EAS 471 Second Lab (unscored) Numerical solution of 1D heat equation

Consider a copper rod of length $L=1 \mathrm{~m}$ lying along the x-axis $(-L / 2 \leq$ $x \leq L)$. The density, heat capacity and thermal diffusivity of copper are approximately

$$
\begin{aligned}
\rho & =8900\left[\mathrm{~kg} \mathrm{~m}^{-3}\right] \\
c & =385\left[\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right] \\
\kappa & =2.52 \times 10^{-4}\left[\mathrm{~m}^{2} \mathrm{~s}^{-1}\right]
\end{aligned}
$$

We suppose that the rod is enclosed in a perfect insulator such that its temperature $T=T(x, t)$, i.e. T may vary along x and in time t but there can be are no radial gradient. It follows that temperature in the rod satisfies the 1D heat equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}} \tag{1}
\end{equation*}
$$

(this can be obtained from the generalized conservation equation by the substitutions $\theta=\rho c T$ and $F=-\rho c \kappa \partial T / \partial x$, where F is the conductive heat flux).

The temperature of each end of the rod is constrained such that

$$
\begin{equation*}
T(L / 2, t)=T(-L / 2, t)=0 \tag{2}
\end{equation*}
$$

and initially the temperature satisfies

$$
\begin{equation*}
T(x, 0)=T_{00} \cos \left((m+1) \pi \frac{x}{L}\right) \tag{3}
\end{equation*}
$$

where $T_{00}=1$ and m is an even integer.
We notice that the physical variables of this problem imply a time constant

$$
\begin{equation*}
\tau=L^{2} / \kappa=3976[\mathrm{~s}] \tag{4}
\end{equation*}
$$

or a little over an hour.

Task

Solve this equation numerically with time steps $\Delta t \ll \tau$ out to an end time $t=1000 \mathrm{~s}$, for the cases $m=0,2,4$. Plot your solutions at time intervals of $\tau / 3$.

Method

Implement the explicit algorithm that results when Eq. (1) is discretized using a forward time difference and a central space difference,

$$
\begin{equation*}
\frac{T_{I}^{n+1}-T_{I}^{n}}{\Delta t}=\kappa \frac{T_{I+1}^{n}+T_{I-1}^{n}-2 T_{I}^{n}}{\Delta x^{2}} \tag{5}
\end{equation*}
$$

where n indexes the time axis such that $t(n)=n \Delta t$, and I indexes the space axis

$$
\begin{equation*}
x(I)=\frac{-L}{2}+(I-1) \frac{L}{I_{m x}-1} \tag{6}
\end{equation*}
$$

such that $\Delta x \equiv L /\left(I_{m x}-1\right)$. Eq. (6) is contrived to give a node (i.e. gridpoint) at each end of the rod; you can juggle the value of $I_{m x}$ to control the size of Δx, and thus the total number of nodes along your rod. We can rearrange Eq. (5) to isolate temperatures at the "new" time $t(n+1)$ as

$$
\begin{equation*}
T_{I}^{n+1}=T_{I}^{n}+\frac{\kappa \Delta t}{\Delta x^{2}}\left(T_{I+1}^{n}+T_{I-1}^{n}-2 T_{I}^{n}\right) \tag{7}
\end{equation*}
$$

Note that you can expect your algorithm to be numerically unstable if your "diffusion number" $\kappa \Delta t / \Delta x^{2}$ (the coefficient on the r.h.s. of Eq. 7) exceeds $1 / 2$. Search for, and document, this behaviour.

Briefly document your lab exercise and submit to Ginny for feedback.

