EAS $471 \quad 3^{\text {rd }}$ Scored Assignment Due: 8 Apr. 2014

Lagrangian Stochastic Simulation of ASL Dispersion

In an earlier computing assignment you used an Eulerian method to calculate the mean concentration field $C(x, z)$ downwind from a continuous crosswind line source located at $x=0, z=h_{s}=0.46 \mathrm{~m}$ in the horizontally-uniform, neutrally-stratified atmospheric surface layer ("hh_NSL"). In this assignment, complementing assignment 2, we implement a 1st-order Lagrangian stochastic model to calculate the crosswind-integrated concentration profile at fetch $x=100 \mathrm{~m}$ for Project Prairie Grass dispersion experiments (Tables 1, 2) covering a wide range in atmospheric stratification.

Clarification of a symmetry

If $Q_{\ell}\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right]$ is the strength of a line source, then the units of the ratio C / Q_{ℓ} are

$$
\left[\frac{C}{Q_{\ell}}\right]=\frac{\mathrm{kg} \mathrm{~m}^{-3}}{\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}} \equiv \mathrm{sm}^{-2}
$$

Let $Q_{p}\left[\mathrm{~kg} \mathrm{~s}^{-1}\right]$ be the strength of a steady point source, and $\chi\left[\mathrm{kg} \mathrm{m}^{-2}\right]$ the crosswind-integrated concentration it causes. Then

$$
\left[\frac{\chi}{Q_{p}}\right]=\frac{\mathrm{kg} \mathrm{~m}^{-2}}{\mathrm{~kg} \mathrm{~s}^{-1}} \equiv \mathrm{sm}^{-2}
$$

In neither case is the y-coordinate (Y) of our particles of any interest: both are effectively two-dimensional problems, and furthermore, they are the same problem.

The LS Model

Motion in a horizontally-homogeneous atmospheric surface layer (hh_ASL) can be adequately simulated by assuming the particle's horizontal velocity equal to the mean Eulerian velocity $\bar{u}(Z)$ wherever it happens to be located,
while its vertical velocity is random. Specifically, we shall assume particle position (X, Z) evolves in finite steps

$$
\begin{align*}
X(t+d t) & =X(t)+U(t) d t \tag{1}\\
Z(t+d t) & =Z(t)+W(t) d t \tag{2}
\end{align*}
$$

where $d t$ is the timestep. The particle's horizontal velocity is

$$
\begin{equation*}
U(t)=\bar{u}(Z(t)) \tag{3}
\end{equation*}
$$

while the particle's vertical velocity W evolves in time according to the (unique) well-mixed, one-dimensional 1st-order LS model for Gaussian inhomogeneous turbulence, i.e.

$$
\begin{equation*}
d W=\left[-\frac{C_{0} \epsilon(z)}{2 \sigma_{w}^{2}(z)} W+\frac{1}{2} \frac{\partial \sigma_{w}{ }^{2}}{\partial z}\left(\frac{W^{2}}{\sigma_{w}^{2}}+1\right)\right] d t+\sqrt{C_{0} \epsilon(z)} d \xi \tag{4}
\end{equation*}
$$

where $d \xi$ is a Gaussian random variate with $\overline{d \xi}=0, \overline{(d \xi)^{2}}=d t$. For each of the independent trajectories, the particle's initial vertical velocity should be a random Gaussian number with zero mean and standard deviation $\sigma_{w}\left(h_{s}\right)$.

Time step

The variable $2 \sigma_{w}^{2} /\left(C_{0} \epsilon\right)$ can be interpreted as an effective timescale $T_{L}(z)$, and the timestep should vary with the particle's position on the height axis, according to

$$
\begin{equation*}
d t=\mu T_{L}(Z(t)) \tag{5}
\end{equation*}
$$

where $\mu \ll 1$.

Reflection at ground

Wherever a particle attains a height $Z<z_{r}$, its trajectory must be reflected according to

$$
\begin{align*}
Z & =2 z_{r}-Z \tag{6}\\
W & =-W \tag{7}
\end{align*}
$$

The reflection height $z_{r} \geq z_{0}$. You may find you can speed up calculations by assigning $z_{r} \gg z_{0}$, see instructions below.

Mean horizontal velocity

The mean (Eulerian) velocity should be computed using the Monin-Obukhov profile

$$
\begin{equation*}
\frac{k_{v} \bar{u}(z)}{u_{*}}=\ln \frac{z}{z_{0}}-\psi_{m}\left(\frac{z}{L}\right)+\psi_{m}\left(\frac{z_{0}}{L}\right) \tag{8}
\end{equation*}
$$

where

$$
\psi_{m}= \begin{cases}-5 z / L & L \geq 0 \tag{9}\\ 2 \ln \left(\frac{1+\phi_{m}-1}{2}\right)+\ln \left(\frac{1+\phi_{m}-2}{2}\right)-2 \operatorname{atan}\left(\phi_{m}^{-1}\right)+\frac{\pi}{2} & L<0\end{cases}
$$

with

$$
\begin{equation*}
\phi_{m}(z / L)=\left(1-28 \frac{z}{L}\right)^{-\frac{1}{4}} \tag{10}
\end{equation*}
$$

Standard deviation of the vertical velocity

Use the MO profiles

$$
\frac{\sigma_{w}}{u_{*}}= \begin{cases}1.25 & L \geq 0 \tag{11}\\ 1.25(1-3 z / L)^{1 / 3} & L<0\end{cases}
$$

TKE dissipation rate
The product $C_{0} \epsilon$ should be specified according to:

$$
\begin{align*}
\frac{2 \sigma_{w}^{2}}{C_{0} \epsilon} & =\frac{0.5 z}{\sigma_{w}}\left(1+5 \frac{z}{L}\right)^{-1}, L \geq 0 \tag{12}\\
\frac{2 \sigma_{w}^{2}}{C_{0} \epsilon} & =\frac{0.5 z}{\sigma_{w}}\left(1-6 \frac{z}{L}\right)^{\frac{1}{4}}, L<0 \tag{13}
\end{align*}
$$

These equations, in conjunction with the above formulae for σ_{w}, can be rearranged to obtain compute $\sqrt{C_{0} \epsilon(z)}$.

Deriving mean concentration from trajectories

Your program will compute an ensemble of $N_{P} \sim 10^{5}$ (or more) random paths from the source to a distance sufficiently far downstream from the point of observation that the trajectory can be abandoned, e.g. to $X=105 \mathrm{~m}$. The profile of mean concentration is to be estimated from the mean particle residence times in a stack of sampling "volumes" centred on $x=100 \mathrm{~m}$ and having resolution D_{x}, D_{z}. The detectors can be indexed j and effectively, when each particle passes $x=100 \mathrm{~m}$ within detector j we increment the residence time counter t_{j} for that detector by the amount $D_{x} / \bar{u}\left(z_{j}\right)$. When all trajectories have been computed,

$$
\begin{equation*}
\left(\frac{u_{*} \chi}{Q}\right)_{j}=\frac{u_{*} t_{j}}{N_{P} D_{x} D_{z}} \tag{14}
\end{equation*}
$$

Each computed path contributes to the mean residence time only when it passes $x=100 \mathrm{~m}$ within the $j^{\text {th }}$ layer. (Note the ultimate irrelevance of D_{x}, which cancels.).

Write-up

For this assignment, no page limit applies.

- Provide a flowchart describing your algorithm
- Provide a diagram that compares the normalized mean profiles $\bar{u}(z) / \bar{u}\left(h_{s}\right)$ for the four PPG runs and (likewise) a diagram comparing the four profiles of $\sigma_{w}(z) / \bar{u}\left(h_{s}\right)$
- In the case of PPG57, compare your Lagrangian simulations with the outcome of assignment 2 (advection-diffusion equation)
- In the case of PPG57, examine the impact on your solutions of increasing the reflection height z_{r} from z_{0} to $50 z_{0}$
- For each PPG experiment, plot your solution $u_{*} \chi(z) / Q$ versus z alongside the experimental points

PPG Data

Table 1: Normalized cross-wind integrated concentration $u_{*} \chi / Q\left[\mathrm{~m}^{-1}\right]$ observed at distance $x=100 \mathrm{~m}$ from the source (height $h_{s}=0.46 \mathrm{~m}$) in several Project Prairie Grass runs.

$z[\mathrm{~m}]$	Run 57	Run 33	Run 50	Run 59
17.5	$1.1 \mathrm{E}-4$	$1.3 \mathrm{E}-4$	$2.3 \mathrm{E}-4$	0
13.5	$4.5 \mathrm{E}-4$	$4.8 \mathrm{E}-4$	$7.1 \mathrm{E}-4$	0
10.5	$1.08 \mathrm{E}-3$	$1.17 \mathrm{E}-3$	$1.72 \mathrm{E}-3$	0
7.5	$2.42 \mathrm{E}-3$	$2.80 \mathrm{E}-3$	$3.41 \mathrm{E}-3$	$0.07 \mathrm{E}-3$
4.5	$0.55 \mathrm{E}-2$	$0.58 \mathrm{E}-2$	$0.61 \mathrm{E}-2$	$0.21 \mathrm{E}-2$
2.5	$0.86 \mathrm{E}-2$	$0.92 \mathrm{E}-2$	$0.85 \mathrm{E}-2$	$1.05 \mathrm{E}-2$
1.5	$1.06 \mathrm{E}-2$	$1.08 \mathrm{E}-2$	$0.96 \mathrm{E}-2$	$1.75 \mathrm{E}-2$
1.0	$1.12 \mathrm{E}-2$	$1.16 \mathrm{E}-2$	$1.00 \mathrm{E}-2$	$2.14 \mathrm{E}-2$
0.5	$1.17 \mathrm{E}-2$	$1.22 \mathrm{E}-2$	$1.07 \mathrm{E}-2$	$2.40 \mathrm{E}-2$

Table 2: Micro-meteorological parameters for the above Project Prairie Grass runs.

	Run 57	Run 33	Run 50	Run 59
$u_{*}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	0.5	0.55	0.44	0.14
$L[\mathrm{~m}]$	-239	-93	-26	7
$z_{0}[\mathrm{~m}]$	0.0058	0.0075	0.0033	0.005

