Professor: J.D. Wilson	Time available: 2 hours 20 min	Value: 35%
<u></u>		

Please answer all questions in the Examination Booklet.

A. Multi-choice $(20 \ge 1/2 \rightarrow 10 \%)$

- 1. In the N. hemisphere the thermal wind vector is oriented _____ the isotherms with cold air _____
 - (a) parallel to; on its right
 - (b) perpendicular to; on its right
 - (c) parallel to; on its left $\checkmark \checkmark$
 - (d) perpendicular to; on its left
 - (e) obliquely across; where it is pointing
- 2. The equation

$$Q_H = \rho \, c_p \, C_H \, U_{10} \, \left(T_0 - T_a \right)$$

is a bulk model for sensible heat exchange between the surface and the atmosphere (ρ , air density; c_p , specific heat of air at constant pressure; U_{10} the 10 m wind speed; T_0 , surface temperature; T_a , air temperature). The units of C_H must be

- (a) m
- (b) s
- (c) $J m^{-2} s^{-1}$
- (d) $\rm s \, m^{-1}$
- (e) C_H carries no units $\checkmark \checkmark$
- 3. The spatial resolution of the GOES infra-red image on the equator (instantaneous geographic field of view at nadir) is about
 - (a) 40m
 - (b) 400m
 - (c) $4 \text{km} \checkmark \checkmark$
 - (d) 40km
 - (e) 400km
- 4. Brightness of each single pixel of the GOES visual image is determined by
 - (a) cloud top temperature
 - (b) shortwave reflectivity (albedo)
 - (c) sum of shortwave and longwave intensities incident at cloud top
 - (d) solar elevation and intensity, and shortwave reflectivity (albedo) $\checkmark \checkmark$
 - (e) roughness of the surface seen (cloud, ground or water)

- 5. If ϕ is a conserved variable (i.e. does not change along trajectories) and U is the 3D velocity vector, then
 - (a) $d\phi/dt = \partial \phi/\partial t$
 - (b) $\partial \phi / \partial t = -\mathbf{U} \cdot \nabla \phi \checkmark \checkmark$
 - (c) $\partial \phi / \partial t = \mathbf{U} \cdot \nabla \phi$
 - (d) $\partial \phi / \partial x = \partial \phi / \partial y = \partial \phi / \partial z = 0$
 - (e) $\mathbf{U} \cdot \nabla \phi = 0$
- 6. According to the quasi-geostrophic (QG) model, in mid-latitudes the evolution of the synoptic scale pressure field is primarily determined by _____ advection of _____
 - (a) vertical; humidity and temperature
 - (b) vertical; horizontal vorticity and temperature
 - (c) horizontal; humidity and temperature
 - (d) horizontal; vertical vorticity and temperature $\sqrt{\checkmark}$
 - (e) hydrostatic; earth vorticity
- 7. The velocity on a pressure surface may be partitioned into geostrophic and ageostrophic components $(\mathbf{U}_g, \mathbf{U}_{ag})$, where \mathbf{U}_g is non-divergent. The QG vorticity equation, which associates a property of the vorticity and motion fields with horizontal divergence D_p , is

$$\frac{d_g\eta}{dt} = -f_0 D_p$$

where f_0 is the Coriolis parameter evaluated at the reference latitude, and $\eta = f_0 + \zeta_g$ is the absolute vorticity (ζ_g is the relative vorticity evaluated using the geostrophic wind). The operator d_g/dt is

- (a) the local (Eulerian, or fixed-frame) tendency in time
- (b) the time derivative following the total wind $\mathbf{U}_q + \mathbf{U}_{aq}$
- (c) the time derivative following the ageostrophic wind \mathbf{U}_{ag}
- (d) the time derivative following the geostrophic wind $\mathbf{U}_g \checkmark \checkmark$
- (e) the Laplacian
- 8. Referring again to the QG vorticity equation, the divergence D_p is evaluated using
 - (a) the natural coordinate system
 - (b) the hydrostatic approximation
 - (c) a non-hydrostatic vertical momentum equation
 - (d) the total wind $\mathbf{U}_g + \mathbf{U}_{ag} \checkmark \checkmark$
 - (e) the β -plane approximation $f(y) = f_0 + \beta y$, y being the meridional coordinate

- 9. On a Graphical Area Forecast (e.g. Fig. 12) the symbol "P6SM" has what significance?
 - (a) predicted visibility exceeds 6 statute miles $\checkmark \checkmark$
 - (b) probability 0.6 of snow
 - (c) precipitation 6 mm (snow depth)
 - (d) precipitation 6 mm (water equivalent)
 - (e) partial (6/8) cloud cover on synoptic and meso scales
- 10. Referring to Figures (1-2), surface analyses from the Australian Bureau of Meteorology, at a best guess the dashed blue lines represent
 - (a) shortwave troughs $\checkmark \checkmark$
 - (b) shortwave ridges
 - (c) occluded fronts
 - (d) lee troughs
 - (e) storm tracks
- 11. The west coast of the South Island of New Zealand (NZ) is defined by a narrow chain of high mountains, while the east coast is substantially an erosion plain; the sea-level isobar pattern over the South Island often reflects the influence of that topography. Still in reference to Figures (1-2), westerly winds would have been occurring over the South Island of NZ on
 - (a) 9 April and 11 April $\checkmark \checkmark$ (answer accepted because a flow from west coast to east coast would not be exactly "westerly")
 - (b) neither 9 April nor 11 April
 - (c) 9 April $\checkmark \checkmark$
 - (d) 11 April
- 12. On the basis of Fig. (3), what process or phenomenon might one expect to occur over east-central Manitoba?
 - (a) cold advection
 - (b) cyclogenesis
 - (c) freezing rain
 - (d) frontogenesis $\checkmark \checkmark$
 - (e) severe convection
- 13. Again referring to Fig. (3), what temperature label attaches to the isotherm designated by an "**X**" in the Yukon at the top of the map? The heavy dashed ring, indicating suspicious data, probably refers to which variable?
 - (a) -35; dewpoint
 - (b) -35; temperature
 - (c) -30; dewpoint
 - (d) -30; temperature $\checkmark \checkmark$
 - (e) -30; height of the 850 hPa surface

- 14. Referring to Figure (4), the cut-off low in the United States might be termed
 - (a) super-geostrophic
 - (b) a mesoscale low
 - (c) a cold core low $\checkmark \checkmark$
 - (d) a hurricane
 - (e) a tropical storm
- 15. If vectors \mathbf{P}, \mathbf{Q} respectively have components $(0, p_b, 0)$ and $(1, q_b, 1)$ relative to a basis defined by orthogonal unit vectors $(\hat{i}, \hat{j}, \hat{k})$ then the quantity $\mathbf{P} \cdot \mathbf{Q}$ (ie. 'dot product' of the two vectors) is _____
 - (a) 0
 - (b) (0,0,0)
 - (c) $p_b q_b \checkmark \checkmark$
 - (d) $(1, p_b + q_b, 1)$
 - (e) $p_b + q_b$
- 16. In a single spatial dimension x, and using a Cartesian coordinate, which is the correct representation of the operator $\nabla^2 (\equiv \nabla \cdot \nabla)$, variously named the Laplacian/diffusion/curvature operator?
 - (a) $\partial/\partial x$
 - (b) $\partial^2/\partial x^2 \checkmark \checkmark$
 - (c) $\partial/\partial t$
 - (d) $\partial^2/\partial t^2$
 - (e) $\partial/\partial t + U \partial/\partial x$
- 17. Suppose that $f(x) = \alpha \exp(-x/x_0)$ is the probability density function (PDF) for a random non-negative real number x. For f to be an acceptable PDF, the constants x_0 and α must satisfy
 - (a) $\alpha = 1, x_0 < 0$
 - (b) $\alpha = \exp(-1)$
 - (c) $\alpha = x_0$

(d) $\alpha = 1/x_0 \checkmark \checkmark$ (required to ensure $\int_0^\infty f(x) dx = 1$) (e) $\alpha^2 = \sqrt{x_0}$ 18. The mean square value of x can be computed from the PDF as

(a)
$$\overline{x^2} = \int_0^\infty f(x) dx$$

(b) $\overline{x^2} = \int_0^\infty x f(x) dx$
(c) $\overline{x^2} = \int_0^\infty x f^2(x) dx$
(d) $\overline{x^2} = \int_0^\infty x^2 f(x) dx \checkmark \checkmark$
(e) $\overline{x^2} = \int_0^\infty x^2 f^2(x) dx$

- 19. Assuming the 250 hPa wind speed |U| is the value reported for Fort Smith (YSM, on the northern border of Alberta) on Figure (9), the Courant number $C = |U| \Delta t / \Delta x$ at a 250 hPa-level gridpoint of the GEM (regional config.) model (near Fort Smith) is about
 - (a) 1000
 - (b) 100
 - (c) 10
 - (d) 1 √√
 - (e) 0.1
- 20. The mean vertical sensible heat flux density carried by unresolved scales of motion, formally $\overline{w'\theta'}$ (where w', θ' are the fluctuations in vertical velocity and potential temperature), is typically parameterized in an NWP model, by analogy with Fourier's law of conduction, as

$$\overline{w'\theta'} = -K_h \ \frac{\partial\overline{\theta}}{\partial z}$$

where $K_h [m^2 s^{-1}]$ is the "eddy diffusivity for heat." Then in a "neutral" (unstratified, i.e. thermally well-mixed) layer of the atmosphere the unresolved vertical heat flux

- (a) is positive
- (b) is zero $\checkmark \checkmark$
- (c) is negative
- (d) is indeterminate
- (e) is infinite

B. "Live" web weather data (5 x $1 \rightarrow 5\%$)

- What was the total rainfall recording for Edmonton International Airport on 8 July 2011?
 11.6 mm
- 2. What was the CAPE at 00Z 3 April 2012 at Lamont Oklahoma (74646, LMN)? Convective Available Potential Energy 1622 J kg⁻¹. CAPE using virtual temperature 1783 J kg⁻¹
- 3. Retrieve and write down the METAR for CYEG for 06Z today

CYEG 200600Z 14017KT 15SM FEW090 SCT170 BKN240 05/M01 A2985 RMK AC2AC1CI4 SLP126=

- 4. According to the GEM reg run initialized at 06Z today, what was the 0h value (i.e. analysis) for the maximum value of the precipitable water anywhere over Western Canada (BC-Alberta-Saskatchewan-Manitoba)? **15-20 mm over southern B.C.**
- 5. According to the MSC analysis valid at 06Z today, what is the maximum value over N. America of the absolute vorticity at the 500 hPa level?

If one consulted the 4 panel b/w chart, the maximum indicated was $+20 \times 10^{-5} \ \rm s^{-1}.$

However the 4 panel colour chart picked up a very sharp trough in SW B.C. (probably orogtraphic in origin), and the shading indicated $+32 \rightarrow +50 \times 10^{-5} \text{ s}^{-1}$.

Either answer was acceptable

C. Interpretation of weather situation. $(1 \ge 10\%)$

On 5 April 2012 Edmonton experienced a heavy snowfall, with a high rate of accumulation coinciding with morning rush hour traffic. This storm had been a feature of GEM model progs for at least the previous eight days. Figures (5-12) summarize the prevailing meteorology at 12Z (i.e. 06 MDT).

From the given information, **interpret the meteorological facts** relating to this event. Please present your analysis in point form.

Summary

- 1. Low pressure system on Ab./Sask. border east of Edmonton, not a particularly deep storm but nevertheless causing strong surface winds
- 2. Upslope surface wind may have contributed
- 3. Narrow ridge of warmer air at 850 hPa in S and W. Saskatchewan (roughly coinciding with the warm sector analysed on the GFA); somewhat colder air in Alberta west of the low (i.e. some temperature contrast, but not dramatic)
- 4. Mild surface air wrapping around the low, but sub-zero aloft suggesting rain or wet snow would not have been too surprising
- 5. Strong N. wind at 850 hPa
- 6. Sounding indicates a nearly saturated atmosphere to almost 500 hPa, and that the temperature profile is *neutral* w.r.t. moist adiabatic motion to about 600 hPa
- 7. Zone of high values of precipitable water in Sakatchewan and wrapping around the N. of the low
- 8. Zone of strong ascent at 700 hPa over Edmonton

- 9. Zone of strong low level (900 hPa) convergence over Edmonton
- 10. Zone of warm advection at 850 hPa just east of Edmonton
- 11. Surface storm was situated under the exit from an upper trough (500 hPa and above)
- 12. 500 hPa vorticity maximum just upwind of Edmonton (probable positive vorticity advection over Edmonton)
- 13. Southerly 250 hPa jet runs along Alberta-Saskatchewan border
- 14. GFA indicates region of overcast skies with precipitation covers C. Alberta. Low ceiling (i.e. low cloud base).
- 15. Altocumulus castellanus noted on GFA (indicative of convection)
- 16. Overall most elements of the pattern would suggest higher precip east of Edmonton, the vert. velocity being the exception (centred on the city)

D. Short answer (2 x 5 $\% \rightarrow 10 \%$)

Please answer **two** of the following questions.

- 1. Describe the scientific and operational features of Canada's NWP model "GEM"
- 2. In gridpoint computations the friction term F_u in the mean zonal momentum equation is simplified

$$F_{u} \equiv -\frac{\partial \overline{u'^{2}}}{\partial x} - \frac{\partial \overline{u'v'}}{\partial y} - \frac{\partial \overline{u'w'}}{\partial z}$$
$$\rightarrow -\frac{\partial \overline{u'w'}}{\partial z}$$
$$\rightarrow -\frac{\partial}{\partial z} \left(-K\frac{\partial U}{\partial z}\right) .$$

Explain the logic and meaning of this simplification.

Overview:

- The motivation for making simplifications is approximate unknown statistics of unresolved motion in terms of quantities that are resolved (known)
- The first simplification is to *neglect horizontal gradients* in favour of what is expected to be a much stronger *vertical* gradient
- The quantity $\overline{u'w'}$ represents unresolved convective vertical transport of zonal momentum, i.e. a flux of momentum¹.

¹Technically, this is named a "kinematic" momentum flux, since the factor ρ does not appear. If we multiply the kinematic flux by air density we have a quantity $\tau = \rho \overline{u'w'}$ having units of pressure [Pa]. This is a tangential (i.e. shearing) stress.

- If this momentum flux changes with height, we have "friction"
- The second simplification is to *model* the unresolved momentum flux $\overline{u'w'}$, by analogy with Newton's law of viscous friction

$$\tau = \mu \; \frac{dU}{dz} \; .$$

Here $\mu \equiv \nu \rho$ is the "dynamic viscosity" of air, and $\nu [m^2 s^{-1}]$ is the kinematic viscosity. Taking this as the form for modelling the unresolved convective flux, $\overline{u'w'}$ is expressed as the product of an "eddy viscosity" $(K, m^2 s^{-1})$ and the gradient in the resolved velocity, viz.

$$\overline{u'w'} = -K \; \frac{\partial U}{\partial z}$$

- One needs now to specify the K, which can be regarded as being the product of a length scale times a velocity scale, K = λ V. The velocity scale is often taken as V = √k, where k is the "turbulent kinetic energy"
- Given a prescription for K, one has "closed" the problem, i.e. the impact of unresolved scales of motion on the evolution of resolved zonal velocity U can be computed.
- 3. The geostrophic wind is

$$\mathbf{U}_g = \frac{g}{f} \ \hat{k} \times \nabla_p Z$$

where Z is the height of a constant pressure surface. Derive an expression for the geostrophic shear $\partial \mathbf{U}_g/\partial p$ in terms of the two components $\partial T/\partial x$, $\partial T/\partial y$ of the temperature gradient $\nabla_p T$ on the constant pressure surface. (Assume a hydrostatic atmosphere).

Figure 1: Bureau of Meteorology (Australia) surface analysis, 06Z April 9, 2012.

Figure 2: Bureau of Meteorology (Australia) surface analysis, 06Z April 11, 2012.

Figure 3: MSC 850 hPA analysis, 12Z January 25, 2012.

Figure 4: MSC 700 hPA analysis, 00Z March 23, 2012.

Figure 5: MSC surface analysis, 12Z Thurs 5 April 2012.

Figure 6: MSC 850 hPa analysis, 12Z Thurs 5 April 2012.

Figure 7: MSC 700 hPa analysis, 12Z Thurs 5 April 2012.

Figure 8: Left panel: Omega at 700 hPa (light orange, $-1 \rightarrow -2 \,\mathrm{Pa\,s^{-1}}$). Right panel: precipitable water (yellow/green boundary, 15 mm). From GEM 0h prog valid 12Z, Thurs 5 April 2012

Figure 9: Left panel: 500 hPa height and absolute vorticity (GEM reg 0h prog). Right panel: MSC 250 hPa analysis. Valid 12Z Thurs 5 April 2012.

Figure 10: Left panel: Horizontal divergence at 900 hPa (deep purple, $< -1 \times 10^{-4} \,\mathrm{s}^{-1}$). Right panel: temperature advection at 850 hPa (orange, $> 3 \,\mathrm{K} \,\mathrm{hr}^{-1}$). From NAM 0h prog valid 12Z, Thurs 5 April 2012

Figure 11: Stony Plain sounding, 12Z Thurs 5 April 2012 (data below).

PRES hPa	HGHT m	TEMP C	DWPT C	RELH %	MIXR g/kg	DRCT deg	SKNT knot	THTA K	THTE K	тнт К
1000.0				•••••					•••••	
925.0	725									
920.0	766	-0.7	-1.0	98	3.88	310	16	279.0	289.9	279.
903.1	914	-1.5	-1.9	97	3.69	320	25	279.7		280.
869.2	1219	-3.1	-3.9	95	3.32	340	42	281.0	290.5	281.
850.0	1397		-5.0	93	3.12	345	34	281.8	290.8	282.
804.2	1829	-6.9	-7.6	95	2.70	350	30	283.4	291.2	283.
773.4	2134	-8.9	-9.4	96	2.44	355	25	284.4	291.6	284.
752.0	2353	-10.3	-10.7	97	2.26	9	32	285.1	291.9	285.
743.7	2438		-11.0	97	2.23	15	35	285.7	292.4	286.
714.7	2743		-12.2	96	2.11	20	15	287.8	294.1	288.
700.0	2903		-12.8	96	2.05	35	15	288.8	295.1	289.
690.0	3013		-13.5	91	1.97	12	13	290.0	296.1	290.
686.8	3048		-13.7	91	1.94	5	13	290.2	296.1	290.
659.8	3353		-15.3	93	1.77	25	16	291.4		291.
636.0	3632	-16.1	- 16.8	94	1.62	52	17	292.5	297.6	292.
633.8	3658		- 16.7	94	1.64	55	17	293.0	298.2	293.
623.0	3788		-16.1	92	1.76	72	22	295.4	300.9	295.
608.8	3962		- 16.9	91	1.69	95	28	296.7	302.0	297.
590.0	4198	-16.5	-17.9	89	1.59	122	27	298.4	303.5	298.
584.6	4267		-18.4	89	1.54	130	27	298.6	303.6	298.
538.5	4877		-22.9	88	1.13	150	19	300.3	304.0	300.
531.0	4982	-22.3	-23.7	88	1.07	142	18	300.6	304.1	300.
516.6	5182		-29.7	61	0.63	125	17	300.4		300.
507.0	5320	-25.9	-33.9	47	0.43	131	24	300.2	301.7	300.
500.0	5420		-34.9	47	0.40	135	30	300.2		300.
492.0	5536		-34.7	51	0.41	134	30	300.6	302.0	300.
479.0	5728	-29.5	-39.5	37	0.26	133	31	300.7		300.
464.0	5954		-38.5	50	0.30	131	32	300.9	302.0	301.
454.7	6096		-43.7	32	0.18	130	32	301.2	301.9	301.
448.0	6201	-33.5	-47.5	23	0.12	131	34	301.4	301.9	301.
420.0	6652		-60.7	6	0.03	136	41	304.2	304.3	304.
400.0	6990		-61.1	6	0.03	140	46	306.7	306.8	306.
371.0	7509	-39.3	-62.3	7	0.02	144	56	310.4	310.5	310.
365.0	7620		-62.6	7	0.02	145	58	310.6	310.7	310.
327.0	8362	-46.9	-64.9	11	0.02	151	69	311.4		311.
300.0	8930	-50.3	-67.3	12	0.01	155	78	314.3		314.
290.3	9144		-68.4	11	0.01	160	77	315.8		315.
286.0	9241	-51.9	-68.9	11	0,01	162	75	316.4	316.4	316.
262.0	9807		-70.3	11	10401	175	64	322.4		322.
250.0	10110		-72.3	7	0.01	175	54	328.2		328.

Figure 12: GFA valid 12Z Thurs 5 April 2012.