EAS 471 3rd Scored Assignment Due: 8 Apr. 2014

Lagrangian Stochastic Simulation of ASL Dispersion

In an earlier computing assignment you used an Eulerian method to calculate the mean concentration field C(x, z) downwind from a continuous crosswind line source located at $x = 0, z = h_s = 0.46$ m in the horizontally-uniform, neutrally-stratified atmospheric surface layer ("hh_NSL"). In this assignment, complementing assignment 2, we implement a 1st-order Lagrangian stochastic model to calculate the crosswind-integrated concentration profile at fetch x = 100 m for Project Prairie Grass dispersion experiments (Tables 1, 2) covering a wide range in atmospheric stratification.

Clarification of a symmetry

If $Q_{\ell} \, [\text{kg m}^{-1} \, \text{s}^{-1}]$ is the strength of a line source, then the units of the ratio C/Q_{ℓ} are

$$\left[\frac{C}{Q_{\ell}}\right] = \frac{\mathrm{kg}\,\mathrm{m}^{-3}}{\mathrm{kg}\,\mathrm{m}^{-1}\,\mathrm{s}^{-1}} \equiv \,\mathrm{s}\,\mathrm{m}^{-2}\;.$$

Let Q_p [kg s⁻¹] be the strength of a steady *point* source, and χ [kg m⁻²] the crosswind-integrated concentration it causes. Then

$$\left[\frac{\chi}{Q_p}\right] = \frac{\mathrm{kg}\,\mathrm{m}^{-2}}{\mathrm{kg}\,\mathrm{s}^{-1}} \equiv \,\mathrm{s}\,\mathrm{m}^{-2}\,.$$

In neither case is the y-coordinate (Y) of our particles of any interest: both are effectively two-dimensional problems, and furthermore, they are the same problem.

The LS Model

Motion in a horizontally-homogeneous atmospheric surface layer (hh_ASL) can be adequately simulated by assuming the particle's horizontal velocity equal to the mean Eulerian velocity $\overline{u}(Z)$ wherever it happens to be located,

while its vertical velocity is random. Specifically, we shall assume particle position (X, Z) evolves in finite steps

$$X(t + dt) = X(t) + U(t) dt,$$
 (1)

$$Z(t+dt) = Z(t) + W(t) dt$$
(2)

where dt is the timestep. The particle's horizontal velocity is

$$U(t) = \overline{u}(Z(t)) \tag{3}$$

while the particle's vertical velocity W evolves in time according to the (unique) well-mixed, one-dimensional 1st-order LS model for Gaussian inhomogeneous turbulence, i.e.

$$dW = \left[-\frac{C_0 \epsilon(z)}{2\sigma_w^2(z)} W + \frac{1}{2} \frac{\partial \sigma_w^2}{\partial z} \left(\frac{W^2}{\sigma_w^2} + 1 \right) \right] dt + \sqrt{C_0 \epsilon(z)} d\xi \quad (4)$$

where $d\xi$ is a Gaussian random variate with $\overline{d\xi} = 0$, $(d\xi)^2 = dt$. For each of the independent trajectories, the particle's initial vertical velocity should be a random Gaussian number with zero mean and standard deviation $\sigma_w(h_s)$.

Time step

The variable 2 $\sigma_w^2/(C_0 \epsilon)$ can be interpreted as an effective timescale $T_L(z)$, and the timestep should vary with the particle's position on the height axis, according to

$$dt = \mu T_L(Z(t)) \tag{5}$$

where $\mu \ll 1$.

Reflection at ground

Wherever a particle attains a height $Z < z_r$, its trajectory must be reflected according to

$$Z = 2z_r - Z , \qquad (6)$$

$$W = -W. (7)$$

The reflection height $z_r \ge z_0$. You may find you can speed up calculations by assigning $z_r \gg z_0$, see instructions below.

Mean horizontal velocity

The mean (Eulerian) velocity should be computed using the Monin-Obukhov profile

$$\frac{k_v \overline{u}(z)}{u_*} = \ln \frac{z}{z_0} - \psi_m \left(\frac{z}{L}\right) + \psi_m \left(\frac{z_0}{L}\right) \tag{8}$$

where

$$\psi_m = \begin{cases} -5z/L & L \ge 0 ,\\ 2 \ln\left(\frac{1+\phi_m^{-1}}{2}\right) + \ln\left(\frac{1+\phi_m^{-2}}{2}\right) - 2 \operatorname{atan}\left(\phi_m^{-1}\right) + \frac{\pi}{2} \quad L < 0 , \end{cases}$$
(9)

with

$$\phi_m(z/L) = \left(1 - 28 \frac{z}{L}\right)^{-\frac{1}{4}}.$$
(10)

Standard deviation of the vertical velocity

Use the MO profiles

$$\frac{\sigma_w}{u_*} = \begin{cases} 1.25 & L \ge 0 \\ 1.25 & (1-3z/L)^{1/3} & L < 0 \end{cases}$$
(11)

TKE dissipation rate

The product $C_0 \epsilon$ should be specified according to:

$$\frac{2\sigma_w^2}{C_0\epsilon} = \frac{0.5z}{\sigma_w} \left(1 + 5\frac{z}{L}\right)^{-1}, \ L \ge 0, \qquad (12)$$

$$\frac{2 \sigma_w^2}{C_0 \epsilon} = \frac{0.5 z}{\sigma_w} \left(1 - 6\frac{z}{L}\right)^{\frac{1}{4}}, \ L < 0.$$
(13)

These equations, in conjunction with the above formulae for σ_w , can be rearranged to obtain compute $\sqrt{C_0 \epsilon(z)}$.

Deriving mean concentration from trajectories

Your program will compute an ensemble of $N_P \sim 10^5$ (or more) random paths from the source to a distance sufficiently far downstream from the point of observation that the trajectory can be abandoned, e.g. to X = 105 m. The profile of mean concentration is to be estimated from the mean particle residence times in a stack of sampling "volumes" centred on x = 100 m and having resolution D_x , D_z . The detectors can be indexed j and effectively, when each particle passes x = 100 m within detector j we increment the residence time counter t_j for that detector by the amount $D_x/\overline{u}(z_j)$. When all trajectories have been computed,

$$\left(\frac{u_*\chi}{Q}\right)_j = \frac{u_* t_j}{N_P D_x D_z} \,. \tag{14}$$

Each computed path contributes to the mean residence time only when it passes x = 100 m within the j^{th} layer. (Note the ultimate irrelevance of D_x , which cancels.).

Write-up

For this assignment, no page limit applies.

- Provide a flowchart describing your algorithm
- Provide a diagram that compares the normalized mean profiles $\overline{u}(z)/\overline{u}(h_s)$ for the four PPG runs and (likewise) a diagram comparing the four profiles of $\sigma_w(z)/\overline{u}(h_s)$
- In the case of PPG57, compare your Lagrangian simulations with the outcome of assignment 2 (advection-diffusion equation)
- In the case of PPG57, examine the impact on your solutions of increasing the reflection height z_r from z_0 to $50z_0$

• For each PPG experiment, plot your solution $u_*\chi(z)/Q$ versus z alongside the experimental points

PPG Data

Table 1: Normalized cross-wind integrated concentration $u_*\chi/Q$ [m⁻¹] observed at distance x = 100 m from the source (height $h_s = 0.46$ m) in several Project Prairie Grass runs.

$z [\mathrm{m}]$	$\mathrm{Run}\ 57$	Run 33	$\mathrm{Run}\ 50$	$\operatorname{Run}59$
17.5	1.1E-4	1.3E-4	2.3E-4	0
13.5	4.5E-4	4.8E-4	7.1E-4	0
10.5	1.08E-3	1.17E-3	1.72E-3	0
7.5	2.42E-3	2.80E-3	3.41E-3	0.07E-3
4.5	0.55E-2	0.58E-2	0.61E-2	0.21E-2
2.5	0.86E-2	0.92E-2	0.85E-2	1.05E-2
1.5	1.06E-2	1.08E-2	0.96E-2	1.75E-2
1.0	1.12E-2	1.16E-2	1.00E-2	2.14E-2
0.5	1.17E-2	1.22E-2	1.07E-2	2.40E-2

Table 2: Micro-meteorological parameters for the above Project Prairie Grass runs.

	$\operatorname{Run}57$	Run 33	$\operatorname{Run}50$	$\operatorname{Run}59$
$u_* [{\rm ms^{-1}}]$	0.5	0.55	0.44	0.14
$L [\mathrm{m}]$	-239	-93	-26	7
z_0 [m]	0.0058	0.0075	0.0033	0.005