑ = ǫ σ T 4

Stefan-Boltzmann law. L ↑ [W m−2], the emitted longwave energy flux density; ǫ, the
emissivity of the surface (dimensionless); σ = 5.67 x 10−8 [W m−2 K−4], the Stefan-
Boltzmann constant; T [K], the surface temperature.

• ∆T

∆z
= − 0.01 [Km−1]

The dry adiabatic lapse rate (DALR), i.e. for every one metre of ascent the temperature
decreases by 0.01 degrees Kelvin.

• Lv = 2.5× 106 J kg−1

The latent heat of vapourization of water

• θ = 90− φ+ φsol.dec

The solar elevation θ at solar noon, at a location having latitude φ, at the time of year
when solar declination is φsol.dec. Latitude is taken as positive for both hemispheres; solar
declination is negative if the subsolar point is in the opposite hemisphere.
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