Goals for today:

- The weekend's warm weather in Edmonton
 - first look at a thermodynamic chart (the Stuve diagram)
 - the 850 hPa temperature field strong temperature contrast between central and far northern Ab
- Continue Ch 3 "Energy Balance & Temperature"
 - the nocturnal radiation inversion
 - diurnal range in temperature
 - the turbulent "friction layer" (atmospheric boundary layer)
 - Earth's radiative equilibrium temperature

Edmonton City Centre Airport Past 24 Hour Conditions

Imperial Units

Date / Time (MDT)	Conditions	Temp (°C)	Humidity (%)	Dew Point (°C)	Wind (km/h)
25 September 201	1				
17:00	Sunny	23	39	8	NW 13
16:00	Light Rain	24	35	8	WNW 22 gust 37
15:00	Sunny	32	16	3	SSW 33
14:00	Sunny	30	20	5	SSE 26 gust 37
13:00	Sunny	29	20	4	SSE 32 gust 45
12:00	Sunny	27	22	4	SSE 30
11:00	Sunny	26	25	4	SSE 24
10:00	Sunny	22	29	3	SSE 18
9:00	Sunny	20	32	2	S 18 gust 30
8:00	Sunny	15	41	2	SSE 8
7:00	Clear	14	42	1	SSE 4
6:00	Clear	14	44	2	SE 11
5:00	Clear	16	38	2	SSE 15
4:00	Clear	16	41	2	ESE 8
3:00	Clear	18	38	3	SE 13
2:00	Clear	18	45	6	SE 18
1:00	Clear	17	54	8	SE 13
00:00	Clear	13	76	9	calm
24 September 201	1				
23:00	Clear	16	66	9	NE 5
22:00	Clear	16	62	9	ENE 9
21:00	Clear	18	57	9	NE 9
20:00	Clear	17	56	8	NE 11
19:00	Sunny	22	45	9	NE 15
18:00	Sunny	23	41	9	NE 17
17:00	Sunny	24	41	10	NE 9

Historical Data

Yesterday		Normals		
Max: Min:	24.1°C 7.2°C	Max: Min:	15°C 2°C	
Saturday	/ 24 Sept	1		

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 12Z 25 Sep 2011 University of Wyoming spread) above the inversion

71119 WSE Edmonton Stony Plain Observations at 12Z 25 Sep 2011

Diurnal cycle in near-ground stratification

Recall the notation T=T(z) means "T varies with z" or "T is a function of z"

Cause ... • ground cooling: Q* < 0, ie. outgoing longwave radiation exceeds incoming longwave</p>

• then air above cools by convection (stirring), $Q_H < 0$

Conditions for severest inversion ...

- clear sky, dry air
- long night with light wind

Result... radiation frost?

Photo :Keith Cooley

Figs. 3-22

We've been focused on the energy fluxes to/from ground, and their influence on the local daily cycle in temperature...

"Amplitude of the daily temperature pattern is (also) reduced under overcast conditions" and during windy conditions

Local (site-specific) effects on local radiation and energy balance produce "micro-climates" that can be manipulated (e.g. windbreaks)

The atmospheric boundary layer (ABL) and the depth (δ) of mixing

Depth (δ) of mixing varies in time/space

Depth of the ABL (i.e. magnitude of δ) depends on the turbulence, and increases with:

- \bullet stronger surface heating ${\rm Q}_{\rm H}$
- stronger wind
- rougher surface

Why might we consider earth's global climatological temperature T_{eq} to be at equilibrium (Sec. 3-2)?

Because there is a stabilizing feedback. Let $\Delta T_{_{eq}}$ be the change in $T_{_{eq}}$ over time interval Δt . Then,

$$\frac{\Delta T_{eq}}{\Delta t} \propto \pi R^2 (1-a) S_0 - 4\pi R^2 \epsilon \sigma T_{eq}^4$$
Rate of change \propto gains minus losses

R is earth's radius, S_o is the solar constant, *a* (=0.3) is the planetary albedo, ε (≈1) is the planetary emissivity and σ is the Stefan-Boltzmann constant. The proportionality constant involves the heat capacity of the earth-atmosphere system. (In reality *a*, ε may depend on T_{eq}).

At earth's (hypothetical) equilibrium temperature, there is balance:

Both sides of the equation are zero, thus setting the right hand side to zero

$$C \frac{\Delta T_{eq}}{\Delta t} = 0 \propto \pi R^2 (1-a) S_0 - 4\pi R^2 \epsilon \sigma T_{eq}^4$$

Common factors cancel

Set a = 0.3 and $\epsilon = 1$ to obtain earth's (radiative) equilibrium temperature (Sec. 3-2),

 $T_{eq} = 255 \text{ K}$

(However this entirely neglects the effect of the atmosphere – true global-annual mean surface temperature is about 288 K)

