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Improvements to the
Global Deterministic Prediction System (GDPS)
from version 2.2.2 to 3.0.0

Introduction

This document describes the project leading to the implementation of the new Canadian
Global Deterministic Prediction System, hereinafter referred to as GPDS version 3.0.0. The new
system includes changes to the global forecast model and its data assimilation. The main
improvements are related to an increase of horizontal resolution, to the new vertical coordinate
and its new vertical discretization, as well as changes to the physics, notably to the orographic
blocking and the boundary layer schemes. In this document, the details of these changes will be
described and evaluation scores will be shown.

The new system became operational on February 13, 2013 and replaced the previous GDPS
version 2.2.4. This accomplishment represents the cumulative effort of many people from the
analysis and modelling sections in research and development divisions, and operational sections
of EC, all co-located at the Canadian Meteorological Centre (CMC) of Environment Canada in
Dorval, Québec, and the list of the co-authors of this document in front page is only a subset of
all the people involved in this endeavor.

1. Changes to the data assimilation system
1.1. 4D-Var configuration

1.1.1. Outer loop configuration

Analyses are now generated on the new staggered vertical coordinate. The impact of this
change can be seen in Figure 1 (page 30), mainly as an improvement to the geopotential bias in
the 24-hour forecasts. Both of the experiments shown in Figure 1 use the model with the new
staggered vertical coordinate to produce the medium-range forecasts at the same resolution of
approximately 33km. Consequently, the impact seen is due only to the use of the model with the
new vertical coordinate to produce the background state and within the 4D-Var outer loop within
the assimilation cycle.

The outer-loop model uses the same dynamics, physics and resolution as the new forecast
model, except for a slightly shorter time-step — i.e. 9 min instead of 12 min, to allow
synchronization with the inner-loop time-stepping (see below). This increase in resolution in the
outer-loop was shown to produce a small but significant reduction of middle-range forecast
errors, as exemplified by the upper-air scores in Figure 2 page30.

1.1.2. Inner loop configuration

The horizontal resolution of the inner-loop model was increased, from 240x120 to 400x200
grid points. As opposed to the outer-loop model, the non-linear, tangent-linear and adjoint models
used in the inner loop are still based on the non-staggered version of GEM. The background
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error covariances continue to be defined on non-staggered levels as well, but their (spectral)
resolution was extended from T108 to T180. This implies an increase in the effective resolution
of the analysis increments, and the impact of this improvement on the forecast errors can be seen
in Figure 3 (page 30).

The time step of the inner-loop model was reduced from 45 min to 18 min which translates
into 21 bins in a 6-h assimilation window, as opposed to 9 bins in the previous system. This
augmented number of bins has increased the total amount of assimilated data — notably a 13%
increase for AMSU-A and 18% for aircraft data — which also led to significant improvements in
the middle-range forecasts (Figure 4 page 31).

Sensitivity studies on the cost-function convergence revealed that the new system could
benefit from an increase in the number of iterations in the inner-loop. Instead of the original
number of 55 iterations (30 in the first loop + 25 in the second), the GDPS now uses 65 (35 + 30)
which led to significant improvements in the middle-range forecast (Figure 5 page 31).

1.2. Bias correction coefficients

To fully realize the expected improvements to the stratospheric temperature bias resulting
from the new definition of the model vertical coordinate, the bias correction coefficients for the
assimilated satellite radiance observations were updated. This was done following an iterative
procedure in which the coefficients for all channels (including those that are normally held static)
were allowed to evolve dynamically in a 4D-Var cycling experiment. The main adjustment was
achieved after this experiment had run over a winter period for approximately 3 weeks. As a
result, the stratospheric temperature bias was significantly reduced (relative to radiosonde
observations) and the coefficients for AMSU-A ch.11-14 at the end of that period extracted.
After running two additional 1-week experiments (1-week summer and 1-week winter), the
resulting coefficients were used in all subsequent experiments for the channels that normally use
a static set of coefficients (AMSU-A ch.11-14) and also as the initial values for all of the other
radiance observations, for which the coefficients are dynamically computed. Figure 6 (page 31)
shows the impact on the global 24-hour forecasts of using these final set of bias correction
coefficients relative to using those from the previously operational system. The main impact is a
significant reduction in the geopotential height and temperature bias in the stratosphere.

1.3. GPS-RO data

Following research described in Aparicio et al. (2009) and Aparicio and Laroche (2011),
the thermodynamic relationship of GPSRO data was updated. Notably, this includes a more
accurate compressibility factor for moist air, and a newly developed expression that describes the
refractivity of air at given thermodynamic conditions. The main impact is an improved
agreement between GPSRO and radiosonde temperatures, which are both used as anchor
measurements for the system, and particularly for the radiance bias correction. The smaller bias
between technologies has an immediate impact in the overall thermal and geopotential bias of the
system. This slowly propagates to moderate improvements in the standard deviations (shown in
Figure 7 page 32), and to the winds.
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1.4. New observation data

New observation data were added in order to maintain the continuity and robustness of the data
assimilation system:

e A new source of polar Satwinds data was added with the assimilation of winds produced
by the AVHRR instrument onboard the various NOAA satellites and of METOP-2. This
addition doubles the amount of total polar winds assimilated which were previously only
provided by data produced by the MODIS instrument onboard the AQUA and TERRA
satellites.

e A greater amount of ATOVS (AMSUA, AMSUB/MHS) data is now assimilated with the
addition of RARS. These are data received and processed in various regional centres and
are retransmitted to us more rapidly. When the same data is received from both the global
and RARS network, the global data is kept. RARS data from NOAA satellites are
currently assimilated whereas data from METOP-A are not assimilated at this time
because they require a data recalibration to make them consistent with the global
METOP-A data, which is not yet implemented at CMC. During a global model « g2 »
run, the increase in the data volume assimilated due to the RARS is generally very small
for AMSUA (<1%) but is around 20% for AMSUB/MHS. These ratios increase to
around 10% and 30% respectively for a forecast « g1 » run, which has a shorter cutoff.

e Radiance data from the water vapour channel of the GOES-13 (E), GOES-15 (W) and
MTSAT-2 satellites are now assimilated, completing the network of five geostationary
satellites. An update has been done on the RTTOV radiative transfer model coefficients
for the MeteoSat-7 (E), MeteoSat-9 (W) and MTSAT-1R satellites.

e Radiance data of the 7 SSM/I-like microwave channels from the SSMIS instrument
onboard the DMSP17 and DMSP18 satellites are now added to the already assimilated
data from the DMSP16 satellite.

1.5.Surface analysis

No significant changes were made to the surface analysis except for some adjustments to
take into account the increased resolution of the model. In particular, the analysis of surface
temperature, valid at the level of the model topography, was modified to use the new 25-km
topography field.

1.6 Related changes to the Regional Deterministic Prediction System

Several minor modifications were introduced into the Regional Deterministic Prediction
System to maintain consistency with the GDPS-3.0.0, thus the RDPS version is increased from
RDPS-3.0.0 to. RDPS-3.1.0. The GDPS analysis provided to the RDPS now has to be
interpolated vertically from staggered to unstaggered levels. As in the previous version, both the
driver and limited area model (LAM) subsystems of the RDPS utilize the bias correction
coefficients produced by the GDPS. However, since the GDPS bias correction has now changed
(as described in section 1.2 above), there is a marked (generally positive) impact on the bias
correction performed in RDPS-3.1.0. The new observation sources added in the GDPS-3.0.0 (as
described in section 1.4 above) have also been added in RDPS-3.1.0.
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2. Changes to the forecast model

2.1.Increased resolution

The global model’s horizontal (non-rotated, latitude-longitude) grid went from 800x600
grid points (i.e. a resolution of approximately 33km at mid-Ilatitudes) to 1024x800 (i.e.
approximately 25km). The time step was reduced accordingly, from 15min to 12min. The
number of prognostic vertical levels (79) and the approximate position of the model lid (0.1 hPa)
remained the same, but the vertical coordinate and the vertical grid discretization were both
changed, as briefly described in subsection 2.2 below.

Preliminary tests performed in forecast mode showed that the impact of this resolution
increase on forecast errors was minor. It was only in full analysis+forecast cycles that the
benefits from the enhanced resolution became noticeable and significant (Figure 8 page 32).

2.2.Main changes to the dynamics

2.2.1. New vertical coordinate

The model’s terrain-following vertical coordinate was changed to £, a coordinate of the
type log-hydrostatic pressure. The precise definition of the new coordinate, its motivation and
the associated benefits may be found in Girard and Plante (2012).

2.2.2. New vertical grid

While the original discretization of the old vertical coordinate was on a regular (non-
staggered) grid, the new ¢ coordinates are discretized on a Charney-Phillips (staggered) grid.
Details on the implementation of the new grid may also be found in Girard and Plante (2012).

The combination of the new coordinate, vertical staggering and other numerical changes
(e.g. logarithmic differencing whenever appropriate) led to an overall reduction of noise, as well
as an enhanced numerical stability, improved conservation properties, and a significant reduction
of forecast errors in the stratosphere (Figure 9 page 32).

2.3.Main changes to the physics

2.3.1. Enhanced drag coefficient in the orographic blocking scheme

Low-level drag associated with upstream blocking of the flow over unresolved mountains
is parametrized in the GEM model according to the formulation proposed by Lott and Miller
(1997). This formulation includes a bulk drag coefficient (C, ), an adjustable non-dimentional

parameter that controls the overall amplitude of the blocking tendency,

ou 1<+
(Ejblocking ) _Cd IUEU‘U‘ ,

Page 12 of 88



Version 7.9 07/02/2014

where U is the incident wind, and the factor 2 depends on subgrid-scale orography properties
(its height, slope and direction) and on background flow properties (stability and wind direction).
Since its implementation in GEM in 2001 (Zadra et al., 2003), the value of C, has been set to 1.

Recent studies by Wells et al. (2008) and by Vosper et al. (2009) suggested that instead of
a constant, the parameter C, should vary according to the non-uniform static stability of the

flow, and might be further amplified by non-linear effects depending on the incident wind
direction.

The implementation of this modulated drag coefficient in the GDPS (Figure 10 page 33)
was shown to have a large impact on the general circulation of the model, especially in the winter
hemisphere, leading to a significant reduction of forecast errors with the exception of a slight
increase of the tropospheric wind bias (Figure 11 page 34). This small bias degradation was
eventually offset by the introduction of turbulent hysteresis in the vertical diffusion
parametrization, described below.

2.3.2. Turbulent hysteresis in the boundary layer scheme

For several years, forecasters have been reporting on an important error mode in the GEM
model, associated with warm advection in winter continental cyclones. Early in the integration,
the advectively-induced warm nose at the top of the planetary boundary layer (PBL) was eroded
and near-surface temperatures rose. The resulting misrepresentation of the temperature profile
was particularly problematic when surface conditions were near 0°C and the possibility of
freezing rain existed. The problem was shown to arise from over-activity in the PBL scheme,
resulting in enhanced vertical diffusion that unrealistically homogenized the temperature,
moisture and wind profiles in the lower layers. Simple reductions of the vertical diffusion
coefficients in the turbulent kinetic energy (TKE)-based PBL scheme could successfully reduce
the over-mixing problem, but yielded important degradations of forecast quality across the
remainder of the forecast domain.

The introduction of a physically-based hysteretic effect in the PBL scheme (Figure 12 page 35)
was shown to reduce the amplitude of errors in forecast profiles without adversely affecting
guidance in other regions. In this technique, the source terms in the TKE equation are adjusted
based on the turbulent regime of the flow, which is itself a function of both the flux Richardson
number and the current regime. In both medium range forecasts and assimilation cycles the
introduction of turbulent hysteresis was shown to improve guidance quality through a deep layer
of the troposphere (

Figure 13 page 36). Turbulent hysteresis has since been successfully implemented in the
regional system (RDPS) as well.

2.4.0ther changes

Various additional changes in the model dynamics and physics are summarized in Table
1 page 26. Most changes can be described as minor corrections to existing formulas or minor
improvements to the numerical code, which generally rendered the model more robust but had
little impact on the forecasts. Two notable exceptions are the changes in the non-orographic
gravity wave drag which helped improve the circulation near the model lid, and the optimized
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sub-terrain extrapolation algorithm which led to less noisy fields such as the sea-level pressure
(PN) over the continents. No changes were brought to the model configuration of the RDPS.

3. Changes to the climatological and geophysical fields

3.1.New set of geophysical fields

Using the GENESIS generator and the operational geophysical databases (i.e. same
databases previously used by the 33-km global model), two new sets of geophysical fields were
generated, the one set on a 1024x800 grid for the outer-loop model, and the other on a 400x200
grid for the inner-loop.

3.2.New climatology of sea-ice thickness

A new and more realistic monthly global climatology of sea-ice thickness was
implemented. This new climatology was recently implemented in the regional system (RDPS)
and was obtained by merging three sources of data. The main source is the Global Ocean
Reanalysis and Simulations Project (Mercator Ocean Quarterly Newsletter #36, January 2010,
pages 15-28) over the years 2002-2008. The second source is CMC’s operational ice-ocean
analysis and forecasting system for the Gulf of St-Lawrence (Smith et al. 2012). The sea-ice
thickness analyses from this system were time averaged over the years 2006-2011 to produce a
monthly climatology for the Gulf of St-Lawrence. The third source of data is the old climatology
which continues to be used over the freshwater lakes.

With respect to the previous climatology around Canada, the new sea-ice thickness is
reduced everywhere except in the northwest portion of the Canadian Arctic archipelago. In most
of the Arctic Ocean, in Hudson’s Bay and in the Gulf of St-Lawrence, the ice thickness is
reduced by 40 cm or more.

4. Objective evaluation of final cycles

Two analysis+forecast cycles of the GDPS 300 were produced, the one over a winter (20-
Jan to 31-Mar 2011) and the other over a summer period (15-Jun to 31-Aug 2011) and a full set
of verification scores were generated. For evaluation against the operational GDPS 2.2.2, scores
are here compared with those of the strato2b-R final cycles, i.e. the control cycles of the global
system that became operational in Nov 2011 (note: in all figures, scores from the control cycles
are shown in blue, and those from the new system in red).

4.1.Upper-air scores (against radiosondes)

With respect to the previous system, the new GDPS has warmer temperatures in the
upper-troposphere and the stratosphere, which translates into a better agreement with radiosonde
data and a general reduction of temperature and geopotential biases, over most regions and on
both seasons (see Figure 14 page 37 to Figure 21 page44). This improvement is mainly due to
the new vertical coordinate and grid.
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Regarding the standard deviation of forecast errors, a significant reduction was also
observed throughout the troposphere, most notably over the extra-tropics in the corresponding
winter seasons (Figure 16 page 39, Figure 17 page 40, Figure 18 page 41 and Figure 19 page
42). This error reduction is attributed to changes in the near-surface physics of the model — i.e.
modifications in the orographic blocking and boundary layer schemes — that were further
enhanced in the analysis cycles by the various improvements in the data assimilation system.

Signs of the above improvements are already visible in trial fields, shown as P-O 6h
scores in Figure 14 to Figure 21. Most improvements are maintained or amplified in the middle-
range forecasts as exemplified by the P-O 120h scores, also shown in Figure 14 to Figure 21.

In particular over North America (Figure 14 and Figure 15), a significant reduction of
day-5 errors (bias and standard deviation) for temperature and geopotential is found at practically
all levels during the winter season. The maximum improvement in the temperature standard
deviation is found in the lower troposphere, below 850 hPa. A bias reduction is also observed for
tropospheric winds and dew-point depression. In the summer, the impact of the new system on
day 5 is relatively small, except for the generalized warming of the whole column and a minor
reduction of the error standard deviation for temperature and zonal wind.

4.2.Surface scores

Verification of surface variables — sea-level pressure (PN), surface pressure (P0), 2m
temperature (TT) and 2m dew-point depression (ES) — against surface station observations are
shown in Figure 22 page 45 to Figure 25 page 48.

Regarding the surface pressure, the systematic reduction of errors is simply explained by
the better-resolved topography of the new (higher-resolution) model.

In the winter (Figure 22 page 45 and Figure 23 page 46) the new systems shows a
significant reduction of the error standard deviations for temperature, which is most visible over
North America and the Northern Hemisphere. In the summer (Figure 24 page 47 and Figure 25
page 48), what stands out is the reduction of dew-point depression biases over North America as
well as the Northern Hemisphere. A small but systematic reduction of the dew-point depression
error standard deviation can also be seen in all domains and in both seasons.

4.3.Scores against analyses

Verification against analyses generally confirms the improvements measured by the
scores against radiosondes.

During the winter season, the new system exhibits systematically smaller RMS errors for
temperature, geopotential and winds in the troposphere over the Northern Hemisphere, and for
temperature in the Tropics (Figure 26 page 49, Figure 27 page 50 and Figure 28 page 51). An
increase in anomaly correlations for tropospheric temperature is also observed in all domains and
almost all lead times (Figure 29 page 52). A similar increase in geopotential anomaly
correlations is found in the N. Hemisphere, but less so in other regions (Figure 30 page 53).

For the summer cycle a reduction of tropospheric RMS errors is still observed, mostly in
the Tropics and to a lesser extend in the extra-tropics (Figure 31 page 54 , Figure 32 page 55
and Figure 33 page 56). This time, the positive impact of the new system on the anomaly
correlations is more evident in the South Hemisphere and in the Tropics (Figure 34 page 57 and
Figure 35 page 58).
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4.4.Precipitation scores

Precipitation forecasts from the winter and summer cycles were verified against the
Synoptic network (at 00 and 12Z over North America) and SHEF network (at 12Z over USA
only). Categorical scores for the periods 00-24h, 48-72h and 96-120h are shown in Figure 36
page 60, Figure 37 page 60 and Figure 38 page 61.

In the summer, the impact of the new system on precipitation is mostly neutral; the only
systematic change being a slight increase in the biases for classes 0.2 to 5.0mm. In the winter,
the signal of the impact varies depending on the network used, on the lead time and on the
precipitation class. Given this uncertainty and the questionable quality of the observations in the
winter season (especially for large amounts) the evaluation of the winter cycle precipitation was
not conclusive.

4. 5.0ther scores

45.1. USTAT scores

Surface scores over North America were also generated using the experimental tool
USTAT, which exhibits interesting features such as verification at higher temporal frequency
(compared to the traditional surface scores discussed in section 4.2), a height-dependent quality
control for stations, and uncertainty estimates obtained with the bootstrapping method. Results
are shown in Figure 39 page 62 and Figure 40 page 63 for the winter and summer cycles,
respectively.

In the winter, the new GDPS shows a significant reduction of the error standard deviation
for 2m temperature, 2m dew-point depression and 10m winds at practically all lead times. A
systematic improvement of 10m wind bias is also observed up to day 4.

During the summer, the impact on the 10m wind bias is still visible but the amplitude of
the gain is less than the one observed in the winter. The impact on the 2m dew-point depression
bias depends on the time of the day but was improved in average. The reduction of error standard
deviations remain true for both the 2m temperature and dew-point depression up to day 5, but
here the impact is neutral for 10m winds.

4.5.2. Tropical cyclones (TCs)

Using the automated TC detection and tracking algorithm proposed by Caron et al.
(2010), TCs from the summer cycle forecasts were tracked over the Atlantic, East Pacific and
West Pacific basins, and compared to best track data (provided by the US National Hurricane
Centre and the Joint Typhoon Warning Centre). During the period covered by the summer cycle,
12 TCs were observed in the Atlantic basin, 8 in the East Pacific and 12 in the West Pacific.

A summary of results is shown in Figure 41 page 64. Overall, the new GDPS shows a
significant increase in TC hit rate and a reduction in the intensity bias. These improvements are
attributed to the increased resolution — both the resolution of the forecast model and the
resolution of the analyses — and are therefore more evident in the verification over the Atlantic
and East Pacific basins, where small-scale TCs occur more frequently than in the West Pacific.
No significant changes were found in the average TC position errors or in the number of TC false
alarms.

Page 16 of 88



Version 7.9 07/02/2014

4.6 Scores for the final experiments of the Regional Deterministic
Prediction System

Figure 42 page 65 shows time-mean 48-hour forecast verification scores against the
RAOB network for the RDPS LAM over North America during winter (Jan. 22 - Mar. 30, 2011),
comparing two experiments performed in development mode: one very similar to the operational
system and one which received its bias correction coefficients and (vertically interpolated) GDPS
analyses from the GDPS-3.0.0 final cycle. There is a very significant improvement in the
geopotential bias above approximately 600 hPa, and the separation between the curves increases
markedly with height. The temperature bias is also improved at the same levels, although with a
smaller separation and fewer levels where the improvement is statistically significant. A slightly
positive (although not significant) impact is also visible in the wind speed standard deviation at
jet levels. It should be noted that these development experiments comprised only 40 cases.

In Figure 43 page 66 we present the same scores as in Figure 42, but comparing the
operational (RDPS-3.0.0) and parallel (RDPS-3.1.0) runs during the period Nov. 14, 2012 - Jan.
14, 2013 (140 cases). Unlike the experiment in Figure 42, the parallel run also included the
additional observation types during the second half of this period. The geopotential bias is
improved at almost all levels and the geopotential standard deviation also shows a small but
statistically significant improvement in the troposphere. Standard deviations of the temperature,
zonal wind and wind modulus at jet levels are also improved, and the curve separation is more
apparent than in Figure 42. Finally, some change (both positive and negative) in the wind biases
appears at upper levels. In general, the impact of the changes described in this document appears
to be qualitatively similar in both the GDPS 3.0.0 and RDPS-3.1.0 although in the former case
the improvements are more robust (i.e. larger curve separation and more levels where statistical
significance is achieved).
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5. Objective evaluation of the parallel runs

The new GDPS-3.0.0 was installed in a parallel run during the third week of October 2012,
beginning with the assimilation runs (g2) on October 23", and then with the forecast runs (g1)
with the 1200 UTC cycle on October 26™. The parallel run period ended on January 27%, 2013
with the 0000 UTC cycle.

5.1.GDPS-3.0.0

5.1.1. Upper air fields

Obijective verification scores against radiosonde observations and against model analyses
are calculated for geopotential height, temperatures and winds at all model pressure levels, over a
set of strictly defined domains based on the international verification data exchange program of
the World Meteorological Organization / Commission for Basic Systems (WMO / CBS). Scores
for the GDPS-3.0.0 parallel run were compiled over the period from October 29™, 2012 to
January 21%, 2013.

Improvement in verification scores during the parallel run is very significant for all
variables, levels and regions. Reduction in geopotential height and temperature forecast errors is
particularly strong in the upper levels of the atmosphere (above 150 hPa), but is also impressive
within the troposphere. Statistically significant improvement is noted at all levels out to day 9 to
10 over the Northern Hemisphere (20-90N) and out to day 6 to 8 over North America (Figure 44
page 67 to Figure 47 page 68). Improvement in the wind forecasts is relatively smaller, but still
statistically significant at most levels out to day 8 to 10 over the Northern Hemisphere (Figure 48
page 69) and day 6 to 8 over North America.

Temperature forecasts over the Tropics (20N-20S) are improved at almost all levels out to
day 10 (Figure 49 page 69), though deteriorated at 200 and 250 hPa. Forecast winds over the
Tropics are strongly improved in the upper atmosphere, but little changed at and below the
tropopause (Figure 50 page 70). Over the Southern Hemisphere (20-90S), the pattern is similar
to the North, with very strong improvement for the geopotential heights at the upper levels but
with smaller, though still generally significant, improvement throughout the troposphere (Figure
51 page 70).

Anomaly correlations for both geopotential heights and temperatures are higher at all
forecast times and levels in both the northern and southern extra-tropics (Figure 52 page 71).

5.1.2. Quantitative Precipitation Forecasts (QPF)

Model 24-hour QPF are scored against both the North American synoptic network and the
high density U.S. SHEF network. For the GDPS-3.0.0 parallel run, scores were calculated over
the period November 18", 2012 to January 17", 2013.

For the short-term forecasts (day 1 and 2), equitable threat scores calculated against the
synoptic observations (Figure 53 page 71) show a slight improvement over the operational
model, except in the middle categories (between 5 and 25 mm), where the signal is neutral.
Against the SHEF observations (Figure 54 page 72), improvement is noted in all categories from
5 mm and up, with a stronger improvement at the higher levels than scores against the synoptic
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observations. In both cases the parallel run has a larger bias in the higher amounts, indicating a
somewhat larger over-forecast of precipitation in those categories.

At the longer term, out to day 5 (Figure 55 page 73), the signal is more neutral, except
that the slightly higher bias in the higher precipitation categories remains.

5.2.RDPS-3.1.0

5.2.1. Upper air fields

The RDPS-3.1.0 parallel run was scored over the period November 14™, 2012 to January
21%, 2013 (136 cases).

As with the GDPS, geopotential height forecasts for the RDPS-3.1.0 parallel run are
strongly improved in the upper atmosphere (Figure 56 page 73). Throughout the troposphere,
there is a small but statistically significant improvement in scores at all levels and forecast times
except for day one forecasts (out to 24 hours) at 850 hPa and below, where the signal is neutral.

Temperature forecasts (Figure 57 page 74) are improved at all levels except at 1000 hPa,
though the deterioration noted at that level is not statistically significant. Forecast winds (Figure
58 page 75) are improved at all levels and forecast times, though this is most evident between
700 and 250 hPa.

5.2.2. Quantitative Precipitation Forecasts (QPF)

As for the GDPS-3.0.0, 24-hour QPF scores for the RDPS-3.1.0 parallel run are
calculated against the synoptic and SHEF observation networks. Scores were calculated over the
period November 7", 2012 to January 17", 2013

Differences between the parallel and operational models are generally neutral, except for
a slight improvement in the higher precipitation amounts for scores against the SHEF network
(Figure 59 page 76).

5.3.Performance of dependent systems

5.3.1. UMOS global

The training of the UMOS system with the new GDPS-3.0.0 has been carried out using
the hindcasts (final series of forecasts) for the periods of January 20™ to March 31% 2011 for the
winter season and June 15" to August 25" 2011 for the summer season (runs of 0000 and 1200
UTC). In addition, the training for the winter season has advanced during the parallel run for all
runs.

Verifications performed in both the summer and winter seasons have shown that the
accumulated cases ensure a stable and robust production of regression equations (see Figure 60
page 77). There exist a few individual cases where the performance of the new system varies,
with some improvement or deterioration over the old model. However, in terms of bias, root
mean square error and variance reduction, the averaged overall performances of the UMOS
forecasts are maintained and are equivalent to the previous system.
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5.3.2. Scribe matrices

The GDPS-3.0.0 parallel run was verified with the Scribe verification system for the
period extending from November 2™ 2012 to January 7, 2013. The Scribe matrices were post-
processed, for the temperature, Probability of precipitation (POP) and cloud forecasts. UMOS
was used to derive the temperatures (using the retrained equations as explained in section 5.3
above) while the same low resolution Perfect Prog system as in the operational GDPS was used
for the POP and cloud forecasts. Finally, the winds were extracted directly from the model, as is
done in the operational GDPS. The precipitation amounts and types were not verified as these
weather elements are not mentioned often in Scribe in days 3 to 5, and also because the amounts
are verified directly for the model.

The results of the verifications are greatly in favor of the parallel model. For the
maximum and minimum temperature forecasts, both the bias and RMSE (Figure 61 page 78)
scores are improved significantly, especially from days 2 to 6. For the POPs, significant
improvements can also be seen beyond day 2 or 3 in the Brier scores, and more markedly in the
CSI (Critical Success Index) scores for POPs of 50% or less (Figure 62 page 78). For POPs
greater than 50%, it is seen to remain neutral. This means that it is mainly in situations with low
probabilities of precipitation that the forecasts are now better with the parallel system. For the
cloud forecasts, the verification doesn’t show any improvement in the parallel run.

For the wind forecasts, there is a slight deterioration in the bias scores for the 40 to 60
km/h category (Figure 63 page 78). This is because the parallel model tends to slightly increase
higher winds compared with the operational at the vertical level where Scribe extracts wind gusts
from the model. Since Scribe will often use these gusts to specify a range in the winds, and
because it already increases slightly too much the stronger winds coming from the model, it
therefore overcompensates a little more the winds coming from the model in parallel. The
frequency of these forecast winds (in the 40-60 km/h category) however still remains close in
absolute terms (5.7%) compared to their observed frequency (4.1%). Lastly, in the other
categories, 0-20 km/h and 20-40 km/h, there isn’t much difference between the operational and
the parallel. Both models forecast too often the 0-20 km/h winds and forecast not often enough
20-40 km/h winds. In both cases, Scribe corrects the model winds very well and the frequency of
its forecasts for these two classes of winds corresponds to their frequency of occurrence.

5.3.3. Other dependent systems

Regional Deterministic Wave Prediction System (RDWPS)

Subjective verifications were performed by the regional forecast offices who use the
Wave Model (WAM) output on a regular basis. The wave forecasts obtained using the parallel
GDPS 3.0.0 (25km) derived winds were compared against those produced by the the GDPS
2.2.2 (33km) derived winds. No negative comments were brought forward from these offices.

The main lead for the WAM project (Jamie McLean) also did his own subjective analysis
during the parallel run, and from his observations, he did not notice any significant changes in
the WAM outputs with the new GDPS 3.0.0 winds either. These conclusions are what one would
expect, given none of the WAM binaries were changed, just the model winds (due to the
increased model resolution) driving the wind-wave portion of the WAM output.
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Canadian Seasonal and Inter-Seasonal prediction System (CanSIPS)

A parallel run of the long range forecast system CanSIPS using the analysis from the
GDPS 3.0.0 (25 km) was run from November 1st 2012 to January 22, 2013. No significant
difference was observed in the forecasts issued from this parallel run. Statistical tests between
these forecasts and operational forecasts did not showed statistically significant differences.

6. Subjective evaluation of the parallel runs

A subjective evaluation was done twice daily by meteorologists of the Analysis and
Prognosis operational section (hereafter “A&P”) at CMC over a significant portion of the course
of the parallel run of the GDPS-3.0.0 (from November 5™ to January 6™). Mass fields
(geopotential heights at 500 hPa — GZ500 - and mean sea level pressure - MSLP) and quantitative
precipitation forecasts (QPF) were evaluated by visually comparing sets of images from the two
different models (as in Figure 64 and Figure 65), at lead times of 48, 72, 96, and 120 hours. The
meteorologists had then to indicate whether any of the models had performed better over specific
regions (Figure 67), or if both had performed equally well or poorly. The results are displayed in
Table 2 page 26 and Table 3 page 28, and are additionally shown graphically by region (all mass
fields) in Figure 68 and by lead time (MSLP, GZ500, and QPF) in Figure 69 page 82, Figure 70
page 83 and Figure 71 page 84.

To have a measure of the impact of the new GDPS on its dependent RDPS, a similar
subjective evaluation was done during the course of the RDPS-3.1.0 parallel run (from November
22" to January 7™), but reduced in scope as only verification images of forecasts with a lead time
of 48 hours were examined. Results for the RDPS evaluation are summarized in Table 4.

6.1.GDPS

In the case of the Global Deterministic Prediction System, when a difference in mass field
forecasts was found between the two systems (more than 40% of the time), the parallel system
was generally preferred over the operational one by a ratio of about 2:1, slightly higher for
GZ500 than SLP. When a difference in the quantitative precipitation forecasts (QPF) was found
(46,4% of the time) the ratio of preference was only slightly in favor of the GDPS-3.0.0, at 5:4.

On a region per region basis differences were more frequently found along the Pacific and
Atlantic coast (50.4 and 46.2% of the time) than over the continent or the Arctic (38.1 and 30.9%
of the time, respectively). However, when the systems differed, preference for the new system
was stronger over the Arctic area (by a ratio of 3:1) than over the Pacific (by a ratio of 3:2) or
elsewhere (by a ratio of about 2:1).

Looking at it by lead time, not surprisingly the frequency of preference for one system or
another increases significantly with lead time (forecasts being more likely to diverge), but the
ratio of preference in favor of the new system remains fairly constant at 2:1 or better for any lead
time, peaking at 72h at about 3:1.

6.1.1. Comments and observations from A&P meteorologists

During the parallel run evaluation, meteorologists from the A&P section provided an
abundance of comments on the comparative performance of the two systems. A thorough review
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of those comments and of the evaluation images was done at the end the evaluation period, to
detect any pattern in the new system with respect to the one it replaces.

When cyclogenesis occurs to the lee of the Canadian Rockies, CMC guidance has a
reputation of displaying a negative bias with heights and surface pressure over the high plains.
There was no typical strong zonal circulation (“Alberta clipper”) during this time period but there
were two cases where the upper circulation was light to moderate from the west and
southwest, with cyclogenesis along the Foothills. The developing lows verified better and further
south in the new system, which is an improvement, and also the inverted surface troughs north of
these systems verified better. One example of this is shown in Figure 72 page 85.

It was also mentioned that the new system verified significantly better with short waves
evolving in a closed circulation over the Arctic region. This may explain the high ratio of
preference in the subjective evaluation for this area. It was noted as well that the new GDPS-
3.0.0 could be too slow or too deep with upper trough nearing the Pacific coast. On the other
hand, the previous system often appeared to be too slow or too deep with systems off the Atlantic
coast. Another noted improvement in the GDPS-3.0.0 is a faster or earlier correction of
persistent errors in the longer term forecast. An example of this is shown in Figure 73 page 86.

One major improvement in the GDPS-3.0.0 is the introduction of a physically-based
hysteretic effect in the boundary layer scheme (see sub-section 2.3.2 and Figure 12), identical to
that implemented in the RDPS-3.0.0 in October 2012. A&P meteorologists reported on several
occasion the benefits of this feature, as shown in Figure 74 page 87. It is noted however that its
effects are not as marked in the GDPS-3.0.0 as they were seen in the RDPS because of the
coarser horizontal resolution.

Fortunately, the parallel run was installed just in time to evaluate the behavior of the
GDPS-3.0.0 with the major weather event that was hurricane Sandy. As shown as an example in
Figure 75 page 87 with the 72 hour forecast valid October 30, 0000 UTC, the GDPS-3.0.0 gave a
closer estimate of the depth and trajectory of the storm for most forecast runs than the GDPS
operational version at the time.

On the negative side, a possible problem was noted with the forecasts of “cutoff”” upper
lows over the Southwestern U.S. and adjacent Eastern Pacific waters. Many of them were
forecast too slow or developed too fast in the parallel as opposed to the operational runs. One
such case is illustrated in Figure 76 page 88. A similar case was also seen over the Great Lakes
region in early November. On the other hand the GDPS-3.0.0 seemed to fare better with similar
systems off the Atlantic coast.

With respect to QPF, the GDPS was found to deliver more precipitation over the
mountainous terrain of the West coast, too much according to some, but with better positioned
maxima, a direct result of the increase in horizontal resolution from 33 to 25 km.

6.2.RDPS

In the case of the RDPS-3.1.0 parallel run, when a difference in mass field forecasts was
found between the two systems (about 40% of the time) at 48 hours lead time, the system in
parallel was generally preferred over the operational one by a ratio of about 3:2. This ratio was
similar when considering separately the fields GZ500 or MSLP. When a difference in the
guantitative precipitation forecasts (QPF) was found (24% of the time) the ratio of preference
was also in favor of the RDPS-3.1.0 at about 3:2, as with the mass fields.

On a region per region basis, differences were found significantly more frequently along
the Pacific coast (58 % of the time) than over the continent or the Atlantic coast (36 and 40 % of
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the time respectively), and much less often over the Arctic (29 %). When a preference was
expressed, the two systems were chosen about equally often, except over the Atlantic coast
region, where the preference was markedly in favor of the new system, with a surprisingly high
ratio of 5:2.

With this parallel run as well, comments were made by the A&P meteorologists. They
found that, while there is a problem with meteorological entities being too deep in both
operational and parallel prediction systems, especially upper troughs over the Eastern Pacific and
North America systems (there were more than twice as many mentions overall of troughs/lows
being too deep as there were not deep enough), the new RDPS-3.1.0 fared better during the
parallel run, slightly fewer problems being reported for it. The new system was also reported to
better forecast upper ridges over the Pacific coast and adjacent waters, and surface ridges over the
continent. The forecast of surface lows was also slightly improved. With respect to QPF, several
A&P meteorologists found it to be somewhat excessive in both systems.

An interesting point to make is that a good performance of the GDPS-3.0.0 at the same 48
hour lead time would not necessarily ensure that the new RDPS-3.1.0 would perform better than
its operational counterpart (even though the GDPS-3.0.0 provided the analysis for the RDPS-
3.1.0 guess fields).

7. Products availability

Although this major upgrade of the GDPS does not come with new analysis or forecast
products, the increase in resolution for both the assimilation and the model portions of the new
system are more demanding in computer resources. Therefore, to minimize the impact on the
time of availability of the forecast products, the data acquisition cut-off time has been shortened
to 2 hours 30 minutes for the first minimization of the inner loop, and to 3 hours 10 minutes for
the second minimization, the latter being more critical for the quality of the forecasts. These new
cut-off times are fairly close to those that were in use prior to the migration to the current
supercomputer upgrade (IBM P7 in May 2012). These changes in data acquisition cut-off time
are expected and are done in a balance between providing forecast products as soon as possible,
taking advantage of additional computational resources, and implementing improvements to
NWP systems which often require more computing capacities.

In short, the reduction of cut-off time ensures in this case that most post-processed
products (SCRIBE outputs, bulletins, charts, images) will be available at roughly the same time
than prior to implementation of the new system. Note however, that GRIB data files on the MSC
Datamart will be available 10 to 15 minutes later than prior to this implementation. Ongoing
code optimization, combined with further upgrades in computing capacity will eventually allow
us to increase again the data acquisition cut-off times .
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Table 1: List of minor model changes

item description impact

sub-surface extrapolation - Liebmann calculation was parallelized - little impact on scores, but much better (less
- number of levels and iterations were noisy) fields such as PN

optimized to insure convergence in the sub-
surface extrapolation of the sea-surface
pressure (PN), temperature (TT) and
geopotential (GZ) fields

semi-Lagrangian calculation - smoothing of winds (u, v, &) used in the - elimination of noise in temperature field
calculation of trajectories near the poles
height field used by the physics - heights are now taken directly from the - little impact on scores
dynamics - no need to recalculate heights
- avoid errors in model configurations where
vertical resolution is enhanced near the
surface
radiation transfer scheme - isothermal (instead of linear) extrapolation - little impact on scores

of temperature above the model lid

- new minimum value (1.5e-6) of the specific
humidity seen by the radiation code

- new value of parameter epsilon (1e-10
instead of 1e-15) used to avoid numerical
singularities in the short-wave calculations

- solves known cases of model crash

orbital parameters - corrected orbital declination - little impact on scores
cloud scheme - new threshold (5hPa instead of 1hPa) inthe | - little impact on scores
calculation of clouds and convective cloud
tendencies
type of precipitation - adopt same scheme (bourge3D) used by the | - little impact on scores
regional model
boundary layer scheme - use implicit (instead of explict) treatment of | - implicit treatment led to a slight reduction of

surface (sensible and latent) heat fluxes

- corrected initialization of friction velocity
()

- correct missing beta (Prandl) factor in
stability functions

- generalize definition of parameter epsilon
(taking floating point precision into account)
for neutral case

- correct height of lowest model level

heat fluxes over the oceans
- otherwise, little impact on scores

surface fluxes, parameters and diagnostics - code clean up

- quasi-neutral branch eliminated

- correct calculation of stability function
gradients

- maximum of 0.2m imposed on thermal
roughness length for glaciers

- little impact on scores

orographic gravity-wave drag - generalized near-surface averages, to avoid - little impact on scores
dependence on the vertical discretization

non-orographic gravity wave drag - generalized calculation of gravity-wave - little impact on scores in the troposphere
emission level - improved representation of the circulation
- vertical smoothing of tendencies near the near the model lid
model top

- correct centered calculation of gradients
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Table 2: Summary of the subjective evaluation of the GDPS-3.0.0 parallel run by CMC’s “Analysis and prognosis”
(A&P) operational section. 123 evaluations were done over 126 possible, from November 5th to January 6th,
0000 and 1200 UTC runs. Letter “o” and “p” indicate a preference (O, P, a strong preference) for one model.
Letter “e” indicates if they are alike and good (E, very good), and X, if they are different and that neither is
good.

GDPS-3.0.0 parallel run — Passe parallele SGPD-3.0.0

Toutes régions, Aucune préfér./ Préférence OP Préférence PAR / Rapport de /
toutes échéances / No preference Preference OP Preference PAR Pref. ratio:
All regions,

all lead times
Champs de masse / Mass fields

GZ500 +PNM /SLP  ©€: 267%

E: 29,6% O: 0,9% P: 2,1% P>0
X: 23% o: 12,4% p: 26,0% >2:1
58,6% 13,3% 28,1% (28,1/13,3)
GZ500 e: 27,8%
seulement / only, E: 30,3% O: 0,9% P: 2,4% P>0
X: 2,0% o: 11,3% p: 253% >2:1
60,1% 12,2% 27,7% (27,7 / 12,2)
PNM / SLP e: 257%
seulement / only, E: 28,8% O: 0,9% P: 1,8% P>0
X: 2,6% o: 13,5% p: 26,7% =2:1
57,1% 14,4% 28,5% (28,5/14,4)
QPP / QPF
e: 15,7%
E: 35,5% O: 1,1% P: 1,2% P=0
X: 2,2% 0:19,7% p: 24,6% >5:4
53,4% 20,8% 25,8% (25,8 / 20,8)
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Table 3: Result of the subjective evaluation of the GDPS-3.0.0 parallel run by A&P, per region and per
forecast lead time. Letter coding similar as in Table 2.

GDPS-3.0.0 parallel run — Passe parallele SGPD-3.0.0

GZ500 + PNM / SLP Aucune préfér./ Préférence OP Préférence PAR / Rapport de /

No preference Preference OP Preference PAR Pref. ratio:
Région / Region
Pacifique / e: 257%
Pacific E: 21,2% 0: 1,9% P: 1.7% P>0
X: 2,7% o: 17,0% p: 29.7% >3:2
49,6% 18,9% 31,4% (31,4/18,9)
Amérique du Nord e: 27,9%
/ North America E: 32,5% O: 0,7% P: 2,3% P>0
X: 15% o: 12,6% p: 22,5% = 2:1
61,9% 13,3% 24,8% (24,8 / 13,3)
Atlantique / e: 23,7%
Atlantic E: 26,7% O: 0,6% P: 2,8% P>0
X: 34% 0:12,3% p: 30,5% >2:1
53,8% 12,9% 33,3% (33,3/12,9)
Arctique / e: 29,7%
Arctic E: 37,8% O: 0,3% P: 1,6% P>0
X: 16% o: 7.8% p: 21,1% =3:1
69,1% 8,1% 22,7% (22,7 /8,1)
Echéance de prévision
Forecast lead time
48 h e: 16,8%
E: 48,6% O: 0,2% P: 0,1% P>0
X: 01% o: 7,20% p: 17,1% >2:1
65,5% 7,4% 17,2% (17,2/7,4)
72 h e: 25,6%
E: 32,4% O: 0,8% P: 0,9% P>0
X: 1,4% o: 11,1% p: 27,8% <3:1
59,4% 11,9% 28,7% (28,7 / 11,9)
96 h e: 32,9%
E: 17,77% O: 0,7% P: 2,7% P>0
X: 30% o: 14,3% p: 28,7% >2:1
53,6% 15,0% 31,4% (31,4 /15,0)
120 h e: 31,8%
E: 9,1% O: 19% P: 4,8% P>0
X: 48% o: 17,1% p: 30,6% <2:1
45,7% 19,0% 35,4% (35,4/19,1)
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Table 4: Summary of the subjective evaluation of the RDPS-3.1.0 parallel run by A&P, 107 evaluations were done
over 108 possible from November 22™ to January 7", 0000 and 1200 UTC runs. Letter coding similar as in

Table 2.

RDPS-3.1.0 parallel run — Passe parallele RGPD-310
Champs de masse / Mass fields : GZ500 + PNM / SLP :

Toutes régions
/ All regions:

GZ500

seulement / only,
Toutes rég. / All reg.

PNM / SLP
seulement / only,
Toutes rég. / All reg.

Par Région / Per Region
Pacifique /
Pacific

Amérique du Nord
/ North America

Atlantique /
Atlantic

Arctique /
Arctic

QPP / QPF

Toutes régions
/ All regions:

e: 25,3%
E: 33,2%
X: 09%
59,4%
e: 24,9%
E: 32,2%
X: 1,0%
58,1%
e: 25,6%
E: 34,2%
X: 08%
60,6%

Aucune préfér./
No preference

e: 19,2%
E: 22,2%
X: 1,0%
42,4%
e: 30,8%
E: 27,8%
X: 1,0%
59,6%
e: 24,8%
E: 39,1%
X: 0,0%
63,9%
e: 26,3%
E: 43,4%
X: 1,5%
71,2%
e: 26,1%
E: 49,5%
X: 0,3%
75,9%

O: 1,1% P: 09%
o: 16,6% p: 22,1%
17,7% 23,0%
0O: 1,5% P: 1,0%
o: 16,6% p: 22,9%
18,1% 23,9%
O: 0,8% P: 0,8%
o: 16,6% p: 21,4%
17,4% 22,2%

Préférence OP
Preference OP

07/02/2014

P>0
<3:2
(23,0/ 17,7)

P>0
<3:2
(23,9/ 18,1)

P>0
<3:2
(22,4/ 17,4)

Préférence PAR / Rapport de /
Preference PAR Pref. ratio:

0: 2,5% P: 1,5%
o: 25,8% p: 27,8%
28,3% 29,3%

O: 0,5% P: 1,5%
o: 18,2% p: 20,2%
18,7% 21,7%

O: 1,0% P: 0,5%
o: 94% p: 252%
10,4% 25,7%

O: 0,5% P: 0,0%
o:13,1% p: 15,2%
13,6% 15,2%

O: 0,7% P: 0,0%
o: 87% p: 14,7%
9,4% 14,7%
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1:1
(29,3/ 28,3)

P

P=0
>1:1
(21,7/ 18,7)

P>0
>5:2
(25,7/ 10,4)

P=0
>1:1
(15,2/ 13,6)

P>0
= 3:2
(14,7/9,4)
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Figure 3: impact of increased resolution in inner loop of the 4DVar.

Page 30 of 88

07/02/2014

in the outer-loop of the



Version 7.9

% cont. = = cont. % cont, % cont.
BIAS GZ VARIANCE 384 Bws T VARIBNCE 2798
0 T T T ™ 10 T T T T w
20+ - 488 0- S —i=
sk 484 of " : 1@
S0k 43 sob Rt |
70h 70k \ 45
:
1004\ : 4 Bm 100k Y% we{ e
\ . H
1808 433 150 ¢« b
200+ N 2% tas 200+ N 45
48y \ e
2504 S4m| sy 2504 A “ san
300+ S6%] e 300+ x -
400~ ean] Bi 400 ’ iz=
500 8% ::'x: 500 I‘E '2:{ u“:
700+ csxi 4 700 .’ 4152
ot N i msor r: 25
s H e
925+ - e 92} . -
[+ 1] S—— L PR B PRI B c A [ | SRR SN | PERTETE B <4
0 5 10 5 -+ -2 0 2 4 6 8
fdam) (degree)
Figure 4: impact of increased number of temporal bins.
% cont. - % conf. % conf. % conf,
BIAS GZ VARINCE 4118 BWS T VARIANCE 3077
10 T 10 T T T TT] 087
20F & 20+ <¥ ek
soF 4 o+ i £ W
sof ¢ sof- $ 2 o e
b 70k g {5,
i :
wof ! 100}~ X S - o
£ : -
wor ! 150+ : > < Yot
200- 4 200 £ ags] Vo
2501 : 2501 f" o6 1o
soF i 300} ix 4 e
awof ! 400} 2N azm] et
ol sool P, oo 12
: o iff 10540
7004 i 700} ‘w oo%] e
850 - | ESD - ' oo% =
25 A 925t ¥ 097! b
& 3
100l | [ 1) TSTITTRTP- 70 FETPRTEUTE ITRTRTTeTy | (P :’::
0 -1 0 1 3 4
(degree)
Figure 5: impact of increased number of iterations in the inner loop.
= conf. & sontf. & canf, & cond,
T MBRIBNCE 3112 - T VARIANCE shin
EE T T T T
__Tum | = | 2 H A4 | me
201 100% &r 20 g9 ) Fithe
f— H i
30 oo o e IoE eew L B
o ! -
S0 1o0% SR S 100% Lol - e
O 00w 478 o s il -
10k g 4% ool ioos :"\: - s
150 TR H - b
200+ 183 mel e e =
250} dEn mme i =
oo} dEm ek N 48
a0k gz {Em b i e
SO0 sEm e =00k ' -
;
700} 185 700l ax ! &
gs0} 4w msof : RE
9351 403 eest ¥ e
1000 e qon 1 .1 1 1 | =
=2 B =2 =1 i} i 2 3 +
fdam) {degren)

07/02/2014

Figure 6: impact of using updated bias correction coefficients for all assimilate satellite radiance
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Figure 8: Impact of the increase in resolution (from 33km system in blue, to the 25km system in red) in
analysis+forecast mode, during the winter season over the N. Hemisphere: 120-h forecast errors — bias
(dashed) and standard deviation (solid) — against radiosondes, for geopotential (left) and temperature (right).
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Figure 9: Same as Figure 8, impact of new vertical coordinate + new vertical grid.

Page 32 of 88



Version 7.9 07/02/2014

Bulk drag coefficient modulation in the orographic blocking scheme
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Figure 10: Schematics of the enhancement factors for the bulk drag coefficient of the orographic blocking
scheme.
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Figure 11: Impact of enhanced drag coefficient for the orographic blocking: 120-h upper-air scores for the
winter season over the North Hemisphere; constant drag in blue, enhanced drag in red.
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Diffusion coefficient:

TKE equation:

61‘;

production/destruction
termm

TKE production/destruction
coefficient B
(in the original scheme):

wind

shear ™k 5

oV

B=0516 Ay, (| -b(RD

1-Ri/Pr

PRD= =Ry

B @ (Ri) 4 stabity unctions

New hysteresis effect

+ Wfithin a transition range, the coefficient
bnow depends on R and onits past
state (hysteresis), as shown in the figure
heside.

o Turbulent-laminar transition: instead of a
single critical walue (Ri= 1), the
transition is now defined by a pair af RI
values

o turbulent-to-laminar transition
occurs at Ki= 2

o laminar-to-turbulent transition
occurs at Ri=0.25

K =10516

9F _ pph_ g +£[K’a—5]
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Figure 12: Implementation of turbulent hysteresis in the boundary layer scheme.
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Figure 13: Impact of turbulent hysteresis (as in Figure 11)
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k4hiv4af contre kdhlra?
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Figure 14: Upper-air scores over North America, for the winter cycle at t=6h (left) and t=120h (right). Control system in blue, new

system in red.
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Figure 15: Upper-air scores over North America, for the summer cycle, at t=6h (left) and t=120h (right). Control system in blue, new
system in red.
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Figure 16: Upper-air scores over the North Hemisphere, for the winter cycle at t=6h (left) and t=120h (right). Control system in blue,

new system in red.
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Figure 17 Upper-air scores over the North Hemisphere, for the summer cycle at t=6h (left) and t=120h (right). Control system in blue,

new system in red
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Figure 18: Upper-air scores over the Tropics, for the winter cycle at t=6h (left) and t=120h (right). Control
system in blue, new system in red.
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Figure 19: Upper-air scores over the Tropics, for the summer cycle at t=6h (left) and t=120h (right). Control

system in blue, new

system in red.
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Figure 20: Upper-air scores over the S. Hemisphere, for the winter cycle at t=6h (left) and t=120h (right).

Control system in blue, new system in red.
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Figure 21: Upper-air scores over the S. Hemisphere, for the summer cycle at t=6h (left) and t=120h (right).
Control system in blue, new system in red.
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Figure 22: Surface scores over N. America and North Hemisphere for the winter cycle. Control system in blue, new system in red.
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Figure 23: Surface scores over Tropics and South Hemisphere for the winter cycle. Control system in blue,

new system in red.
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Figure 24: Surface scores over N. America and North Hemisphere for the summer cycle. Control system in

blue, new system in red.
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Figure 25: : Surface scores over Tropics and South Hemisphere for the summer cycle. Control system in blue,

new system in red.
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North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new

system in red.
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Figure 27: Winter scores against analyses: geopotential RMSE at 850hPa (left) and 500hPa (right) over the
North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new

system in red.
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Figure 28: Winter scores against analyses: wind speed RMSE at 850hPa (left) and 500hPa (right) over the
North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new

system in red.
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Figure 29: Winter scores against analyses: temperature anomaly correlations at 850hPa (left) and 500hPa
(right) over the North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in
blue, new system in red.
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Figure 30: Winter scores against analyses: geopotential anomaly correlations at 850hPa (left) and 500hPa
(right) over the North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in

blue, new system in red.
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Figure 31: Summer scores against analyses: temperature RMSE at 850hPa (left) and 500hPa (right) over the
North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new
system in red.
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Figure 32: Summer scores against analyses: geopotential RMSE at 850hPa (left) and 500hPa (right) over the
North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new

system in red.
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Figure 33: Summer scores against analyses: wind speed RMSE at 850hPa (left) and 500hPa (right) over the
North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in blue, new

system in red.
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Figure 34: Summer scores against analyses: temperature anomaly correlations at 850hPa (left) and 500hPa
(right) over the North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in

blue, new system in red.
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Figure 35: Summer scores against analyses: geopotential anomaly correlations at 850hPa (left) and 500hPa
(right) over the North Hemisphere (top), Tropics (middle) and South Hemisphere (bottom). Control system in

blue, new system in red.
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Figure 36: Precipitation scores for the 00-24h period: winter (top row) and summer cycles (bottom row),

against SYNOP (left column) and SHEF network (right column). Control system in blue, new system in red.
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Figure 37: Precipitation scores for the 48-72h period: winter (top row) and summer cycles (bottom row),

against SYNOP (left column) and SHEF network (right column). Control system in blue, new system in red.
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Figure 38: Precipitation scores for the 96-120h period: winter (top row) and summer cycles (bottom row),
against SYNOP (left column) and SHEF network (right column). Control system in blue, new system in red.
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Figure 39: Surface (USTAT) scores for the winter cycle over North America: bias (left) and standard
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Figure 40: Surface (USTAT) scores for the summer cycle over North America: bias (left) and standard
deviation (right) for 2m temperature (top), 2m dew-point depression (middle) and 10m wind speed (bottom).
Results for the control system in blue, the new system in red.
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Figure 41: Tropical cyclone verification for the summer cycle: hit rate (top row), average number of false
alarms (2nd row), intensity errors based on maximum wind speed (3rd row) and track position errors (bottom
row) over the Atlantic (left column), East Pacific
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Figure 42: Time-mean upper-air forecast verification scores against radiosondes for the LAM component of

the RDPS over North America at a lead time of 48 hours, comparing two development experiments: (blue) an
experiment very similar to the operational system and (red) an experiment which obtained its GDPS analyses
and bias correction coefficients from the GDPS-3.0.0 final cycle. The period was Jan. 22 - Mar. 30, 2011 every
36 hours, giving a total of 40 cases. The dashed (continuous) lines correspond to the bias (standard deviation).
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Figure 43: Time-mean upper-air forecast verification scores against radiosondes for the LAM component of
the RDPS over North America at a lead time of 48 hours, comparing the (blue) operational and (red) parallel
runs. The period considered here is Nov. 14, 2012 - Jan. 14, 2013 every 12 hours, giving a total of 140 cases.
Besides using the new GDPS analyses and bias correction coefficients, the parallel run also included new
observation types during the second half of this period. The dashed (continuous) lines correspond to the bias
(standard deviation).
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Figure 44: RMS (root mean square) errors of geopotential height, in metres, for the GDPS operational (blue)
and GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the North
Hemisphere radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 45: RMS (root mean square) errors of geopotential height, in metres, for the GDPS operational (blue)
and GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the North
American radiosondes observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 46: Confidence intervals (5-95 %) calculated on the difference between the operational GDPS and
parallel run GDPS-3.0.0 models, for 500 hPa geopotential height forecasts from day 1 to day 10, against the
North Hemisphere (left) and North America (right) radiosonde networks. Green bars refer to a statistically
significant improvement of the GDPS 300 over the operational GDPS model, while grey bars indicate the
difference is not statistical significant.
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Figure 47: RMS (root mean square) errors of model temperature forecasts, for the GDPS operational (blue)
and GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the North
Hemisphere radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).

Page 68 of 88



Version 7.9 07/02/2014

VERIFICATION vs RADIOSONDES
N.HEMISP 20121029 - 20130121 RMSE/EQM, 00+12Z ,120H,UV
10 A-
- 159 154
20 155 154
30+ 159 154
&0+ 159 154
70+ 158 154
100+ 154154
150 154 154
g 200 159 154
B ogp 154 154
300 4159
100 159 159
| 154 154
700. 159 154
850 ] 154 154
159 154
925

154 154

1m T - T T T T T T T T T T

4 5 8 7 8 9 10 11 12 13 1 15 16 17
RMSE/EQM ()
-0 gdps_25km o~ Global_Op
e A

Figure 48: RMS (root mean square) errors of model wind forecasts, for the GDPS operational (blue) and
GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the North Hemisphere
radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 49: RMS (root mean square) errors of model temperature forecasts, for the GDPS operational (blue)
and GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the Tropics
radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 50: RMS (root mean square) errors of model wind forecasts, for the GDPS operational (blue) and
GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the Tropics
radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 51: RMS (root mean square) errors of geopotential height, in metres, for the GDPS operational (blue)
and GDPS-3.0.0 parallel run (red) models for 120-hour forecasts at all model levels, against the South
Hemisphere radiosonde observation network, for the period October 29, 2012 — January 21, 2013 (159 cases).
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Figure 52: Anomaly correlation of 500 hPa geopotential heights for the operational GDPS (blue) and parallel
run GDPS-3.0.0 (red) forecasts of 12-240 hours over the North Hemisphere. Scores are calculated using each

model’s own analysis.
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Figure 53: Equitable Threat Scores and bias for the GDPS operational (blue) and GDPS 300 parallel run
(red) models for the forecast period 24-48 hours, scored against the North American synoptic observation
network. The graph on the left is a threshold diagram, wherein scores are calculated for all categories above

the given threshold.
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Figure 54: Equitable Threat Scores and bias for the GDPS operational (blue) and GDPS-3.0.0 parallel run
(red) models for the forecast period 24-48 hours, scored against the U.S. SHEF observation network. The
graph on the left is a threshold diagram, wherein scores are calculated for all categories above the given

threshold.
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Figure 55: Equitable Threat Scores and bias for the GDPS operational (blue) and GDPS-3.0.0 parallel run
(red) models for the forecast period 96-120 hours, scored against the North American synoptic observation
network. The graph on the left is a threshold diagram, wherein scores are calculated for all categories above

the given threshold.
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Figure 56: RMS (root mean square) errors of geopotential height forecasts for the RDPS operational (blue)
and RDPS 3.1.0 parallel run (red) models for forecast leads times of 12 to 48 hours, against the North
American radiosonde observation network, for the period November 14, 2012 — January 21, 2013 (136 cases).
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Figure 57: RMS (root mean square) errors of temperatures forecasts for the RDPS operational (blue) and
RDPS-3.1.0 parallel run (red) models for forecast leads times of 12 to 48 hours, against the North American
radiosonde observation network, for the period November 14, 2012 — January 21, 2013 (136 cases).
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Figure 58: RMS (root mean square) errors of winds forecasts for the RDPS operational (blue) and RDPS-3.1.0
parallel run (red) models for forecast leads times of 12 to 48 hours, against the North American radiosonde
observation network, for the period November 14, 2012 — January 21, 2013 (136 cases).
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Figure 59: Equitable Threat Scores and bias for the RDPS operational (blue) and RDPS 310 parallel run (red)
models for the forecast period 24-48 hours, scored against the North American synoptic observation network

(left) and U.S. SHEF network (right).
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Figure 60: Temperature verification scores (BIAS, RMSE and Reduction of Variance), averaged over 193
Canadian stations, that clearly demonstrate the performance of both the parallel and the operational version
of UMOS over the model.
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igure 61: Scribe maximum and minimum temperature forecasts RMSE
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Figure 62: Scribe probability of precipitation forecasts threat score
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Figure 63: Scribe wind speed forecasts bias
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Figure 64: Difference between the 72h forecast from one system and its respective analysis, valid 28 January
2013 at 1200 UTC. The operational system is at left, parallel (GDPS-3.0.0) at right, GZ500 at top, and MSLP
at bottom. Positive errors are in yellowish shades, negative errors in bluish shades.

Figure 65: Difference between the absolute values of the errors ( as seen in Figure 64) of the two systems, valid
28 January 2013 at 1200 UTC, for a) geopotential heights at 500 hPa and b) mean sea level pressure, for lead
times of 48, 72, 96 and 120 hours from upper left to lower right corner in each four panel composite. Yellowish
shades indicate greater errors from the operational system, bluish shades larger errors from the parallel
(GDPS-3.0.0) system.
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Figure 66: Quantitative precipitation forecast for the period 72 to 96 hours from the operational GDPS, left,
and the GDPS-3.0.0 in parallel, right, for the 72 to 96 hours lead time over North America, valid 1200 UTC on
January 28™, 2013, showing a system approaching the Great Lakes region and expected to spread significant
freezing rain over portions of Ontario and Québec.
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Figure 67: Evaluation regions for the CMC subjective evaluation, for a) mass fields (left) and b) QPF (right)
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Pacific NOAM

Atlantic Arctic

Figure 68: Proportion, for each evaluation region (as in Figure 67a) of the A&P meteorologists subjective
evaluations for which they indicated what system had performed better, (parallel GDPS-3.0.0, letter “p”,
operational GDPS, letter “0”, or much better ( letter P and O). When both systems were alike, it they both
performed equally very well this was indicated by letter “E”, if both performed not so well or poorly, letter
“e” was used. When both were fairly different and both performed poorly, the letter “X” was used. The exact

percentages can be found in Table 3.
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Figure 69: results of the A&P meteorologists subjective evaluations with respect to lead time (2 to 5 days) for
MSLP. Bottom panels, percentage in favour of one system or another;

- “p”, red line (“0”, blue line), parallel (operational) system performed better;

- “P”, dotted red line (“O” dotted blue line), parallel (operational) system was clearly superior;

Top panels:, percentage when no system was preferred;

- “E”, dotted black line (“e” thick black line), both systems were alike and performed very well (or not so
well);

- “X”, green line, both systems were different and both performed poorly.

Done over 123 forecast runs, for 000 and 1200 UTC initial time.
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Figure 70: results of the A&P meteorologists subjective evaluations with respect to lead time (2 to 5 days) for
GZ500. Bottom panels, percentage in favour of one system or another;

- “p”, red line (“0”, blue line), parallel (operational) system performed better;

- “P”, dotted red line (“O” dotted blue line), parallel (operational) system was clearly superior;

Top panels:, percentage when no system was preferred;

- “E”, dotted black line (“e” thick black line), both systems were alike and performed very well (or not so
well);

- “X”, green line, both systems were different and both performed poorly.

Done over 123 forecast runs, for 000 and 1200 UTC initial time.
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Figure 71: results of the A&P meteorologists subjective evaluations with respect to lead time (2 to 5 days) for
QPF. Bottom panels, percentage in favor of one system or another;

- “p”, red line (“0”, blue line), parallel (operational) system performed better;

- “P”, dotted red line (“O” dotted blue line), parallel (operational) system was clearly superior;

Top panels:, percentage when no system was preferred;

- “E”, dotted black line (“e” thick black line), both systems were alike and performed very well (or not so
well);

- “X”, green line, both systems were different and both performed poorly.

Done over 123 forecast runs, for 000 and 1200 UTC initial time.
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Figure 72: Difference between the 48h forecast from one system and its respective analysis, valid 10 January
2013, 0000 UTC. Operational system is at left, GDPS-3.0.0 at right; GZ500 at top, and MSLP at bottom.
Positive errors are in yellowish shades, negative errors in bluish shades. This case illustrates a better handling
by GDPS-3.0.0 of low developing to the lee of the Canadian Rockies.
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Figure 73: Sequence of 3 forecast runs for MSLP with 72 hr lead time, valid from November 22" 0000 UTC to
230000 UTC, with verifications against each system analysis, operational to the left and parallel GDPS-3.0.0
to the right. Color fields show regions in error, negative (too deep) errors in blue and positive (not deep
enough or too strong) in yellow. This illustrates the GDPS-33km faster or earlier corrections for persistent
errors in the mid-range forecast compared to the GDPS-25km. In this case there was a systematic error in the
forecast over the Atlantic of a deep storm well south of Nova Scotia. A much weaker system actually
developed than forecast by both GDPS system, but the new GDPS-3.0.0 was faster than the operational runs
to forecast a weaker, more southern system.
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Figure 74: forecast tephigrams for Ottawa (YOW site), with lead-time of 21 (left) and 24 (right) hours, 18
December 1200 UTC forecast run; it shows the effect of the hysteretic effect in the planetary boundary layer
(PBL) scheme introduced in GDPS-3.0.0. The GDPS-3.0.0 thermal profile is in red, that of the operational
system in blue. Winds (blue wind barbs) are those of the operational system. The observed surface weather is
in the blue ribbon at the bottom. This clearly shows how the inversion created by the warm air advection at
mid-level and the near surface cold air advection is maintained the improved PBL scheme, producing a
correct forecast of below freezing temperature and freezing rain.
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Figure 75: trajectory of the centre of hurricane Sandy in cyan at time of landfall, from 27 October 1200 UTC
to 30 October 1200 UTC, with 24 to 72 hours forecast from 27 October 1200 UTC model run, GDPS-3.0.0
(green) and operational GDPS (red, opposite to usual convention). The new system forecast a trajectory
closer to that observed at 60 and 72 hours lead time, after being too far east during the first 48 hours.
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Figure 76: sequence of two 120 hours forecast valid 16 December 0000 UTC and 1200 UTC, from the
operational system (left) and the GDPS-3.0.0 system (right), showing greater errors in the parallel system in

relation with the formation of an upper low over the Southern U.S.. Negative errors are in blue and positive in

yellow colors. The feature was forecast too far west and to close too early, and errors were propagated
downstream (short wave impulse moving too fast over the Northeast U.S.
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