Professor: J.D. Wilson Time available: $15 \mathrm{mins} \quad$ Potential Value: 10%

Instructions: For all 10 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. Eqns/data given at back. You may keep this quiz.

1. The troposphere, which extends from the base of the atmosphere to a height of about __ , is characterized by a steady __ of climatological mean temperature with increasing height
(a) 80 kilometers; increase
(b) 50 kilometers; increase
(c) 10 kilometers; increase
(d) 50 kilometers; decrease
(e) 10 kilometers; decrease $\checkmark \checkmark$
2. The two most abundant permanent gases in earth's homosphere are ___ ; and together they account for $\quad \%$ of the air by volume
(a) $\mathrm{N}_{2}, \mathrm{O}_{2} ; 79 \%$
(b) $\mathrm{N}_{2}, \mathrm{O}_{2} ; 99 \% \quad \checkmark \checkmark$
(c) $\mathrm{N}_{2}, \mathrm{Ar} ; 79 \%$
(d) $\mathrm{O}_{2}, \mathrm{Ar} ; 99 \%$
(e) $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O} ; 63 \%$
3. Density of the atmosphere \qquad
(a) increases with increasing height
(b) does not change with height within the homosphere (lowest 80 km)
(c) decreases with increasing height $\checkmark \checkmark$
(d) has the MKS unit $\mathrm{kg} \mathrm{m}^{-1}$ ("kilograms per metre")
(e) has the MKS unit Pa ("Pascals")
4. About _ \% of atmospheric mass lies above the 700 hPa level
(a) 99
(b) $70 \checkmark \checkmark$
(c) 50
(d) 30
(e) 1
5. The gas released to the atmosphere by volcanoes ("outgassing") is mostly composed of
(a) nitrogen and oxygen
(b) nitrogen and water vapour
(c) carbon dioxide and nitrogen
(d) water vapour and carbon dioxide $\checkmark \checkmark$
(e) methane and ozone
6. Solar elevation above the horizon in Edmonton (latitude 53.5 degrees N), at solar noon on the day of the winter solstice, is \qquad degrees
(a) $13 \checkmark \checkmark$
(b) 23.5
(c) 45
(d) 60
(e) 75
7. If earth's average surface temperature were to increase, the rate of emission of radiation energy from its surface would \qquad and the wavelength $\left(\lambda_{\max }\right)$ of the peak in the emission spectrum would shift towards \qquad wavelengths
(a) increase, shorter $\checkmark \checkmark$
(b) increase, longer
(c) decrease, longer
(d) decrease, shorter
(e) increase, redder
8. The numerical value of earth's "solar constant" is about \qquad
(a) $9.8\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$
(b) $0.5[\mu \mathrm{~m}]$
(c) $4[\mu \mathrm{~m}]$
(d) $500\left[\mathrm{~W} \mathrm{~m}^{2}\right]$
(e) $1370\left[\mathrm{~W} \mathrm{~m}^{-2}\right] \quad \checkmark \checkmark$

For the remaining questions, please refer to the attached surface analysis.
9. The pressure change at the Alberta station farthest to the northwest (and reporting $T=$ $6^{\circ} \mathrm{C}, T_{d}=3^{\circ} \mathrm{C}$) was \qquad
(a) a rise of 19 hPa
(b) a rise of $1.9 \mathrm{hPa} \quad \checkmark \checkmark$
(c) no change
(d) 74 hPa
(e) 7.4 hPa
10. Sea-level corrected pressure at the location marked by the large cross (\mathbf{X}, just north of the northern border of British Columbia) was about \qquad hPa
(a) 10.14
(b) 1004
(c) $1014 \checkmark \checkmark$
(d) 1020
(e) 1027

Equations and Data.

- $p=\frac{M g}{A}$

The pressure $p[\mathrm{~Pa}]$ that results when a mass $M[\mathrm{~kg}]$ of air overlies area $A\left[\mathrm{~m}^{2}\right]$, where $g \approx 10\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ is the acceleration due to gravity

- $1 \mathrm{hPa}=100 \mathrm{~Pa}$

Pressure unit conversion. Sea-level pressure on earth is roughly 1000 hPa .

- $L \uparrow=\epsilon \sigma T^{4}$

Stefan-Boltzmann law. $L \uparrow\left[\mathrm{~W} \mathrm{~m}^{-2}\right]$, the emitted longwave energy flux density (for which our textbook uses the symbol " I "); ϵ, the emissivity of the surface (dimensionless); $\sigma=5.67 \times 10^{-8} \quad\left[\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right]$, the Stefan-Boltzmann constant; $T[\mathrm{~K}]$, the surface temperature.

- $\lambda_{\max }=\frac{2900}{T}$

Wien's displacement law. $\lambda_{\max }[\mu \mathrm{m}]$, the wavelength at which the peak in the emission spectrum occurs; $T[\mathrm{~K}]$, the temperature of the emitting surface.

- $\theta=90-\Phi_{\text {lat }}+\phi_{\text {sol.dec }}$

The solar elevation θ at solar noon, at a location with latitude $\Phi_{l a t}$, at the time of year when solar declination is $\phi_{\text {sol.dec }}$. Latitude is negative in the southern hemisphere; and solar declination is negative during northern hemisphere winter.

Figure 1: CMC surface analysis, 12Z Sept. 10, 2009

