<u>Professor</u>: J.D. Wilson <u>Time available</u>: 45 mins <u>Value</u>: 20%

Instructions: For all 30 multi-choice questions, choose what you consider to be the best (or most logical) option. Use a pencil to mark that choice on the answer form. **Equations and data given at back**. **You may keep this exam**

Note added after exam: in addition to understanding why the indicated answers are correct, it is equally useful to clarify for yourself why the other options would have been incorrect.

- 1. If a sample of air has vapour pressure e = 14 hPa then the dewpoint temperature of that sample T_d is closest to _____ °C
 - (a) 0
 - (b) 12 $\checkmark \checkmark$ [use Table]
 - (c) 14
 - (d) 18
 - (e) 20
- 2. If a sample of air has relative humidity RH = 50% and its temperature is $T_d = 19^{\circ}$ C then its vapour pressure e is closest to _____ hPa
 - (a) 3
 - (b) 5
 - (c) 7
 - (d) 9

(e) 11
$$\checkmark \checkmark$$
 $[e_s(19) = 22 \text{ hPa}; e = 22 \times 50/100 = 11 \text{ hPa}]$

- 3. The possibility to have formation of haze at relative humidities less than 100% owes to the presence in the air of _____
 - (a) condensation nuclei $\checkmark \checkmark$ [p148, p164]
 - (b) ice nuclei
 - (c) supersaturation
 - (d) supercooled cloud droplets
 - (e) silver iodide
- 4. On Mars the gravitational acceleration $g = 3.7 \,\mathrm{m \, s^{-2}}$, and the Martian atmosphere of carbon dioxide has specific heat capacity $c_p = 736 \,[\mathrm{J \, kg^{-1} \, K^{-1}}]$. Thus on Mars a parcel lifted dry adiabatically through a distance of 100 m would _____
 - (a) warm by about 5 K
 - (b) cool by about 5 K
 - (c) warm by about 0.5 K
 - (d) cool by about 0.5 K $\checkmark \checkmark$ [substitute into given eqn for lapse rate]
 - (e) cool by about 0.05 K

- 5. In adiabatic ascent of an unsaturated parcel, which water vapour variable remains unchanged?
 - (a) Relative humidity RH
 - (b) Absolute humidity ρ_v
 - (c) Specific humidity $q \checkmark \checkmark$ [p138]
 - (d) Vapour pressure e
 - (e) Dewpoint temperature T_d

6. "Absolute instability" of the atmosphere commonly occurs

- (a) in the lower stratosphere
- (b) in the upper troposphere
- (c) at night
- (d) in a shallow ground-based layer during daytime heating $(Q_H > 0) \checkmark \checkmark$ [p176; slide #6, lecture 16]
- (e) during the formation of a radiation fog

7. Collision efficiency for cloud droplets of radius r, R _____

- (a) is near unity for $r \ll R$
- (b) is near unity for $r \gg R$
- (c) is near unity for $r \approx R$
- (d) is a maximum in warm clouds
- (e) is much smaller than unity if $r \ll R$ or if $r \gg R$ $\checkmark \checkmark$ [p205]

8. The radius of a typical cloud droplet is of order _____

[p203]

- (a) $0.1 \ \mu m$
- (b) 10 μ m $\checkmark \checkmark$ [Fig. 7-3]
- (c) 1000 μm
- (d) 10 mm
- (e) 10 cm
- 9. Small spherical particles of radius r fall relative to still air with a terminal velocity V_t that varies in proportion to _____
 - (a) 1/r (i.e. terminal velocity is halved if radius is doubled)

(b)
$$1/\sqrt{r}$$

(c) $\sqrt{r} \checkmark \checkmark$

- (d) r
- (e) r^2

- 10. The Bergeron process for migration of water from supercooled droplets to ice crystals depends on the difference in _____ between surfaces of ice and water
 - (a) equilibrium vapor pressure $\checkmark \checkmark$ [p206]
 - (b) temperature
 - (c) density
 - (d) terminal velocity
 - (e) vertical velocity
- 11. Specific humidity is the ratio $q = m_v/m$ of the mass of water vapour in a given volume to the total mass $m = m_v + m_d$. If an unsaturated parcel is lifted _____
 - (a) q decreases at the Saturated Adiabatic Lapse Rate (SALR)
 - (b) q decreases at the Dry Adiabatic Lapse Rate (DALR)
 - (c) q decreases at the Environmental Lapse Rate (ELR)
 - (d) q increases
 - (e) q remains unchanged $\checkmark \checkmark$ [p138]
- - (a) ten; entrainment of colder environmental air; more
 - (b) ten; entrainment of warmer environmental air; less
 - (c) ten; release of latent heat of condensation; less
 - (d) one; release of latent heat of condensation; more
 - (e) one; release of latent heat of condensation; less $\checkmark \checkmark$ [p155]
- 13. The collection of supercooled cloud droplets by a falling ice crystal is a process called
 - (a) the solute effect
 - (b) the curvature effect
 - (c) riming $\checkmark \checkmark$ [p207]
 - (d) aggregation
 - (e) graupellation
- 14. When a warm, almost saturated wind blows over a frozen lake, the result may be _____
 - (a) lake-effect snowfall
 - (b) advection fog $\checkmark \checkmark$ [p160]
 - (c) formation of convective cloud over the lake
 - (d) freezing rain
 - (e) radiation fog

15. Which association is false?

- (a) Cirrus wispy
- (b) Cumulus heapy
- (c) Stratus layered
- (d) Nimbus producing rain, hail or snow
- (e) Orographic produced by dry, cool airflow over very warm ocean \checkmark [p170]
- 16. If the sky is overcast yet the sun casts shadows and is surrounded by a halo, the cloud type is _____
 - (a) Cirrostratus $\checkmark \checkmark$ [p186]
 - (b) Sratocumulus
 - (c) Stratus
 - (d) Nimbostratus
 - (e) Altostratus
- 17. Suppose in a certain layer of the atmosphere the environmental lapse rate $\text{ELR} = +0.05^{\circ}\text{C}\,\text{m}^{-1}$, ie. for every 1 m increase in altitude, the temperature increases by 0.05°C. This layer is
 - (a) unconditionally stable $\checkmark \checkmark$ [p178; it was noted in the exam that "unconditionally" and "absolutely" have the same meaning]
 - (b) unconditionally unstable
 - (c) conditionally unstable
 - (d) conditionally stable
 - (e) neutral with respect to dry adiabatic motion
- 18. The idealized three-cell model of the general circulation predicts low-level easterlies at low latitude ('trade winds') and at high latitude ('polar easterlies'). In reality easterly trade winds are _____ and the polar easterlies are _____
 - (a) a persistent weather feature; a persistent weather feature
 - (b) a persistent weather feature; visible only as a climatological feature $\sqrt{\sqrt{}}$ [p231]
 - (c) visible only as a climatological feature; a persistent weather feature
 - (d) westerlies; easterlies
 - (e) easterlies; westerlies
- 19. The 3-cell model for the General Circulation suggests that at latitude 30 degrees one will find _____ surface pressure while at latitude 60 degrees one will find _____ surface pressure.
 - (a) Low; low
 - (b) High; high
 - (c) High; low $\checkmark \checkmark$ [Fig. 8-3]
 - (d) Low; high
 - (e) Negative; positive

- 20. Regarding semipermanent pressure systems of the general circulation, that which is most significant for winter weather in western Canada is the _____
 - (a) Siberian High
 - (b) Aleutian Low $\checkmark \checkmark$ [p234; slide #8, lec19]
 - (c) Icelandic Low
 - (d) Hawaiian High
 - (e) Tibetan Low
- 21. Strong deviations of temperature away from the climatological norm are likely to occur during a sustained period of _____ flow associated with a _____ long wave (Rossby wave) pattern
 - (a) zonal; large amplitude
 - (b) zonal; gently meandering
 - (c) meridional; large amplitude $\checkmark \checkmark$ [p239]
 - (d) meridional; gently meandering
 - (e) westerly; gently meandering

22. An afternoon sea-breeze is most likely to occur

- (a) after a sunny, calm morning $\checkmark \checkmark$
- (b) after a cloudy, windy morning
- (c) after a cloudy, calm morning
- (d) after a rainy, calm morning
- (e) in conjunction with a cyclonic storm
- 23. The Walker circulation is a feature of the observed General Circulation (GC) in the equatorial Pacific that _____
 - (a) redistributes energy and water vapour across longitude lines $\checkmark \checkmark$ [Fig. 8-29]

[maximizing the differential heating rate]

- (b) redistributes energy and water vapour across latitude lines
- (c) is one of the three "cells" of the 3-cell GC Model
- (d) occurs within the polar cell of the 3-cell GC Model
- (e) is unrelated to the El-Nino phenomenon
- 24. A deep layer of fog is more likely to form on a night with a very gentle wind, than during a night which is completely calm, because _____
 - (a) rate of longwave radiant emission from ground is increased by wind
 - (b) eddies carry heat down to the cooling surface from a deeper layer $\checkmark \checkmark$ [p159]
 - (c) a light wind increases the rate of cooling of the ground
 - (d) the ELR equals the DALR
 - (e) the light breeze prevents gravitational settling of condensation nuclei

For the remaining questions, please refer to the attached charts.

- 25. Heavy short-dashed lines on the skew T-log p diagram (Figure 1) identify several families of reference curves. The family of dry adiabats is represented by line _____
 - (a) A
 - (b) B $\checkmark \checkmark$ [slide #11 lec13]
 - (c) C
 - (d) D
 - (e) E

26. Layer L1 should be classified as _____

- (a) absolutely unstable
- (b) absolutely stable
- (c) conditionally unstable
- (d) conditionally stable
- (e) neutral with respect to dry adiabatic motion $\sqrt{\checkmark}$ [slide #20, lec14]

27. The ground-based layer below layer L1 is _____

- (a) absolutely unstable $\checkmark \checkmark$
- (b) absolutely stable
- (c) conditionally unstable
- (d) conditionally stable
- (e) neutral with respect to dry adiabatic motion

28. Comparing Figures (2,3) the change in 1000-500 hPa thickness at Edmonton was about

- (a) 35 m
- (b) 62 m
- (c) 35 dam $\checkmark \checkmark$ [thickness changes from about 549 dam to about 514 dam]
- (d) 62 dam
- (e) 350 dam
- 29. Corresponding to the above thickness change of n dam, the mean temperature of the 1000-500 hPa layer over Edmonton had _____ during the interval by _____ degrees Kelvin
 - (a) warmed; 2n
 - (b) cooled; 2n
 - (c) warmed; n/2
 - (d) cooled; $n/2 \checkmark \checkmark$ [slide #2 lec15]

- 30. Figure (4) gives the Edmonton sounding data up to 700 hPa for two times. The change in thickness of the 925-850 hPa layer during the interval was a/an _____ of about _____ [m]
 - (a) decrease; 40 $\checkmark \checkmark$ [slide #10 lec15. At the earlier time: 1488-792=696 m; at later time 1416=7-761=656 m. Thus a decrease of 40 m]
 - (b) decrease; 700
 - (c) increase; 40
 - (d) increase; 700

Equations and Data

$$\bullet \ Q^* = Q_H + Q_E + Q_G$$

Surface energy balance on a reference plane at the base of the atmosphere, all fluxes in $[W m^{-2}]$. Q^* the net radiation, positive if directed towards the surface; Q_H, Q_E the sensible and the latent heat fluxes, positive if directed from the surface towards the atmosphere; Q_G the 'soil' heat flux, positive if directed from the surface into ground/lake/ocean.

• $\frac{\Delta T}{\Delta z} = -\frac{g}{c_p}$

The dry adiabatic lapse rate, where g is the gravitational acceleration and $c_p [J \text{ kg}^{-1} \text{ K}^{-1}]$ is the specific heat at constant pressure.

• $e, \rho_v, q = m_v/(m_v + m_d) = \rho_v/\rho, T_d, \text{RH} = 100 \, e/e_s(T)$

Humidity variables: e [Pa] the vapour pressure; ρ_v [kg m⁻³] the absolute humidity vapour density); q the specific humidity (where m_v , m_d are respectively the mass of vapour and of "dry air" in a sample); T_d the dewpoint temperature; and RH the relative humidity (where $e_s(T)$ is the equilibrium vapour pressure corresponding to temperature T of the sample)

Table 1: Equilibrium vapour pressure $e_s(T)$ [hPa] versus temperature T [°C]. Figure cited applies to equilibrium over a plane surface of water where $T \ge 0^{\circ}$ C, or of ice where $T < 0^{\circ}$ C.

T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$
-5	4.02	0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
-4	4.37	1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
-3	4.76	2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
-2	5.17	3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
-1	5.62	4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

Figure 1: Thermodynamic chart for Edmonton, 00Z 1 Oct. 2009.

Figure 2: CMC 500 hPa analysis for 00Z 21 April 2009. Boxes with white text on a black background label height contours, boxes with black text on a white background label thickness contours.

Figure 3: CMC 500 hPa analysis for 12Z 24 April 2009. Boxes with white text on a black background label height contours, boxes with black text on a white background label thickness contours.

00Z,	21	April	2009
		123772	

12Z, 24 April 2009

PRES hPa	HGHT m	TEMP C	PRES hPa	HGHT m	TEMP C		
1000.0 928.0 926.0 925.0 911.4 878.2 850.0 846.2 836.0 815.1 807.0 784.9 781.0 784.9 781.0 755.6 727.2 700.0	134 766 783 792 914 1219 1488 1524 1623 1829 1910 2134 2174 2438 2743 3047	12.2 11.4 11.2 10.1 7.4 5.0 4.6 3.6 2.2 1.9 1.8 -0.3 -2.7 -5.1	1000.0 925.0 924.0 919.0 906.7 887.0 872.0 850.0 850.0 838.1 805.3 792.0 773.5 755.0 742.6 712.7 708.0 700.0		-6.7 -6.9 -7.4 -8.3 -9.4 -11.1 -11.9 -14.3 -15.3 -16.7 -18.1 -19.1 -21.7 -22.1 -22.5		

Figure 4: Edmonton soundings.