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Answers to EAS 327 Trial Problems: Last Up-

dated 1 April, 2004

1. Since the resistors are identical, the output voltage (proviso: neglecting

the source resistance, which there is no way to know from the given

information) is half the supply voltage, ie. V0 = 3 volts. The current

is i = 6/(2 KΩ) = 3 milliamps.

2. Again, V0 = 3 volts, but the current is far smaller at i = 6/(2 x 10KΩ) =

0.3 milliamps

3. Since 2 = 6 R2/(R1 + R2) and R2 = 10 KΩ, by rearrangement R1 =

20 KΩ

4. Let’s take the case that T = 10o C. Then the element R1 has resistance

R1 = 10K (1 + 0.00392 ∗ (10− 20)) = 9.608K (I shall often drop the

“Ω” and a “K” means a kilohm). So the output voltage, when the

temperature is 10o C, is (given to three significant figures)

V0 = 12
10

10 + 9.608
= 6.12 volts

5. The RC time-constant τ = RC = 5 x 103 x 1 x 10−6 = 5 millisec. The

half-power frequency is thus f0 = 1000/10π = 31.8 Hz.

However in fact one does not need to know the half-power frequency

to answer the question... recall that

G(f) =
1

1 +
(

f
f0

)2
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and so if f = 0, G = 1; if f = f0, G = 1
2
; and if f = f0/2, G =

1
1+0.25

= 0.8

6. At T = 25o C the sensing element has resistance R1 = 20K(1+0.04(25−
20)) = 24K. Then at this temperature V0 = 5 20/(20+24) = 2.27 volts

7. At T = 20o C the sensing element has resistance R1 = 20K(1+0.04(20−
20)) = 20K (obviously!). So the output voltage is V0 = 10 5/(5+20) =

2.0 volts.

At T = 20.05o C the sensing element has resistance R1 = 20K(1 +

0.04(20.05 − 20)) = 20.04K. Then V0 = 10 5/(5 + 20.04) = 1.99681

volts. This signal is only 3.19 millivolts different from the signal at 20

C, and lies outside the input span (ie. off scale) for a receiver with full

scale range (FSR) ±0.005 volts.

If the datalogger has FSR ±10 volts and 12 bits resolution, the mini-

mum detectable change (ie. voltage resolution) of the logger is

δV =
20

212 − 1
= 4.884 x 10−3volts

ie. the mimimum detectable change is 4.88 millivolts. Thus although

the FSR of ±10 volts will permit to measure the voltage out of our

half-bridge temperature sensor, the 12 bit resolution will not permit to

detect a temperature shift as small as 0.05 C.

So we subtract off 2.0 volts, by introducing the second arm of the bridge

(ie. work with a full bridge circuit). Now, at 20.05 C, we have a bridge
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error voltage of -3.19 millivolts, small enough that we can work with a

receiver whose FSR is ±5 millivolts.

The voltage resolution with this setup is

δV =
10

214 − 1
= 0.610 x 10−3 millivolts

or 0.61 microvolts (δV = 0.61 µV ). What is the corresponding temper-

ature resolution? Well we have computed that a shift in temperature

of 0.05 C causes a shift in the output voltage of 3190 µV , so our tem-

perature resolution is

δT = δV
0.05

3190
= 0.61

0.05

3190
= 9.56 x 10−6 K

8. Only the ratio NL/NW is “dimensionless”

9. N ′
L = 2NL and , N ′

W = 2NW , but N ′
L/N ′

W is identical to NL/NW

10. Conductivity of copper is k = 385 W m−1 K−1 so the magnitude of the

heat flux density is

|QH | = k
20

1
= 7.7 x 103 W m−2

11. Because the temperature T of the sphere is not changing, we have

C
dT

dt
= 0 = A (Q∗ + QH) + P

where I have assumed the sphere is dry. The left hand side is the term

that involves the heat capacity of the sphere, and it is zero. Thus
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the power P provided to the hot sphere is lost to the environment as

sensible heat and in the form of radiation.

Assume only longwave radiation needs to be considered, then to a first

approximation

Q∗ = σ
(
T 4 − T 4

a

)
= 5.67 x 10−8

(
(273 + 850)4 − (273 + 25)4

)
= 8.97 x 104 W m−2

which is a very large energy flux density, but of course the surface area

of the sphere is small, A = π(0.0015)2 = 2.43 x 10−5 m2

What about the sensible heat flux density? The temperature difference

is large (∆T = 825o C). We are told the air is still, so we need the

Nusselt number for a sphere in still air. This is given in the course

tables as

Nu = 2 + 0.589R1/4
a

[
1 +

(
0.469

Pr

)9/16
]−4/9

(9)

where the Rayleigh number Ra = GrPr and the Prandtl number Pr =

ν/κ is the ratio of the fluid’s kinematic viscosity to its thermal diffu-

sivity. For air at 25o C, Pr = 1.55/2.22 = 0.698 (see tables).

Putting in the numbers, in our problem the Grashof number

Gr =
g d3 ∆T

273 ν2
=

9.81 0.00153 825

273 (1.55x10−5)2 = 416

Thus Ra = 0.698 ∗ 416 = 291 and we can compute the Nusselt number

from equation (9), Nu = 3.87.

Now we deduce the heat transfer resistance

rH =
d

κ Nu

=
0.0015

2.22x10−5 3.87
= 17.4 s m−1
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and finally our sensible heat flux density is

QH = ρ cp
∆T

rH

≈ 103 825

17.4
= 4.74 x 104 W m−2

(I assumed ρ ≈ 1 kg m−3) which is again, a very large heat flux density.

So the power required to heat this sphere is

P = A (Q∗ + QH) = 2.43x10−5x(8.97 + 4.74)x104 = 3.3 W

You deserve a coffee after that one!

12. This follows from the example done in class

13. Suppose it happens that air temperature is T = 25 C, and wet-bulb

temperature is Tw = 20 C. Suppose a wet-bulb thermometer, radiation-

shielded, and exposed to a ventilating draft of speed u = 4 m s−1, is in

equilibrium at the wet-bulb temperature (ie. it is performing ideally).

Its wick is cylindrical, with diameter d = 4 mm, and with length ` = 2

cm. The water reservoir contains 5 cm3. Calculate the interval of time

required to empty the reservoir.

There are many ways to approach this problem. The simplest is as

follows. We need the evaporation rate E = QE/Lv and we know that

QE =
ρ cp

γ

e∗(Tw)− e

rv

(14)

but for the ideal wet bulb thermometer |QE| = |QH | so it will be simpler

to compute QH . This is easy.

|QE| = |QH | = ρcp
T − Tw

rH

(15)
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We need the density: I didn’t give you the pressure (which, by the way,

you would have needed in order to evaluate the psychrometric constant

γ = pcp/(0.622Lv)), so lets put ρcp = 103 (MKS units). All we need

now is rH . This we can get from the Nusselt number for a cylinder in

forced convection...

The Reynolds number Re = ud/ν = 1067, so Nu = 0.24 R0.6
e =

16 (two significant figures is sufficient). Then rH = d/(Nu DH) =

12 s m−1 (to get these results I assumed ν = 1.5 x 10−5 m2 s−1, DH =

2.1 x 10−5 m2 s−1).

So now we can compute that |QE| = 103 ∗5/12 = 420 W m−2 and since

the latent heat of vaporization Lv = 2.5 x 106 J kg−1 the evaporation

rate is 1.7 x 10−4 kg m−2 s−1. Multiply this by the surface area (πd` =

2.5 x 10−4 m2) to deduce that the rate of loss of mass from the reservoir

is 4.3 x 10−8 kg s−1.

Initially the mass of water is the reservoir is M0 = 1000 kg m−3 x 5 x (10−2 m)
3

=

5 x 10−3 kg. So it will take 5 x 10−3/ (4.3 x 10−8) = 1.2 x 105 seconds

( 1.4 days ) to drain the reservoir.

14. Suppose a pitot tube is aligned with a unidirectional airflow of velocity

U and density ρ = 1 kg m−3. The pressure difference ∆p between the

stagnation and static ports is relayed to a manometer, which is filled

with water. Calculate the “signal” h (height of the displaced column

of water) if U = 0.1 m s−1 (etc).



7

The pressure difference ∆p = 1
2
ρU2 = 5 x 10−3 Pa (assuming ρ =

1 kg m−3) and this will cause a signal ρwgh = 104h = 5 x 10−3 or

h = 5 x 10−7 m, ie. h = 0.5 µm .

15. Now suppose the same pitot tube/manometer reports h = 15 mm, when

aligned to a unidirectional flow of water. What is the water velocity

U?

We have ρwg x 15 x 10−3 = 1
2
ρwU2. The water density cancels and

U2 = 2g x 15 x 10−3, so U = 0.55 m s−1 .

16. Suppose a cup anemometer, sitting in an airstream with speed s =

5 m s−1 and density ρ = 1 kg m−3, is restrained from rotating. Calcu-

late the drag torque Γ on the anemometer if: frontal area of the cups

A = 25 cm2; radius to centre of cups r = 10 cm; and drag coefficients

cdf = 1, cdb = 0.5.

Γ = r x ρ s2 A (cdf − cdb) = 3.1 x 10−3 Nm.

17. Suppose x is uniformly distributed on the range −1 ≤ x ≤ 1. Then the

p.d.f. of x is:

f(x) = 0.5, |x| ≤ 1

= 0, |x| > 1 (16)

Calculate E[x], E[x2], and the standard deviation σx.

Since the pdf is symmetric about x = 0 the mean E[x] must be zero.
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This is easy to prove:

E[x] =

∫ ∞

−∞
x f(x) dx =

∫ 1

−1

x dx =

[
x2

2

]1

−1

= 0 (17)

Since the mean is zero, the deviation x′ = x − E[x] ≡ x and so the

variance

E[x′2] =

∫ ∞

−∞
x2 f(x) dx =

∫ 1

−1

x2 dx =

[
x3

3

]1

−1

=
2

3
(18)

and thus σx =
√

2/3

18. Suppose x can take on values 0 ≤ x ≤ ∞, and that x has p.d.f.

f(x) = α exp (− αx) (19)

• The units of α must be the reciprocal of the units of x

• Is this pdf normalized? Check:

∫ ∞

0

f(x) dx = α

[
e−αx

−α

]∞

0

= α

[
0− 1

−α

]
= 1 (20)

Yes, it is normalised.

• Calculate E[x], E[x2], and the standard deviation σx
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To obtain the mean, one needs to do an integration by parts:

E[x] =

∫ ∞

0

x f(x) dx

= α

([
x

e−αx

−α

]∞

0

−
∫ ∞

0

e−αx

−α
dx

)

=

∫ ∞

0

e−αx dx

=

[
e−αx

−α

]∞

0

=
1

α
(21)

Thus the parameter α is the reciprocal of the mean. To get the

mean square or the variance, one will need to integrate by parts

twice (a good exercise if you want to practise your Calculus, but

otherwise don’t worry!). The standard deviation turns out to be

equal to the mean.

• If the parameter α = 1, find the probability P that a random

realisation (choice) of x lies in the range 3 ≤ x ≤ 4.

Here we want

P =

∫ 4

3

e−x dx =

[
e−x

−1

]4

3

=
[
e−3 − e−4

]
= 0.0315 (22)

19. Prove by substitution that the function βv = B [1− cos(t/T )] satisfies

the differential equation

d2βv

dt2
=

β − βv

T 2
(23)

where β is a constant.
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First, note by differentiation that

dβv

dt
= B(−1)

d cos(t/T )

dt
= B(−1)

−1

T
sin(t/T ) =

B

T
sin(t/T )

d2βv

dt2
=

d

dt

(
dβv

dt

)
=

d

dt

(
B

T
sin(t/T )

)

=
B

T

1

T
cos(t/T ) =

B

T 2
cos(t/T ) (24)

Thus

LHS =
d2βv

dt2
=

B

T 2
cos(t/T )

RHS =
β − B [1− cos(t/T )]

T 2

=
β −B

T 2
+

B cos(t/T )

T 2

=
β −B

T 2
+ LHS (25)

so LHS ≡ RHS provided B = β.


