
EAS 471 3rd Scored Assignment Due: 8 Apr. 2014

*
Lagrangian Stochastic Simulation of ASL Dispersion

In an earlier computing assignment you used an Eulerian method to calculate

the mean concentration field C(x, z) downwind from a continuous crosswind

line source located at x = 0, z = hs = 0.46 m in the horizontally-uniform,

neutrally-stratified atmospheric surface layer (“hh NSL”). In this assignment,

complementing assignment 2, we implement a 1st-order Lagrangian stochas-

tic model to calculate the crosswind-integrated concentration profile at fetch

x = 100 m for Project Prairie Grass dispersion experiments (Tables 1, 2)

covering a wide range in atmospheric stratification.

Clarification of a symmetry

If Qℓ [kgm
−1 s−1] is the strength of a line source, then the units of the ratio

C/Qℓ are
[

C

Qℓ

]

=
kgm−3

kgm−1 s−1
≡ sm−2 .

Let Qp [kg s−1] be the strength of a steady point source, and χ [kgm−2] the

crosswind-integrated concentration it causes. Then

[

χ

Qp

]

=
kgm−2

kg s−1
≡ sm−2 .

In neither case is the y-coordinate (Y ) of our particles of any interest: both

are effectively two-dimensional problems, and furthermore, they are the same

problem.

The LS Model

Motion in a horizontally-homogeneous atmospheric surface layer (hh ASL)

can be adequately simulated by assuming the particle’s horizontal velocity

equal to the mean Eulerian velocity u(Z) wherever it happens to be located,
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while its vertical velocity is random. Specifically, we shall assume particle

position (X,Z) evolves in finite steps

X(t+ dt) = X(t) + U(t) dt , (1)

Z(t+ dt) = Z(t) +W (t) dt (2)

where dt is the timestep. The particle’s horizontal velocity is

U(t) = u(Z(t)) (3)

while the particle’s vertical velocity W evolves in time according to the

(unique) well-mixed, one-dimensional 1st-order LS model for Gaussian in-

homogeneous turbulence, i.e.

dW =

[

−
C0 ǫ(z)

2σw2(z)
W +

1

2

∂σw
2

∂z

(

W 2

σw2
+ 1

)]

dt+
√

C0 ǫ(z) dξ (4)

where dξ is a Gaussian random variate with dξ = 0, (dξ)2 = dt. For each of

the independent trajectories, the particle’s initial vertical velocity should be

a random Gaussian number with zero mean and standard deviation σw(hs).

Time step

The variable 2 σ2
w/(C0 ǫ) can be interpreted as an effective timescale TL(z),

and the timestep should vary with the particle’s position on the height axis,

according to

dt = µ TL(Z(t)) (5)

where µ≪ 1.

Reflection at ground

Wherever a particle attains a height Z < zr, its trajectory must be reflected

according to

Z = 2 zr − Z , (6)

W = −W . (7)
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The reflection height zr ≥ z0. You may find you can speed up calculations

by assigning zr ≫ z0, see instructions below.

Mean horizontal velocity

The mean (Eulerian) velocity should be computed using the Monin-Obukhov

profile
kv u(z)

u∗
= ln

z

z0
− ψm

( z

L

)

+ ψm

(z0
L

)

(8)

where

ψm =















−5z/L L ≥ 0 ,

2 ln
(

1+φm

−1

2

)

+ ln
(

1+φm

−2

2

)

− 2 atan
(

φm
−1
)

+ π
2

L < 0 ,

(9)

with

φm(z/L) =
(

1− 28
z

L

)

−
1

4

. (10)

Standard deviation of the vertical velocity

Use the MO profiles

σw
u∗

=

{

1.25 L ≥ 0 ,

1.25 (1− 3 z/L)1/3 L < 0 .
(11)

TKE dissipation rate

The product C0ǫ should be specified according to:

2 σw
2

C0 ǫ
=

0.5 z

σw

(

1 + 5
z

L

)

−1

, L ≥ 0 , (12)

2 σw
2

C0 ǫ
=

0.5 z

σw

(

1− 6
z

L

)
1

4

, L < 0 . (13)

These equations, in conjunction with the above formulae for σw, can be

rearranged to obtain compute
√

C0 ǫ(z).
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Deriving mean concentration from trajectories

Your program will compute an ensemble ofNP ∼ 105 (or more) random paths

from the source to a distance sufficiently far downstream from the point of

observation that the trajectory can be abandoned, e.g. to X = 105 m.

The profile of mean concentration is to be estimated from the mean particle

residence times in a stack of sampling “volumes” centred on x = 100 m and

having resolution Dx, Dz. The detectors can be indexed j and effectively,

when each particle passes x = 100 m within detector j we increment the

residence time counter tj for that detector by the amount Dx/u(zj). When

all trajectories have been computed,

(

u∗χ

Q

)

j

=
u∗ tj

NP Dx Dz
. (14)

Each computed path contributes to the mean residence time only when it

passes x = 100 m within the jth layer. (Note the ultimate irrelevance of Dx,

which cancels.).

Write-up

For this assignment, no page limit applies.

• Provide a flowchart describing your algorithm

• Provide a diagram that compares the normalized mean profiles u(z)/u(hs)

for the four PPG runs and (likewise) a diagram comparing the four pro-

files of σw(z)/u(hs)

• In the case of PPG57, compare your Lagrangian simulations with the

outcome of assignment 2 (advection-diffusion equation)

• In the case of PPG57, examine the impact on your solutions of increas-

ing the reflection height zr from z0 to 50z0
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• For each PPG experiment, plot your solution u∗χ(z)/Q versus z along-

side the experimental points

PPG Data

Table 1: Normalized cross-wind integrated concentration u∗χ/Q [m−1] ob-
served at distance x = 100 m from the source (height hs = 0.46 m) in several
Project Prairie Grass runs.

z [m] Run 57 Run 33 Run 50 Run 59
17.5 1.1E-4 1.3E-4 2.3E-4 0
13.5 4.5E-4 4.8E-4 7.1E-4 0
10.5 1.08E-3 1.17E-3 1.72E-3 0
7.5 2.42E-3 2.80E-3 3.41E-3 0.07E-3
4.5 0.55E-2 0.58E-2 0.61E-2 0.21E-2
2.5 0.86E-2 0.92E-2 0.85E-2 1.05E-2
1.5 1.06E-2 1.08E-2 0.96E-2 1.75E-2
1.0 1.12E-2 1.16E-2 1.00E-2 2.14E-2
0.5 1.17E-2 1.22E-2 1.07E-2 2.40E-2

Table 2: Micro-meteorological parameters for the above Project Prairie Grass
runs.

Run 57 Run 33 Run 50 Run 59
u∗ [m s−1] 0.5 0.55 0.44 0.14
L [m] -239 -93 -26 7
z0 [m] 0.0058 0.0075 0.0033 0.005
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