EAS270, "The Atmosphere" <u>Mid-term Exam</u> 1 Nov. 2010

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 20%

Instructions: For all 30 multi-choice questions, choose what you consider to be the best (or most logical) option. Use a pencil to mark that choice on the answer form. **You may keep this exam**.

- 1. Radiation fog is caused by the ground's cooling by net loss of ______. It is most probable under ______ skies and ______
 - (a) shortwave radiation; cloudy; calm wind
 - (b) longwave radiation; clear; very light wind $\checkmark \checkmark [85\% \text{ correct}; p159; \text{Lec13 slide 20}]$
 - (c) latent heat; clear; calm wind
 - (d) water vapour; cloudy; warm wind
 - (e) water vapour; clear; very light wind
- 2. Air cooling due to adiabatic ascent is the key factor in _____ fogs
 - (a) advection
 - (b) upslope $\checkmark \checkmark [74\% \text{ correct; p161; ; Lec13 slide 20}]$
 - (c) radiation
 - (d) precipitation
 - (e) steam
- 3. As a frost protection strategy for a valuable crop the effectiveness of _____ depends on the existence of particular and conducive ('helpfully contributing') meteorological conditions, specifically the presence of _____
 - (a) wind machines; a ground-based inversion $\sqrt[]{64\%}$ correct; p183; Lec16, slide 10]
 - (b) wind machines; an absolutely unstable ground-based layer
 - (c) oil-burning smudge pots; a strong wind
 - (d) oil-burning smudge pots; a layer of nimbostratus
 - (e) water droplet sprayers; a ground-based layer in which relative humidity is 100%
- 4. The Saturated Adiabatic Lapse Rate (SALR) is roughly 0.5°C/100 m at low levels, but far aloft it is about _____ . The smaller value near ground is due to _____
 - (a) $2^{\circ}C/100$ m; stable stratification
 - (b) $2^{\circ}C/100$ m; a nocturnal inversion
 - (c) $1^{\circ}C/100$ m; weaker winds near ground
 - (d) 1°C/100 m; latent heat released in rising parcels $\checkmark \checkmark [67\%$ correct; p156; Lec13, slide 15]
 - (e) $1^{\circ}C/100$ m; buoyancy of moist rising parcels

- 5. The abundance of natural and anthropogenic cloud condensation nuclei in the atmosphere ensures that _____
 - (a) cloud droplets remain unfrozen (as supercooled liquid) to temperatures far below 0°C
 - (b) it is possible to augment rainfall by "seeding" cold clouds with artificial ice nuclei
 - (c) condensation does not occur until a level of supersaturation of about 120%
 - (d) condensation usually occurs at relative humidities as low as about 70%
 - (e) condensation usually occurs at relative humidities between 98% and 100.1% $\checkmark \checkmark [52\%$ correct; p164]
- 6. The environmental lapse rate (ELR) in a ground-based layer during exceptionally windy and dry conditions will be _____
 - (a) approximately the same as the dry adiabatic lapse rate (DALR) $\checkmark \checkmark [45\%$ correct; Lec8, slide 7; Lec12, slide 3; Lec15, slide 8]
 - (b) approximately the same as the moist adiabatic lapse rate (SALR)
 - (c) zero, ie. the layer will be isothermal
 - (d) that of a very strong inversion (temperature increasing with increasing height)
 - (e) unconditionally unstable, the temperature decreasing with increasing height at a rate far exceeding the dry adiabatic lapse rate
- 7. If air temperature increases with increasing height by 5°C per 100 m in a given layer, this layer is _____
 - (a) statically neutral
 - (b) absolutely (=unconditionally) unstable
 - (c) absolutely (=unconditionally) stable $\checkmark \checkmark [50\% \text{ correct; p174}]$
 - (d) conditionally unstable
 - (e) conditionally stable
- 8. If a layer of the atmosphere remote from ground became absolutely unstable, _____ would promptly adjust that layer back towards _____
 - (a) spontaneous convective mixing; neutral stability $\checkmark \checkmark [57\% \text{ correct}; \text{Lec15}, \text{slide 9}]$
 - (b) spontaneous convective mixing; unconditionally stable stratification
 - (c) molecular conduction; neutral stability
 - (d) molecular conduction; unconditionally stable stratification
 - (e) latent heat of condensation; an isothermal state
- 9. Of the clouds listed, _____ is most likely to generate a high precipitation rate
 - (a) Cirrus
 - (b) Cumulonimbus $\checkmark \checkmark [81\% \text{ correct}]$
 - (c) Altocumulus
 - (d) Nimbostratus
 - (e) Altostratus

- 10. A weak sun visible (without halo) through a featureless sheet of gray cloud is often a good indication of _____ clouds.
 - (a) stratocumulus
 - (b) altostratus $\checkmark \checkmark [78\% \text{ correct; } p187-8]$
 - (c) nimbostratus
 - (d) cirrostratus
 - (e) cumulonimbus
- 11. After a mid-latitude lake freezes over completely, downwind lake-effect snow is likely to
 - (a) melt
 - (b) form a layer over the ice
 - (c) be more severe
 - (d) be more frequent
 - (e) cease to occur $\checkmark \checkmark [81\% \text{ correct}]$
- 12. If a parcel of dry air had a temperature of 20°C when at height z = 0, then if it were lifted adiabatically to z = 700 m and then sank back down adiabatically to z = 500 m, its temperature would be _____
 - (a) $15^{\circ}C \checkmark \sqrt{77\%}$ correct]
 - (b) $20^{\circ}C$
 - (c) $25^{\circ}C$
 - (d) $27^{\circ}C$
 - (e) 29°C
- 13. The three "cells" of the idealised climatological circulation on an ocean-covered rotating earth are, in order of their distance away from the equator _____
 - (a) Equatorial, Ferrel, Walker
 - (b) Equatorial, Coriolis, Pascal
 - (c) Ferrel, Hadley, Walker
 - (d) Hadley, Ferrel, Polar $\checkmark \checkmark [95\% \text{ correct; p229}]$
 - (e) Ferrel, Hadley, Polar
- 14. To determine the location of the jetstream(s) over Canada, one would examine the CMC analysis for the _____ hPa level
 - (a) surface
 - (b) 850
 - (c) 700
 - (d) 500
 - (e) 250 $\checkmark \checkmark [23\% \text{ correct; Lec19, slide 23}]$

- 15. The prevailing surface winds in the "ITCZ" are known as the _____
 - (a) mid-latitude westerlies
 - (b) polar easterlies
 - (c) tradewinds $\checkmark \checkmark [82\% \text{ correct; p231}]$
 - (d) equatorial westerlies
 - (e) polar westerlies
- 16. The ocean surface temperature in the eastern equatorial Pacific is markedly above normal (positive temperature anomaly) during _____
 - (a) a La Nina
 - (b) an El Nino $\checkmark \checkmark [93\% \text{ correct; } p256]$
 - (c) a Peruvian current
 - (d) a Foehn wind
 - (e) a Hadley cell
- 17. High amplitude Rossby waves imply significant _____ flow and cause regions of _____ aloft
 - (a) zonal; convergence/divergence
 - (b) meridional; convergence/divergence $\checkmark \checkmark [71\% \text{ correct}; p241]$
 - (c) zonal; supercooled cloud droplets
 - (d) meridional; cloud condensation nuclei
 - (e) Coriolis; winds
- 18. The "Ekman spiral" refers to _____
 - (a) turning of the direction of current with depth in the ocean surface boundary layer $\checkmark \checkmark [94\% \text{ correct; p244}]$
 - (b) the characteristic motion of a tumbling asymmetric hailstone
 - (c) the trajectory of small cloud droplet as a much larger droplet impinges from above
 - (d) the pattern of surface winds about a lee trough
 - (e) a pattern of the fall streaks associated with cirrus cloud
- 19. Climatologically, the midlatitude westerlies aloft are _____ in winter. This is due to
 - (a) weaker; more steeply equator-poleward sloping isobaric surfaces
 - (b) weaker; more gently west-eastward sloping isobaric surfaces
 - (c) stronger; more gently west-eastward sloping isobaric surfaces
 - (d) stronger; more steeply equator-poleward sloping isobaric surfaces $\sqrt[]{82\%}$ correct; p236; Lec11, slide 5]
 - (e) meridional; weaker equator-pole temperature contrast

- 20. The Southern Oscillation is
 - (a) driven "externally" by a change in solar radiative output
 - (b) driven "externally" when volcanic aersols alter planetary albedo
 - (c) a natural ("internal") oscillation of the atmosphere-ocean system $~\checkmark \checkmark [90\%~{\rm correct};~p260;~{\rm Lec}21]$
 - (d) due to irregularities in the rotation rate of the earth
 - (e) able to be predicted computationally by a circulation model of the ocean (alone)
- 21. Persistent light precipitation is associated with _____ cloud whereas short-lived but intense precipitation is associated with _____ cloud
 - (a) deep stratiform; deep cumuliform $\checkmark \checkmark [48\% \text{ correct}]$
 - (b) deep cumuliform; shallow stratiform
 - (c) shallow stratiform; deep stratiform
 - (d) shallow cumuliform; deep cumuliform
 - (e) cool or cold; warm
- 22. CMC provides web access to false colour GOES infra-red (10.7 μ m) satellite images, colours that relate to the *intensity* of received radiation. Photons captured by the radiometer have been emitted from earth's surface, or (if cloudy) from the uppermost deck of clouds. The scale range for radiation intensity (low \rightarrow intermediate \rightarrow high) is _____, with the intensities encoded red corresponding to _____ clouds
 - (a) red \rightarrow white \rightarrow green; warm
 - (b) red \rightarrow white \rightarrow green; cold $\checkmark \checkmark [28\% \text{ correct}; \text{Lec17}, \text{slide } 2; \text{Lec21}, \text{slide } 4]$
 - (c) green \rightarrow white \rightarrow red; warm
 - (d) green \rightarrow white \rightarrow red; cold
 - (e) white \rightarrow green \rightarrow red; warm
- 23. The elevated base of a subsidence inversion distinguishes it from a radiation inversion. A subsidence inversion is common _____
 - (a) on the upwind edge of large lakes
 - (b) along coastlines
 - (c) over warm ocean currents
 - (d) on winter mornings after a cloudless, still night
 - (e) on the lee (downwind) side of mountain ranges $\sqrt{\sqrt{77\%}}$ correct; p182]

For the remaining questions, please refer to the attached charts.

- 24. Heavy short-dashed lines on the skew T-log p diagram (Figure 1) identify several families of reference curves. The family of dry adiabats is represented by line _____
 - (a) A
 - (b) B $\checkmark \checkmark [89\% \text{ correct; Lec12, slide 5; Lec 13, slide 16}]$
 - (c) C
 - (d) D
 - (e) E

25. Layer L1 should be classified as _____

(a) absolutely unstable

- (b) absolutely stable (c) conditionally unstable
- (d) conditionally stable (e) neutral with respect to dry adiabatic motion $\checkmark \checkmark [67\%]$ [67%
- 26. Referring to Fig.(2), on the basis of the pressure tendencies one would expect this storm will probably _____
 - (a) remain stationary with its central pressure increasing
 - (b) move towards the northeast $\checkmark \checkmark [43\% \text{ correct; Lec20, slide 2}]$
 - (c) move towards the southeast (d) move towards the southwest
- 27. Again referring to Fig.(2), the solid black station circles mean ______. The double dots denoting "present weather" (to left of many of the the station circles) mean ______
 - (a) stratus; intermittent snow
 - (b) stratocumulus; steady snow
 - (c) nimbus; steady rain
 - (d) rain; calm
 - (e) overcast sky; steady rain $\sqrt{\sqrt{95\%}}$ correct; Lec 20, slide 2]
- 28. Referring to Fig.(3), at the locations respectively designated (A, B) _____ advection is occurring
 - (a) warm; warm
 - (b) cold; cold
 - (c) warm; cold $\checkmark \checkmark [54\% \text{ correct}; \text{Lec15}, \text{slide 4}; \text{Lec20}, \text{slide 5}; \text{advection.pdf}, \text{slide 5}]$
 - (d) cold; warm
 - (e) horizontal; vertical
- 29. Referring to Figure (4), the heavy black line denotes a ______. In the quadrilateral designated A straddling the eastern border of Manitoba, ______. In the quadrilateral thickness advection is occurring.
 - (a) Rossby wave trough; warm $\checkmark \checkmark [57\% \text{ correct}; \text{Lec20.pdf}, \text{slide 6}]$
 - (b) Rossby wave trough; cold
 - (c) Rossby wave ridge; warm
 - (d) Rossby wave ridge; cold
- 30. Figures (5, 6) contrast two characteristic Alberta winter weather scenarios. Which of the descriptions below is **false**? (i.e. in which case has a valid contrast been *stated in the reverse order*?)
 - (a) Fig. (5) western prairies invaded by cold air washed in by passing storm; Fig. (6) mild air advected over prairies by offshore low
 - (b) Fig. (5) ridge of high surface pressure in Alberta in wake of storm; Fig. (6) lee trough in Alberta due to SW current aloft over Rockies
 - (c) Fig. (5) Edmonton's thickness exceeding 546 dam; Fig. (6) Edmonton's thickness less than 534 dam $\sqrt{\sqrt{81\%}}$ correct; *integration* of concepts from weather discussions]
 - (d) Fig. (5) intense storm over central Canada with little or no zonal flow over the Rockies; Fig. (6) intense storm moving onshore off the Pacific with strong flow into Alberta over the Rockies

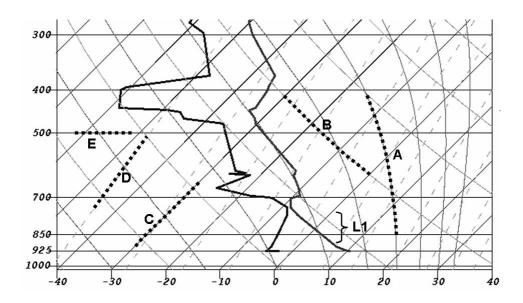


Figure 1: Thermodynamic chart.

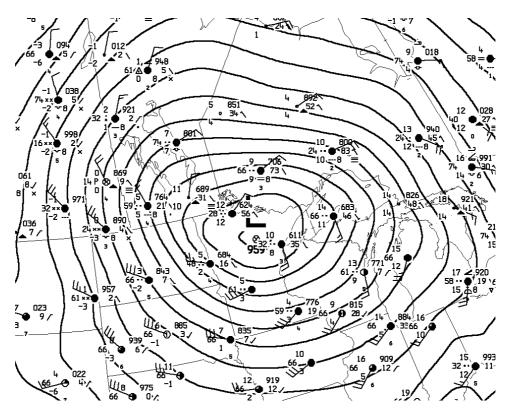


Figure 2: CMC surface analysis 18Z Oct. 26, 2010 (cropped). As an aside, the central pressure of this storm is exceptionally low and garnered much media attention.

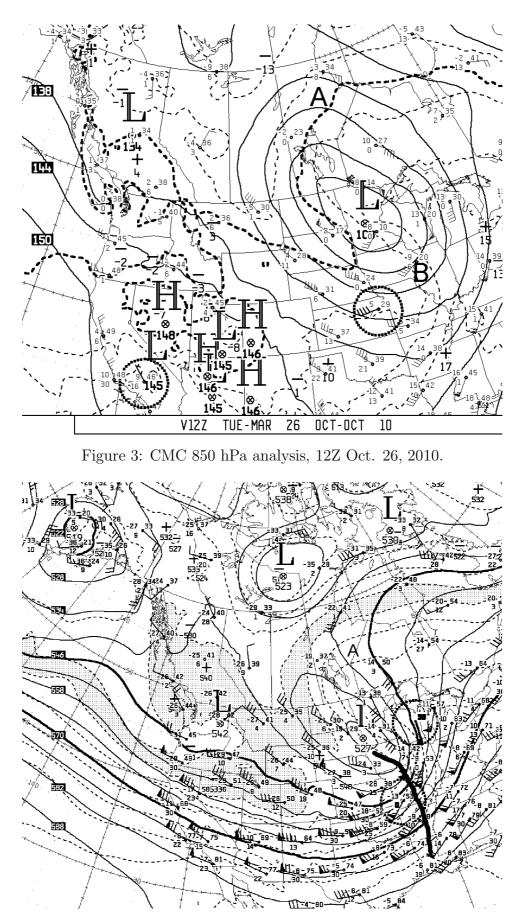


Figure 4: CMC 500 hPa analysis, 12Z Oct. 26, 2010. Stippled zone is $\Delta z_{1000-500}$ thickness band.

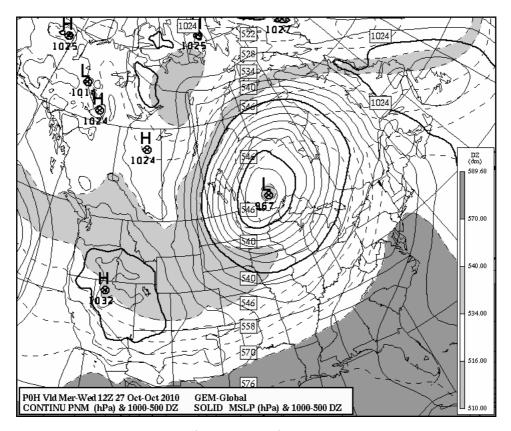


Figure 5: CMC GEM Global 0h prog (i.e. analysis) valid 12Z Oct. 27, 2010. Sea-level pressure and $\Delta z_{1000-500}$ (thickness). The light grey zone marks the 540 – 534 dam thickness band.

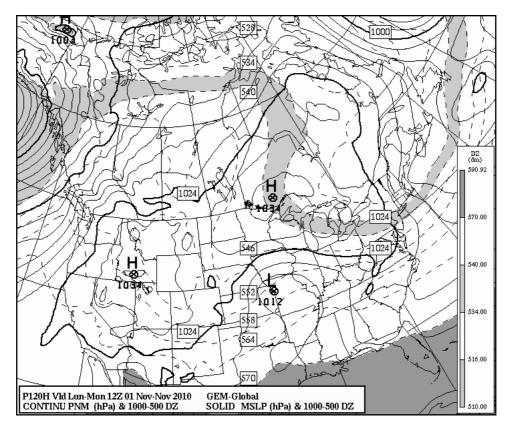


Figure 6: CMC GEM Global 120h prog valid 12Z Mon Nov. 1, 2010. Sea-level pressure and $\Delta z_{1000-500}$ (thickness). The light grey zone marks the 540 – 534 dam thickness band.