EAS270, "The Atmosphere" Quiz 1 24 Sept., 2010

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 15 mins <u>Potential Value</u>: 10%

Instructions: For all 10 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. **Eqns/data given at back**. You may keep this quiz.

- 1. Order-of-magnitude values for air density (ρ) and pressure p at sea-level are _____
 - (a) 1000 kg m^{-3} ; 1000 Pa
 - (b) 1 kg m^{-3} ; 1000 Pa
 - (c) 1 kg m^{-3} ; 1000 hPa $\checkmark \checkmark$
 - (d) 1 kPa; 1 kg m⁻²
 - (e) 0.1 kg m^{-3} ; 100 kPa
- 2. The approximate percentages by volume of nitrogen (N₂), oxygen (O₂), and 'all other gases (AOG)' in the troposphere are N₂, O₂, AOG = $\sin \ensuremath{\sin \ensure$
 - (a) 10, 20, 70
 - (b) 33.3, 33.3, 33.3
 - (c) 50, 40, 10
 - (d) 70, 20, 10
 - (e) 78, 21, 1 $\checkmark \checkmark$

3. Present day CO_2 concentration is about _____

- (a) 390 kg m^{-3}
- (b) 1370 kg m^{-3}
- (c) 0.039 kg m^{-3}
- (d) 390 ppmv (parts per million by volume) $\checkmark \checkmark$
- (e) 1370 ppmv (parts per million by volume)
- 4. Despite the fact that it makes up about _____ % by volume of the atmosphere, nitrogen gas N₂ has "relatively little effect on most meteorological processes" because _____
 - (a) 21; it is not a greenhouse gas
 - (b) 21; it is a "permanent" gas with a very long residence time
 - (c) 78; it is a "variable" gas with a very short residence time
 - (d) 78; it is a "permanent" gas with a very long residence time, and does not interact with terrestrial radiation $\sqrt{\checkmark}$
 - (e) 98; it is not a greenhouse gas

5. The "shortwave" (or "solar") radiation band spans approximately μm

- (a) 0.4 40
- (b) $0.4 4 \quad \checkmark \checkmark$
- (c) 4 100
- (d) 40 100
- (e) 0.4 100

6. In atmospheric science the "solar constant" refers to _____

- (a) the strength of the solar beam (1370 ${\rm W~m^{-2}})$ measured above earth's atmosphere $\checkmark\checkmark$
- (b) the outgoing terrestrial radiant energy flux density (1370 ${\rm W~m^{-2}})$ measured above the atmosphere
- (c) the inclination (23.5 degrees) of earth's spin axis relative to the plane of its orbit
- (d) the radius (about 150 million km) of earth's orbit about the sun
- (e) the rate of radiant energy release by the sun $[J s^{-1}]$
- 7. The emission spectrum of a certain black body has its spectral peak at wavelength $\lambda_{\text{max}} = 14 \,\mu\text{m}$. The temperature of the body must be about _____
 - (a) 207°C
 - (b) $67^{\circ}C$
 - (c) 207K ✓✓
 - (d) -67K
 - (e) 480K
- 8. Suppose two (otherwise identical) graybody surfaces are at temperatures T, 2T [K]. The hotter surface radiates energy at a rate that is _____ times the rate of the cooler surface
 - (a) 1/2
 - (b) 2
 - (c) 1/4
 - (d) 4
 - (e) 16 $\checkmark \checkmark$

For the remaining questions, please refer to the attached surface analysis.

- 9. In the northern hemisphere winds blow _____ about a low pressure system. At the Churchill station reported wind speed was about _____ and the wind was blowing _____ the north-northwest (NNW)
 - (a) clockwise; 15 m s^{-1} ; to
 - (b) anticlockwise; 15 m s^{-1} ; to
 - (c) clockwise; 7.5 m s^{-1} ; from
 - (d) anticlockwise; 15 m s⁻¹; from $\checkmark \checkmark$
 - (e) anticlockwise; 7.5 m s^{-1} ; from
- 10. Wind direction (in the reporting convention used in meteorology) and sea-level corrected pressure at Churchill were _____
 - (a) NNW; 1010.7 hPa $\checkmark \checkmark$
 - (b) NNW; 910.7 hPa
 - (c) NNW; 1070 hPa
 - (d) SSE; 910.7 hPa
 - (e) NNW; 910.7 hPa

Equations and Data.

- one full barb on the wind vector corresponds to about 5 m s^{-1}
- N=0 or 360, NNE=22.5, NE=45, ENE=67.5, E=90, ESE=112.5, SE=135, SSE=157.5, S=180, SSW=202.5, SW=225, WSW=247.5, W=270, WNW=292.5, NW=315, NNW=337.5

The sixteen so-called "cardinal points" of the compass, given alphanumerically and as an angle measured clockwise around the circle. A coarser eight-point subdivision is N, NE, E, SE, S, SW, W, NW; and the four cardinal points are of course N, E, S, W

•
$$L_{\uparrow} = \epsilon \sigma T^4$$

Stefan-Boltzmann law. L_{\uparrow} [W m⁻²], the emitted longwave energy flux density (for which our textbook uses the symbol "I"); ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

• $\lambda_{\max} = \frac{2900}{T}$

Wien's displacement law. λ_{\max} [μ m], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.

Figure 1: CMC surface analysis, 18Z Sept. 13, 2010. The white arrow points towards the station at Churchill, Manitoba, on the west flank of the low pressure system. The latitude lines (running W-E) and longitude lines (running S-N) provide a frame of reference for the orientation of the station wind vector.