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Abstract. Stochastic models of turbulent atmospheric dispersion treat either the particle displacement or 
particle velocity as a continuous time Markov process. An analysis of these processes using stochastic 
differential equation theory shows that previous particle displacement models have not correctly simulated 
cases in which the diffusivity is a function of vertical position. A properly formulated Markov displacement 
model which includes a time-dependent settling velocity, deposition and a method to simulate boundary 
conditions in which the flux is proportional to the concentration is presented. An estimator to calculate the 
mean concentration from the particle positions is also introduced. In addition, we demonstrate that for 
constant coefficients both the velocity and displacement models describe the same random process, but on 
two different time scales. The stochastic model was verified by comparison with analytical solutions of the 
atmospheric dispersion problem. The Monte Carlo results are in close agreement with these solutions. 

1. Introduction 

In recent years, stochastic modeling of atmospheric dispersion has become increasingly 
popular owing to its simplicity in concept and its applicability to complex problems in 
which more conventional approaches (e.g., Gaussian plume) cannot be applied. A 
probabilistic model can easily include buoyancy, droplet evaporation and polydisperse 
releases. Moreover, treating turbulent dispersion as a stochastic process has a strong 
intuitive appeal. The stochastic technique is typically implemented in the form of a 
numerical Monte Carlo model in which a large number of particles are tracked in a 
Lagrangian frame. A description of the concentration field is then obtained from the 
particle positions. 

Monte Carlo simulations of atmospheric dispersion are based on treating either the 
particle displacement or the particle velocity as a continuous time Markov process. In 
the former case, the particle displacements take the form of a random walk. 
Chandrasekar (1943) considered a very simple random walk in which the step size was 
held constant and the boundary was either perfectly reflecting or perfectly absorbing, 
i.e., Brownian motion with barriers. He demonstrated that in the limit of a large number 
of displacements, the probability density function for this process satisfies the Fickian 
diffusion equation. This result suggests that solutions to the K-theory advective- 
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diffusion equation may be obtained using a more general random process. An advantage 
of this technique, in addition to the capability to include processes that change the 
particle over its lifetime, is that it is free from the numerical instabilities and diffusion 
errors that can occur when turbulent dispersion is treated using a conventional Eulerian 
finite-difference scheme. Anbar (1978) modeled atmospheric diffusion as a super- 
position of independent Brownian processes. Wippermann (1966) and Runchal et al. 
(1978) developed more general stochastic processes in an attempt to treat cases where 
the diffusivity varies with height. It can be shown, however, that these solutions do not 
satisfy the advective-diffusion equation. Particle settling was not considered and the 
ground was treated as a reflecting barrier. 

Studies which treat the particle velocity as a Markov process assume that the diffusing 
particles obey a form of Langevin’s equation, an equation first used to describe the 
velocity of a particle exhibiting Brownian motion. In this equation, the force exerted by 
the fluid on the particle consists of a damping term which is linear in velocity plus a 
random force independent of the velocity state. Recent investigations using this 
approach include those of Legg and Raupach (1982), Thomson (1984), and 
Cogan (1985). 

In this paper, the equations governing particle trajectories in a turbulent atmosphere 
are written as stochastic differential equations. Application of pertinent elements of 
stochastic differential equation theory provides insight into these models and seems 
relevant to any analysis that treats turbulent dispersion as a random process. A careful 
mathematical development of the Markov displacement model using stochastic dif- 
ferential equation theory is given in Section 2. This approach is compared with the 
Markov velocity or, equivalently, Langevin equation model in Section 3. One notable 
result is that the two approaches are describing the same random process but are viewing 
it on two different time scales. In Section 4, a Markov displacement model is developed 
that extends the applicability of stochastic modeling analysis to cases which have not 
been addressed in previous studies. The model includes settling as a function of time, 
boundary behaviors other than perfect reflection and a correct treatment of cases where 
the diffusivity is a function of vertical position. An estimator is also introduced which 
uses all of the airborne particle positions to compute the ground-level concentration and 
deposition. Use of the estimator reduces the number of particles required to produce 
meaningful ensemble statistics. The simulation is tested by comparison with exact 
analytical solutions to the dispersion problem in Section 5. 

To limit the scope of the problem and to facilitate presentation of results, we shall 
restrict ourselves to the crosswind-integrated point source problem. This simplification 
reduces the problem from three to two (x and z) dimensions. The approach described 
herein can be extended to the three-dimensional case, if desired. Furthermore, we shall 
assume that turbulent diffusion in the mean wind direction is negligible relative to 
advection since the turbulence intensity in the mean wind direction is typically much less 
then the time-averaged mean wind (Haugen, 1973). With this assumption, the equation 
of particle motion in the x-direction is completely deterministic and will, therefore, not 
be considered in the development of Section 2. 
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2. Theoretical Development of the Markov Displacement Model of Turbulent 
Dispersion 

The basis of existing stochastic treatments of turbulent dispersion can be found in the 
classic investigations of Brownian motion by Einstein and Smoluchowski (see e.g., 
Furth, 1956). An accurate description of dispersion in the atmosphere, however, 
requires significant extension of the simple Brownian theory. The mathematics neces- 
sary to simulate atmospheric dispersion are presented below using stochastic differential 
equation theory. Only turbulent effects in the vertical direction are considered in 
accordance with our treatment of the crosswind-integrated problem. 

In the Markov displacement approach, the particle position Z(t) is given by the 
stochastic differential equation 

dZ(O 
~ = p(Z, t) + o(Z, t)n(t) ) 

dt 
Z(0) = z. ) 

where the initial position z,, is an arbitrary random variable. The function p(Z, t) can 
be identified with deterministic motions. Turbulent effects enter through the second term 
on the right-hand side of Equation (1). The random function n(t) is white noise, i.e., a 
stationary, Gaussian random process with a constant spectral density, zero mean, and 
autocorrelation 

(4t,Mt,)> = w* - 4) 9 t2 ’ 4 9 

where ( ) denotes an ensemble average over many realizations of the process and 6 
is the Dirac delta function. White noise is everywhere discontinuous, its integral 

B(t) = 
s 

4td dt, 3 
0 

G-9 

however, is continuous but is nowhere differentiable (McKean, 1969). The stochastic 
process defined by Equation (2), known as the Wiener-Levy process, is a mathematical 
model of free particle Brownian motion. It is a nonstationary, Gaussian process with 
mean zero and independent increments, i.e., for t, < t, < t,, the random variables 
B(t,), B(t,) - B(t,), and B(t,) - B(t,) are independent. 

It is often more convenient to write Equation (1) in terms of B(t) rather than n(t) for 
analysis purposes. Using Equation (2) we have 

dZ(t) = p(Z, t) dt + o(Z, t) dB(t) , Z(0) = z. , (3) 

where dB(t) is an increment of the Wiener process. If p(Z, t) and o(Z, t) satisfy the 
conditions necessary to guarantee the existence of a unique solution to this equation, 
Z(t) is a Markov process with continuous sample functions (Arnold, 1974). By detini- 
tion a Markov process is one in which the probabilities of future states depend only on 
the present and not on the path by which the present state was achieved. The Markovian 
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character of Equation (3) is directly attributable to the fact that the Wiener-Levy 
process is a process with independent increments. The extensive collection of analytical 
tools developed for Markov processes can then be used to analyze the solution Z(t). 

Equation (3) describes the variation with time of the sample paths Z(t) in a 
Lagrangian frame. Alternatively, an Eulerian description of the process may be obtained 
in terms of conditions on the transition probability density p(z, t, z,, to) that a particle 
released at (zO, to) will be found at z at time t. In our application, the solution Z(t) is 
a diffusion process (in the mathematical sense) since the functions ~(z, t) and a(z, t) are 
continuous with respect to time. Unbounded diffusion processes have the unique 
property that their transition density is completely determined by the process drift and 
diffusion parameter which are obtained from only the first two infinitesimal moments. 
This is a very powerful result in that generally the first two moments are not sufficient 
to specify a density function uniquely. The drift and diffusion parameter are calculated 
directly from Equation (3) assuming Z(t) = z, as 

and 

( dZ) ldt = pk t) 

((dZ - (dZ))*)/dt = G*(z, t) , 

where we have used (dB) = 0 and ( dB2) = dt. 
The Eulerian description is based on a partial differential equation that governs the 

evolution of the transition probability density. For the diffusion process given by 
Equation (3) with drift ,u(z, t) and diffusion parameter o’(z, t), we have 

- ; f [02(z, OP(Z, t, zo, toI1 = 0. (4) 

Equation (4) is the Fokker-Planck equation for the Markov displacement process and 
clearly has the same form as the advective-diffusion equation. In the stochastic model, 
the ensemble mean concentration is calculated from the transition probability density 
using 

f Iz 

(c(z, 0) = 
ss 

P(Z, t, zo, to)S(zo, to) dzo dto 3 (5) 
0 0 

where S(z,, to) is a function describing the known distribution of sources, e.g., 
S(z,, to) = QS(z - z,, t - to) for an instantaneous point source of strength Q. Applying 
the integration with respect to z. and to to Equation (4) it is straightforward to show 
that (c(z, t)) also satisfies the Fokker-Planck equation. 
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The advective-diffusion equation for the process we are studying is 

K(z, 2) t (c(z, t)> , 1 (6) 

where w,(t) is the time-dependent settling velocity and K(z, t) is the difhusivity. Com- 
paring this equation with the Fokker-Planck equation shows that the mean concen- 
tration obtained from the stochastic process given by Equation (3) will satisfy the 
advective-diffusion equation if 

AZ, f) = & m t) - W,(f) (74 

and 

d(z, t) = 2K(z, t) ) 0) 

with the constraint aw,/Jz = 0. 
The term X(z, t)/& in Equation (7a) has been neglected in previous models of 

turbulent dispersion and implies that for cases in which the diRusivity changes with 
height, there is an effective drift velocity toward larger values of K. This drift arises 
because the dispersive turbulent motions increase with increasing K and, therefore, 
particles tend on average to move up X(z, t)/az. (This result for the Markov displace- 
ment model is analogous to the bias velocity which must be added to a Langevin 
equation simulation when there is a vertical gradient in the vertical velocity variance 
(Wilson et al., 1983).) Since the diffusivity increases with height in the lower atmosphere, 
neglecting the X(z, t)/az term produces an unrealistic accumulation of particles close 
to the ground. This in turn results in an overestimate of ground-level concentration. The 
second term in Equation (7a) is simply the deterministic settling velocity. 

Equation (3) with ~(z, t) and o(z, t) as specified in Equation (7) is a means to obtain 
solutions to the advective-diffusion equation in complex cases not easily treated with 
conventional Eulerian numerical techniques. Buoyancy effects, evaporation, chemical 
reaction, and time or space variability in meteorological conditions can all be handled 
within the Lagrangian framework of our modeling approach. 

3. Comparison of the Markov Displacement and Langevin Equation Models 

Several studies have used a stochastic model for the particle velocity instead of the 
particle displacement. Typically the velocity is represented by a Markov process and 
the position of the particle is determined by integrating the velocity process. Since both 
models describe similar physical phenomena, it is natural to expect the two approaches 
to be consistent with one another. However, the integral of the velocity process is not 
Markov, whereas the displacement model assumes a Markovian character for the 
particle position. This apparent dilemma can be resolved by observing that both models 
describe the same random process but on different time scales. We shall demonstrate 
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this result for the processes with constant coefficients. A rigorous mathematical proof 
in the more general case involves techniques which are beyond the scope of this paper. 

The starting point for the velocity models is a stochastic differential equation 
developed by Langevin to represent the velocity of a Brownian particle with friction 

dW(t)= -crW(t)dt+JdB(t), W(O)=w,. (8) 

Here, w(t) is the particle velocity in the vertical direction and the initial velocity w,, is 
an arbitrary random variable. In our analysis, CI > 0 and J are constants. 

With constant coefficients, Equation (8) may be solved using conventional first-order 
linear differential equation solution techniques, 

W(t) = exp( - at)wo + A 
s 

exp[ - a(t - ti)] dB(t,) . (9) 

0 

The moments of w(t) are easily calculated from Equation (9). In particular, evaluation 
of the variance and covariance shows that c1= ri ‘, where r, is the Lagrangian integral 
time-scale of W(t). 

Integrating the velocity we obtain the particle position 

Z(t) = z, + s W,) dt, . 
0 

If z, and r-v, are normally distributed or constant, Z(t) is a Gaussian process, the 
Ornstein-Uhlenbeck position process. 

The result we require may be obtained by comparing the mean and autocorrelation 
of the Orntein-Uhlenbeck process with the corresponding moments of the Markov 
displacement process given by Equation (3). Without loss of generality, we shall assume 
w, = 0. Then, for the Ornstein-Uhlenbeck process 

cm) = (zo) (104 

and 

(Z(t,)Z(t,)) = Var(z,) + (z~)~ + i12 min(t,, t2)/a2 + 

(12/2a3)[2exp(-at,)+2exp(-at,)-2- 

exp(-a lh - t2/) - exp(-44 + 01. (lob) 

Z(t) is now completely specified since it is Gaussian and the mean and co-variance are 
known. 

The Markov displacement model analogous to the Ornstein-Uhlenbeck process is 
obtained from Equation (3) with p(Z, t) and a(Z, t) taken as constants. The first two 
moments of this process are 

(Z(O) = (zo) +Clt (114 
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and 

(Z(t,)Z(t,)) = Var(z,) + ( z0)2 + fr2 min(t,, t2) . (lib) 

Comparing Equations (lOa) and (1 la), the means of the two processes are equal if 
y = 0, which implies that there is no gravitational settling. The autocorrelation function 
given in Equation (lob) is considerably more complicated than Equation (11 b). How- 
ever, if in Equation (lob) we let a --+ cc in such a way that @cc remains constant, we 
obtain 

J&ym (Z(t,)Z(t,)) = Var(z,) + (zcJ2 + A2 min(t,, t,)/a’ , 

which is identical to Equation (1 lb) with r~ = A/a. The limiting process is identical to 
Z(t) defined by Equation (3) with constant coefficients since both processes are 
Gaussian with the same mean and autocorrelation. 

The physical interpretation of the limiting process may be obtained by recalling that 
a = ZL l. So, a is large whenever r, is small. In fact, the same limit is obtained whenever 
z, is small compared to the travel time. This implies that Equation (3) with p = 0 and 
cr = 1/a is describing the same process as Equation (8), but for travel times that are larger 
than the Lagrangian time-scale. This conclusion is consistent with our results which 
show that the transition density of the process defined by Equation (3) satisfies the 
advective-diffusion equation and with the travel times over which the gradient transfer 
hypothesis is valid (Corrsin, 1974). In a similar way, it can be shown that Equation (8) 
is valid for t > r,, where r, is the time-scale over which particle accelerations remain 
correlated. (The models with nonconstant coefficients share the same travel time 
constraints: the Markov displacement model describes dispersion for t > rL and the 
Langevin equation model describes dispersion for t > r,.) 

4. The Monte Carlo Model 

This section describes the formulation of a numerical model based on the continuous 
time Markov process given by Equation (3). As shown in Section 2, the mean concen- 
tration obtained from this simulation will satisfy the advective-diffusion equation. A 
treatment of the boundary condition at the ground and a method to estimate the 
ensemble mean concentration are also presented. 

Using an integer subscript to index time, Equation (3) may be discretized as 

zi+l = Zi + & K(Zi, 4) - W,(ti) 1 At + J2K(Zi, tJr;+ 1 , 

where we have substituted for ~(z, t) and o(z, t) from Equation (7) and ri+ 1 is a 
Gaussian random variable with zero mean and variance At. 

The equation governing particle movements in the downwind direction x neglecting 
turbulent diffusion relative to advection is simply 

xi+l = Xi + 6(Zi)At. (13) 
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The initial conditions are 

X0 = 0 at to = 0 

and 

2, = h at t, = 0, 

for a source located at x = 0, z = h. 
Particle displacements are governed by Equations (12) and (13) for all locations 

within the semi-infinite domain above the ground. To take into account the removal of 
airborne material, these movements must be modified as particles interact with the 
ground. In this context, the term ‘ground’ is loosely construed to include vegetation and 
structures which extend above the ground and which affect particle removal. Analyti- 
cally, the ground is idealized as a smooth flat surface. 

Deposition includes the effects of surface roughness, impaction, adsorption and 
interactions with the vegetative canopy as well as gravitational settling. The various 
removal mechanisms other than settling are commonly grouped together into a single 
term in which the rate of removal is assumed to be proportional to the ground-level 
concentration. Soo and Chen (1982) derived the boundary condition at the ground 
appropriate for the advective-diffusion equation by extending an analysis of suspension 
flow in a pipe to the case of a semi-infinite medium. The boundary condition proposed 
by Soo and Chen may be written 

where P, is the probability that a particle which strikes the ground due to settling is 
deposited and /J is a parameter with units of velocity which corresponds to removal by 
mechanisms other than settling. In a formulation more commonly applied in atmos- 
pheric dispersion, the terms P,w,(t) + /I are combined to form a parameter called the 
deposition velocity. Thus, 

~(0, t) wto, o)iaz = h(t) - doi (40, w (14) 

The boundary condition at the ground locally modifies the transition probability of 
the Markov process. Previous stochastic models of atmospheric dispersion have had 
considerable dficulty correctly simulating the boundary condition for cases other than 
perfect reflection, i.e., K(0, t) 8 (~(0, t))/az + w,(t) (~(0, t)) = 0. We have devised a 
straightforward method for handling boundary conditions in which the flux is propor- 
tional to the concentration. For concreteness, we shall address the deposition velocity 
formulation. 

Suppose that at the moment tithe particle is close to the ground and that aK(z, tJ/az 
is nearly zero in some neighborhood of the ground. For the next short time interval, the 
particle behaves as if the process had constant drift and variance, i.e., the ‘local’ process 
exhibits a drift and variance of approximately - w,(ti) and 2K(O, ti), respectively. The 
probability density for the occurrence of various values of z over a short time is estimated 
by the solution to the equation (see Equation (4)) 
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f P(‘V t> ‘i> ti) = ws(ti) f P(z9 t9 zi, ti) + K(“, tJ $ p(Zy t, Zi, ti) 

with the boundary condition 

K(09 til f PC09 tT zi, Q = [ wd(ti) - ws(ti)lP(o, t, ziY ti) . Wb) 

The solution p(z, t, zi, ti) to Equation (15) was given by Monin (1959). 
The probability that the particle is absorbed during time At is the probability that it 

no longer lies in the interval [0, co). This probability is computed from the transition 
probability density given by Monin as 

P(z,, At) = 1 - 
s 

p(z, t, zi, ti) dz 

0 

= $[ - (zi - w,At)/J2KAt] + 

Wd/(wd - ws) exP(w,zi/K)$[ - (Zi + w,At)l~l - 

@‘d - w,)/(wd - w,) exP [ WdZiIK + Wd(W, - w,)At/Kl X 

+ { - [zi + (2wd - ws WI/m} 7 (16) 

where w, = w,(t,), wd = wd(ti), K = K(0, tJ and r$(x) is the standard Gaussian 
distribution. Boundary behaviors in which only a fraction of the ground-level particles 
are absorbed, as well as the extreme cases of perfect reflection and perfect absorption 
can be simulated with the probability of absorption given in Equation (16). (For perfect 
absorption, P(z,, At) is obtained by taking the limit of Equation (16) as w, + cc .) In the 
model, P(z,, At) is used in the following algorithm to simulate the deposition velocity 
boundary condition. 

Above a certain height H, the probability of interaction with the ground is negligible. 
Whenever a particle is above this threshold, we proceed as if no boundary were present. 
Now suppose a particle is at a height zi < H at time ti. The probability of absorption 
during time At is then P(zi, At) as given by Equation (16). In this case, the particle is 
first moved as if no boundary were present. Then, if a random number from the uniform 
distribution on [0, l] is less than P(z,, At), the particle is absorbed. Otherwise, we 
continue the simulation as if the boundary were perfectly reflecting. Specification of the 
height H is not critical since the probability of absorption falls off very rapidly as the 
particle moves away from the boundary. 

At each time step, the Monte Carlo simulation yields a set of particle positions Zk, 

where k indexes particle number. Of primary interest, however, is the mean concen- 
tration (c(z, t)) . Equation (5) shows that to calculate the concentration we must first 
compute the transition probability density. To estimate p(z, t, z,, to), we employ a 
nonparametric technique for approximating densities. All of the airborne particles 
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contribute to the estimate according to their distance from the point z at which the 
concentration is desired. This reduces the number of particles necessary to obtain 
reliable ensemble statistics. A Gaussian interpolation function gives the approximation 

AZ, t, zo, to) “PAZ, t, zo, to) = ; k;l 
exp[ - (z - Zk)2/2~.,+] 

6 %W%) ’ 
(17) 

where N is the number of particles released, m is the number of particles in the air and 
the standard deviation a, can be related to the moments of the airborne distribution. 

The choice of o, has a significant effect on the estimate pN. If cr, is too large, the 
approximation suffers from too little resolution. On the other hand, the estimate suffers 
from too much statistical variation if a, is too small. With a limited number of samples, 
the best one can achieve is some acceptable compromise. An upper bound on Var(p,) 
is 

Var(p,) < (No,) - ’ 

Therefore, to obtain a small variance, a, must decrease to zero slowly enough with N 
that NcN approaches infinity. In practice, we have found that a,,, = o,/N’15, where cr, 
is the standard deviation of the airborne distribution, works well. 

The estimator described above is easily extended to higher dimensions, e.g., a 
two-dimensional Gaussian interpolation function can be used to include the downwind 
direction. 

5. Verification of the Monte Carlo Model 

The proof that the simulation outlined in Section 4 converges to the process whose 
transition density satisfies the Fokker-Planck equation with the attendant deposition 
velocity boundary condition is mathematically involved and will not be presented. 
Instead, the Monte Carlo model is tested by comparison with analytical solutions of the 
crosswind-integrated point source problem developed by Ermak (1977) and Rounds 
(1955). The purpose is not to demonstrate the full capability of the model, but to 
validate the new and unique features of our formulation. Only those cases necessary to 
verify the model are presented herein. Boughton (1983), in a doctoral dissertation, 
provides a more extensive set of results including evaporation, comparisons with models 
commonly used in regulatory applications and comparisons with field measurements. 

To minimize the number of parameters required to specify each case, results are 
presented in terms of the following dimensionless variables: X* = xK,/(6,h2), z* 
= z/h, h, = w,,,h/K,., d, = h(w, - w,)/K,, ii* = ii/U,, c, = (c)i&h/Q, and 
j, = <j>%h2/(QKX h w ere j is the local deposition flux, w,, c is a characteristic value 
of the particle settling velocity and the subscript r indicates a reference value. The 
parameter h * relates the turbulence of the atmosphere to the rate of settling and can 
be thought of as the ratio of the characteristic settling velocity w,, c to the mean turbulent 
transport velocity K,/h. For negligible settling velocity (as in the case of a diffusing gas) 
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or for extremely turbulent atmospheric conditions, h * approaches zero. Conversely, for 
large particles or for low turbulence conditions, h * becomes large. d, is a measure of 
the extent to which deposition is enhanced beyond that due to gravitational settling 
alone, Deposition is increased due to mechanisms other than settling for cases in 
which d, > 0. 

The solution given by Ermak assumes a uniform mean wind and a difhtsivity that is 
a function of downwind distance. In addition, the settling velocity, deposition velocity 
and ditTusivity must all have the same functional dependence on x. This restriction is 
unrealistic because the settling velocity will either remain constant or decrease with 
downwind distance, whereas the effective turbulent ditfusivity will increase with down- 
wind distance. The solution is particularly useful to us, however for testing the Monte 
Carlo model’s treatment of the deposition velocity boundary condition and our method 
of estimating the transition probability density from the particle positions. The dirnen- 
sionless ground-level concentration and deposition &IX given by Ermak are shown in 
the Appendix. 

The dependence of the dilhrsivity on downwind distance must be specified before 
comparisons with Ermak’s solution can be made. Ermak expresses his solution in terms 
of the Gaussian plume parameter O, which is related to the diffusivity by 

K(x) = (E/2) do,2/dx. 

For the cases presented here, the power-law fits of F. B. Smith (see Pasquill and Smith, 
1983) will be employed. Thus, 

0, = ax’, 

0.06 

5 = 0.50 
h,= 0.10 
d,- 0.00 

- Ermak 
13 Monte Carlo 

Fig. 1. Comparison of Ermak and Monte Carlo nondimensional deposition flux for the case s = 0.5, 
h, =O.l,d, =O. 
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Fig. 2. Comparison of Ermak and Monte Carlo nondimensional deposition flux for the case s = 0.5, 
h, = 50,d, =O. 
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0.06 

* 
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I I 

s = 0.50 - Ermak 
h,= 0.10 Monte Carlo 
d,= 0.05 - ” - Ermak d,=O.O 

Fig. 3. Comparison of Ermak and Monte Carlo nondimensional deposition flux for the case s = 0.5, 
h, = 0.1, d, = 0.05. 

where a and s are constants which depend on surface roughness and atmospheric 
stability. The case s = 0.5 corresponds to a uniform difksivity, constant settling velocity 
and constant deposition velocity. 
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Figures 1 through 5 compare Monte Carlo and Ermak predictions of the dimension- 
less deposition flux j,(x *) for five cases illustrating five basic behaviors: 

(1) Small-h * (h * = 0.1) with deposition due to gravitational settling only (d, = 0) 
is shown in Figure 1. 

0.8 , I I 
I 

* .- 

- Ermak 

0.6 

0.4 

0.2 

0.0 
0 1 2 3 

X* 

Fig. 4. Comparison of Ermak and Monte Carlo nondimensional deposition flux for the case s = 0.5, 
h,=O,d,=co. 

- Ermak 
Monte Carlo 

0.10 

* .- 

0.05 

o.oo ti 
0 1 2 3 4 

x, 

Fig. 5. Comparison of Ermak and Monte Carlo nondimensional deposition flux for the case s = 0.76, 
h, = 0.1, d, = 0. 
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(2) Large-h * (h * = 50) with deposition due to gravitational settling only (d, = 0) 
is shown in Figure 2. 

(3) Small-h * (h * = 0.1) with deposition enhanced beyond that due to gravitational 
settling alone (d, = 0.05) is shown in Figure 3. 

(4) Dispersion of a gas or non-settling material (h * = 0) with complete absorption 
at the ground (d, = co) is shown in Figure 4. 

(5) Small-h * (h * = 0.1) with both the settling velocity and difhrsivity increasing with 
downwind distance according to Ermak’s constraint is shown in Figure 5. 

Agreement between the Monte Carlo predictions and Ermak’s exact solution is very 
good. More extensive testing revealed equally good agreement over a wider range of h *, 
d *, and s. Agreement can be improved further by using more particles. The comparisons 
shown here using 2000 particles required from 10 to 30 s execution time per case on a 
Cyber 170. 

For cases of constant settling shown in Figures 1, 2, and 3, peak deposition occurs 
at x* =(l t/z*)-’ a fact that can be verified analytically. Further investigation 
indicated that peak deposition occurs close to this point for a wide range of conditions. 
As shown in Figure 4, the point of peak deposition is shifted upwind in the case of no 
settling and complete absorption at the ground. In Figure 5, the location of peak 
deposition is shifted downwind from x, = (1 t h * )- ’ due to the relatively smaller 
settling velocity close to the source. 

Figures 1 and 3 illustrate the deposition behavior typical of small-h * cases; a rapid 
rise to a peak followed by a long, slowly decreasing tail. Small-h * values indicate that 
the dispersion is dominated by turbulence effects rather than gravitational settling. The 
deposition pattern shows a peak close to the source due to turbulent motions rapidly 

Fig. 6. Comparison of Rounds and Monte Carlo nondimensional deposition flux for the case p = 0, n = 1, 
h,=2. 
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bringing the particles down close to the ground. As h * becomes large, the behavior is 
increasingly deterministic and the deposition flux j, becomes more peaked and 
symmetric about the point x * = (1 + h *)- i as shown in Figure 2. 

If processes other than gravitational settling contribute to deposition, the deposition 
rate increases at downwind distances close to the source. This effect is illustrated in 
Figure 3 wherein d * = h,/2 = 0.05 produces an increase of roughly 30% in peak 
deposition. 

Rounds’ solution assumes that the mean wind and difhtsivity vary as power laws in 
z. In terms of the dimensionless variables, we have U * = zp and K * = zz . The solution 
includes settling when the ditksivity grows linearly in z * (n = 1) and provides a test of 
our treatment of cases in which ~K/c?z is not zero. The solution given by Rounds is 
shown in the Appendix. 

The Monte Carlo predictions are compared to Rounds’ solution in Figures 6 and 7. 
These results illustrate the model’s capability to handle cases with wind shear, gravita- 
tional settling, deposition and a difhtsivity that is a function of height. Again, we see that 
peak deposition occurs close to the point x* = (1 + h,)-‘. Wind shear shifts the 
location of peak deposition upwind and increases the maximum value. Both these effects 
are attributable to the decrease in wind speed as a particle approaches the ground. 

2.0 

1.5 

.2 1.0 

0.5 

0.0 

I I I 

p = 0.2 -Rounds 
n = 1.0 al 
h,- 2.0 

Monre Carlo 

0.0 0.5 1.0 1.5 ‘ 3 

X* 
Fig. 7. Comparison of Rounds and Monte Carlo nondimensional deposition flux for the case p = 0.2, 

n=l,h,=2. 

6. Conclusion 

The mathematical theory underlying models which treat atmospheric dispersion as a 
random process has been investigated using stochastic differential equation theory. This 
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analysis shows that previous Markov displacement models have neglected a term 
involving the derivative of the diffusivity with respect to height. In addition, we have 
demonstrated that for constant coefficients, the Markov displacement and Langevin 
equation models both describe the same random process but on different travel times. 
A Markov displacement model was subsequently developed which includes settling, 
deposition and a method of handling any boundary condition in which the flux is 
proportional to the concentration. An estimator of the transition probability density was 
also introduced in which all the airborne particles contribute to the concentration at any 
given location, thereby reducing the number of particles required to produce meaningful 
ensemble statistics. 

Inasmuch as the predictions of the Monte Carlo model are in close agreement with 
exact solutions, we believe the results presented here represent a significant improvement 
in the treatment of the boundary, in estimating the ensemble mean concentration and 
in simulating cases with particle settling. The techniques developed here can be carried 
over to extend the applicability of Langevin equation models. 
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Appendix. Dimensionless Ground-Level Concentration and Deposition Flux 
Formulas as Given by Ermak and Rounds 

Ermak (1977) 

Concentration: 

c,(x*,0)=(~/6,*)exp[-t5- 1)*/2~5?,l-[d,lK, +5/0,2,1x 

x exp { 2514, + t&J&.) 11 + t + (d,I&J~,Z,I4~ x 

x erfc{[l + 5+ (d,/K.b~,2,1/fi~z*) T 

where t = (w, * lK * 1 (h * az’, PI. 
Deposition : 

.i,(x,) = td, + h, c,c)c,tx,, 0). 

Rounds (1955) 

Concentration: 

12,(x*,0) = crexp[ -(a2x,))1]/[(a2x,)‘-Yr(l - v)], 

whereu,=zP,,K*=z”*anda=2+p-n.Forh,=8,v=(l-n)/cr.Forh,fO 
and n = 1, v = -he/a. 
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Deposition: 

j*b*) = ~*C*(~*A. 
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