Format: Please submit a tidy, organized report covering the exercise below. Report should be single-sided, double spaced with font size 12 pt . The page limit is two, not counting figures.

Task: Record a two week time series (two points per day) of (a) the 1000-500 hPa thickness (b) temperatures $\left(T_{850}, T_{700}, T_{500}\right)$ at a Canadian radiosonde station ${ }^{1}$. Thickness can be obtained from the soundings (see course URLs) or (less accurately and more laboriously) by interpolating between contours on the CMC 500 hPa analyses at 00 Z and 12 Z . Likewise, temperatures could be talken off the analyses, but it is simpler to grab all needed data off the sounding text data.

Let any given point in the thickness time series be labelled $\Delta Z_{i}(i=1 \ldots 28)$. Compute the mean value $\overline{\Delta Z}$ of your thickness time series, and form the series

$$
\begin{equation*}
q_{i}=\frac{1}{2}\left(\Delta Z_{i}-\overline{\Delta Z}\right)[\text { dam }] \tag{1}
\end{equation*}
$$

(the factor of two corresponds to the relationship between changes in thickness and changes in mean layer temperature). Graph your time series q_{i}. Alongside, but with an arbitrary offset on the q-axis, plot the time series of the following (crudely-computed) layer mean temperature,

$$
\begin{equation*}
\left\langle T_{i}\right\rangle=\frac{1}{9}\left[2 T_{i}^{(850)}+3 T_{i}^{(700)}+4 T_{i}^{(500)}\right] \tag{2}
\end{equation*}
$$

Explain the relationship you find between q_{i} and $\left\langle T_{i}\right\rangle$ by appeal to the hypsometric equation (M\&R Eqn. 2.66 - you may safely ignore the difference betwen virtual and actual temperature in the cold, dry winter atmosphere).

Comment: Note that we are using two different types of average in this exercise. The time average is denoted by the overbar, and the height average by the angle-brackets.

Organization of the data

The index i orders your data in time. Presumably it is easiest to perform the needed calculations in a spreadsheet, which might resemble Figure (1).

[^0]Table 1: Stony Plain sounding data organized for calculation.

i	Day	Time	Z_{500}	Z_{1000}	ΔZ	$q_{i} \equiv \frac{\Delta Z-\overline{\Delta Z}}{2}$	T_{850}	T_{700}	T_{500}	T_{i}
1	10Jan/11	12Z	5420	321	5099		-19.5	-19.1	-32.3	-25.1
2	11Jan/11	$00 Z$	5420	317	5103		-17.1	-19.3	-32.1	-24.5
3	11Jan/11	12Z	5400	300	5100		-16.5	-19.3	-32.5	-24.5
\cdot										
28	23Jan/11	\ldots								
Avg.										

[^0]: ${ }^{1}$ Each student to choose a different station.

