Activities

• Continuity equation in the isobaric coordinate system. Meaning of Laplacian operator (demo – heat eqn in 2 space dimensions)

Exercise – please submit

- plot a hodograph for today's 12Z Stony Plain sounding.
- Identify (draw on your hodograph) the thermal wind $\mathbf{V}_{_{\mathrm{T},700\text{-}850}}$, and comment on the relationship between your thermal wind vector and the isotherm pattern at the 850 hPa and 700 hPa levels

Note: $1 \text{ m s}^{-1} = 1.94 \approx 2 \text{ knots}$ (you may use either unit)

 Identify on the 12Z surface analysis the highest (largest) rate of change of surface pressure (Pa s⁻¹) occurring on the Canadian prairies (enumerated as the pressure change, in tenths of one hPa, in past 3 hrs). Using the omega-w relationship, compute the implied value of the vertical velocity

71119 WSE Edmonton Stony Plain Observations at 12Z 31 Jan 2013

PRES	HGHT	TEMP	DWPT	RELH	MIXR	DRCT		THTA	THTE	THTV
hPa	m	С	С	%	g/kg	deg	knot	К	К	К
1000.0	189		~~~~				_			
928.0	766		-22.3	78	0.69	130	3	259.1	261.1	259.2
927.0	775	-19.7	-24.5	66	0.57	142	4	259.0	260.6	259.1
925.0	792	-19.9	-23.9	70	0.60	165	7	258.9	260.7	259.1
916.0	864	-20.5	-23.2	79	0.65	177	.9	259.1	260.9	259.2
911.0	905	-20.5	-23.2	79	0.65	184	10	259.5	261.3	259.6
909.9	914	-19.9	-22.3	81	0.71	185	10	260.2	262.2	260.3
903.0	971	-15.9	-16.7	94	1.15	199	10	264.9	268.1	265.1
898.0	1013	-15.5	-18.7	76	0.98	209	10	265.7	268.5	265.9
894.0	1046	-15.1	-17.9	79	1.05	218	10	266.4	269.5	266.6
893.0	1055	-15.3	-17.8	81	1.06	220	10	266.3	269.4	266.5
876.0	1201	-10.9	-13.4	82	1.56	256	11	272.4	276.9	272.6
874.0	1219	-10.8	-13.3	82	1.58	260	11	272.7	277.2	272.9
863.0	1316	-10.1	-12.6	82	1.69	285	14	274.4	279.2	274.6
851.0	1424	-9.7	-9.7	100	2.16	313	17	275.9	282.1 282.5	276.2
850.0 840.1	1433 1524	-9.5 -8.4	-9.5 -9.8	100	2.20	315	17	276.2	282.5	276.6
835.0	1524	-7.9	-9.9	90 86	2.18 2.17	320 316	29 31	278.2 279.3	285.6	278.6 279.6
823.0	1684	-7.3	-8.3	93	2.50	307	37	279.3 281.1	288.3	2/9.6
807.8	1829	-7.9	-8.5	96	2.50	295	44	281.9	289.2	281.5
788.0	2022	-8.7	-8.7	100	2.53	301	42	283.1	290.5	282.4
776.6	2134	-9.3	-9.3	100	2.44	305	42	283.6	290.8	284.0
746.5	2438	-10.9	-11.0	99	2.22	325	37	285.1	291.7	285.5
717.5	2743	-12.5	- 12.7	98	2.01	325	46	286.6	292.6	286.9
700.0	2933	-13.5	-13.8	98	1.89	320	49	287.5	293.2	287.8
674.0	3220	-15.3	- 15.6	98	1.69	320	50	288.6	293.8	288.9
670.0	3265	-13.5	-14.1	95	1.93	320	50	291.1	297.1	291.5
636.1	3658	-15.9	- 19.4	75	1.31	320	51	292.7	296.8	292.9
634.0	3684	-16.1	-19.7	74	1.27	320	52	292.8	296.8	293.0
610.9	3962		-19.4	85	1.36	315	59	294.3	298.7	294.6
607.0	4011	- 17.7	-19.3	87	1.38	317	59	294.6	299.0	294.9
588.0			-33.7	28	0.38	324	59		296.3	295.0
586.5	4267	-19.6	-33.9	27	0.37	325	59	295.3	296.6	295.4
578.0	4375	-18.9	- 34.9	23	0.34	325	59	297.4	298.6	297.4
563.0	4571	-19.3	-37.3	19	0.28	325	59	299.1	300.1	299.2
540.0	4877	-22.1	-35.7	28	0.34	325	59	299.4	300.6	299.4
512.0	5268	-25.7	-33.7	47	0.44	328	61	299.6	301.1	299.7
500.0	5440	-26.5	-33.5	52	0.46	330	62	300.7	302.3	300.8

University of Wyoming

CMC 850 hPa analysis 12Z Thurs 31 Jan. 2013