Eulerian Simulation of Dispersion in the ASL

Write a program to calculate the mean concentration field C = C(x, z) downwind from a continuous crosswind line source¹ at $x = 0, z = h_s = 0.46$ m in the horizontally-uniform, neutrally-stratified atmospheric surface layer. Assume C is the solution of the advection-diffusion equation

$$U(z) \frac{\partial C}{\partial x} = \frac{\partial}{\partial z} \left[K(z) \frac{\partial C}{\partial z} \right]$$
(1)

with mean windspeed and eddy diffusivity profiles

$$U(z) = \frac{u_*}{k_v} \ln \frac{z}{z_0} , \qquad (2)$$

$$K(z) = \frac{k_v}{S_c} u_* z \tag{3}$$

 $(k_v = 0.4 \text{ is the von Karman constant}, u_* \text{ is the friction velocity}, z_0 \text{ is the surface roughness length and } S_c \text{ is the turbulent Schmidt number}; the x-axis points along the mean wind direction, and z, as usual, is the vertical axis).$

Let J=1...N label a set of gridplanes along the vertical axis, and I=1... a set of gridplanes spaced along x. For this assignment use the discretization

$$\Delta z \ U_J \ [C_{I,J} - C_{I-1,J}] = \Delta x \ K_{J+\frac{1}{2}} \frac{C_{I,J+1} - C_{I,J}}{\Delta z} - \Delta x \ K_{J-\frac{1}{2}} \frac{C_{I,J-1} - C_{I,J-1}}{\Delta z}$$
(4)

(to be derived in class using the control volume method). This is a "marching" problem in the sense that the x (alongwind) axis is a "1-way" axis there is no mechanism for material to travel against the wind. Therefore

¹The field of C is the analog of the crosswind integrated concentration $\chi = \chi(x, z)$ due to a steady point source, and Project Prairie Grass provided field measurements of the latter.

given the profile $C_{I-1,J}$ for all J at location I-1, we can compute the profile at I by rearranging to obtain a set of neighbour equations linking $C_{I,J}$ at all J (this discretization results in an implicit algorithm). The notation $J + \frac{1}{2}$ indicates that the height-varying eddy diffusivity K(z) is to be evaluated on the interface separating the (J+1)th and Jth grid planes.

Specify grid-lengths $\Delta x \sim 0.5$ m, $\Delta z \sim 0.2$ m. For two choices $S_c = (1, 0.63)$ of the Schmidt number, compare your calculated solution C(100, z) at x = 100 m on a graph that also shows the observations (Table 1) of Project Prairie Grass run 57, for which the meteorological situation was $u_* = 0.50 \text{ m s}^{-1}$, $z_0 = 0.0058 \text{ m}$. (Note: to compare with Table 1, you'll need to scale your computed concentrations the same way, that is, you multiply your solution for C by $z_0 u_*/k_v$.)

Method

The above algorithm can be cast in the form

$$c_J C_{I,J+1} + b_J C_{I,J} + a_J C_{I,J-1} = D_{I,J}, \quad J = 1..J_{mx}$$
 (5)

where the c_J, b_J, a_J are the "neighbour coefficients" (following the naming scheme of our Matlab solver), and $C_{I,J}$ is the concentration matrix. The term $D_{I,J}$ contains information (only) from the upstream column at I-1, so we can regard it as a known. Thus we may frame our problem of finding the vertical column of values of C at downstream location I (given the column at I-1) as a matrix problem,

$$\mathbf{M} \, \mathbf{C} = \mathbf{D} \tag{6}$$

where **M** is the coefficient matrix, and is tridiagonal. Thus we may find the unknown column (i.e. $C_{I,J} \forall J$) as

$$\mathbf{C} = \mathbf{M}^{-1} \, \mathbf{D} \tag{7}$$

In principle we need only once compute \mathbf{M}^{-1} , and once known we could use it repeatedly to step down the *I* axis: each time we get a new **C** column matrix we recompute **D**, and repeat the operation. Each step gives us **C** at a column further down the x-axis by a distance Δx . (Note: you will use the Matlab function "TDMA_solver.m" to compute the new **C** column matrix for each step down the x-axis.)

Upper and lower boundary conditions

Set the top of your domain $z(J_{max})$ sufficiently high (say, at least 30 m) that $C(J_{max}) = 0$. Then your coefficients at $J = J_{max}$ are

$$b_{J_{max}} = 1$$

$$c_{J_{max}} = \text{not used}$$

$$a_{J_{max}} = 0$$

$$D_{J_{max}} = 0$$
(8)

If we presume our gas does not react with the ground, we want zero flux to ground, which is assured by requiring $C(I, 1) \equiv C(I, 2)$. Thus at J = 1the needed coefficients are

$$b_1 = 1$$

$$c_1 = -1$$

$$a_1 = \text{not used}$$

$$D_1 = 0$$
(9)

Inlet boundary condition

How is your solution going to "know" there is a source? Let J_h be the height index of the cell the physical source will lie within, and let the streamwise index value I = 1 correspond to a column of gridpoints aligned at the source location. The easiest approach is to set the inlet or inflow concentration profile as

$$C(1,J) = \begin{cases} 0 & \text{if } J \neq J_h, \\ 1/\left(U(J_h) \Delta z\right) & \text{if } J = J_h \end{cases}$$
(10)

which guarantees that the total mass flux across the first interior plane I=1 will be

$$Q = \sum_{J} C(0, J) U(J) \Delta z = 1$$
 (11)

Table 1: Normalized concentration $z_0 u_* C / (k_v Q)$ observed at distance x = 100 m from the source (height $h_s = 0.46$ m) in Project Prairie Grass run 57. $\underline{z \text{ [m]} \quad z_0 u_* \chi / (k_v Q)}$

z [m]	$z_0 u_* \chi / (k_v u_*)$
17.5	1.5E-6
13.5	6.6E-6
10.5	1.56E-5
7.5	3.51E-5
4.5	7.9E-5
2.5	1.25E-4
1.5	1.53E-4
1.0	1.62E-4
0.5	1.70E-4