EAS $471 \quad 1^{\text {st }}$ Scored Assignment Due: 14 Feb. 2014

Eulerian Simulation of Dispersion in the ASL

Write a program to calculate the mean concentration field $C=C(x, z)$ downwind from a continuous crosswind line source ${ }^{1}$ at $x=0, z=h_{s}=0.46 \mathrm{~m}$ in the horizontally-uniform, neutrally-stratified atmospheric surface layer. Assume C is the solution of the advection-diffusion equation

$$
\begin{equation*}
U(z) \frac{\partial C}{\partial x}=\frac{\partial}{\partial z}\left[K(z) \frac{\partial C}{\partial z}\right] \tag{1}
\end{equation*}
$$

with mean windspeed and eddy diffusivity profiles

$$
\begin{align*}
U(z) & =\frac{u_{*}}{k_{v}} \ln \frac{z}{z_{0}}, \tag{2}\\
K(z) & =\frac{k_{v}}{S_{c}} u_{*} z \tag{3}
\end{align*}
$$

($k_{v}=0.4$ is the von Karman constant, u_{*} is the friction velocity, z_{0} is the surface roughness length and S_{c} is the turbulent Schmidt number; the x-axis points along the mean wind direction, and z, as usual, is the vertical axis).

Let $J=1 \ldots \mathrm{~N}$ label a set of gridplanes along the vertical axis, and $\mathrm{I}=1 \ldots$ a set of gridplanes spaced along x. For this assignment use the discretization

$$
\begin{align*}
\Delta z U_{J}\left[C_{I, J}-C_{I-1, J}\right] & =\Delta x K_{J+\frac{1}{2}} \frac{C_{I, J+1}-C_{I, J}}{\Delta z} \\
& -\Delta x K_{J-\frac{1}{2}} \frac{C_{I, J}-C_{I, J-1}}{\Delta z} \tag{4}
\end{align*}
$$

(to be derived in class using the control volume method). This is a "marching" problem in the sense that the x (alongwind) axis is a " 1 -way" axis there is no mechanism for material to travel against the wind. Therefore

[^0]given the profile $C_{I-1, J}$ for all J at location I-1, we can compute the profile at I by rearranging to obtain a set of neighbour equations linking $C_{I, J}$ at all J (this discretization results in an implicit algorithm). The notation $J+\frac{1}{2}$ indicates that the height-varying eddy diffusivity $K(z)$ is to be evaluated on the interface separating the $(\mathrm{J}+1)$ th and Jth grid planes.

Specify grid-lengths $\Delta x \sim 0.5 \mathrm{~m}, \Delta z \sim 0.2 \mathrm{~m}$. For two choices $S_{c}=$ $(1,0.63)$ of the Schmidt number, compare your calculated solution $C(100, z)$ at $x=100 \mathrm{~m}$ on a graph that also shows the observations (Table 1) of Project Prairie Grass run 57, for which the meteorological situation was $u_{*}=0.50 \mathrm{~m} \mathrm{~s}^{-1}, z_{0}=0.0058 \mathrm{~m}$. (Note: to compare with Table 1, you'll need to scale your computed concentrations the same way, that is, you multiply your solution for C by $z_{0} u_{*} / k_{v}$.)

Method

The above algorithm can be cast in the form

$$
\begin{equation*}
c_{J} C_{I, J+1}+b_{J} C_{I, J}+a_{J} C_{I, J-1}=D_{I, J}, \quad \mathrm{~J}=1 . . \mathrm{J}_{\mathrm{mx}} \tag{5}
\end{equation*}
$$

where the c_{J}, b_{J}, a_{J} are the "neighbour coefficients" (following the naming scheme of our Matlab solver), and $C_{I, J}$ is the concentration matrix. The term $D_{I, J}$ contains information (only) from the upstream column at $I-1$, so we can regard it as a known. Thus we may frame our problem of finding the vertical column of values of C at downstream location I (given the column at $I-1$) as a matrix problem,

$$
\begin{equation*}
\mathbf{M C}=\mathbf{D} \tag{6}
\end{equation*}
$$

where \mathbf{M} is the coefficient matrix, and is tridiagonal. Thus we may find the unknown column (i.e. $C_{I, J} \forall J$) as

$$
\begin{equation*}
\mathbf{C}=\mathbf{M}^{-1} \mathbf{D} \tag{7}
\end{equation*}
$$

In principle we need only once compute \mathbf{M}^{-1}, and once known we could use it repeatedly to step down the I axis: each time we get a new \mathbf{C} column
matrix we recompute \mathbf{D}, and repeat the operation. Each step gives us \mathbf{C} at a column further down the x-axis by a distance Δx. (Note: you will use the Matlab function "TDMA_solver.m" to compute the new \mathbf{C} column matrix for each step down the x-axis.)

Upper and lower boundary conditions

Set the top of your domain $z\left(J_{\max }\right)$ sufficiently high (say, at least 30 m) that $C\left(J_{\max }\right)=0$. Then your coefficients at $J=J_{\max }$ are

$$
\begin{align*}
b_{J_{\max }} & =1 \\
c_{J_{\max }} & =\text { not used } \\
a_{J_{\max }} & =0 \\
D_{J_{\max }} & =0 \tag{8}
\end{align*}
$$

If we presume our gas does not react with the ground, we want zero flux to ground, which is assured by requiring $C(I, 1) \equiv C(I, 2)$. Thus at $J=1$ the needed coefficients are

$$
\begin{align*}
b_{1} & =1 \\
c_{1} & =-1 \\
a_{1} & =\text { not used } \\
D_{1} & =0 \tag{9}
\end{align*}
$$

Inlet boundary condition

How is your solution going to "know" there is a source? Let J_{h} be the height index of the cell the physical source will lie within, and let the streamwise index value $I=1$ correspond to a column of gridpoints aligned at the source location. The easiest approach is to set the inlet or inflow concentration
profile as

$$
C(1, J)= \begin{cases}0 & \text { if } J \neq J_{h} \tag{10}\\ 1 /\left(U\left(J_{h}\right) \Delta z\right) & \text { if } J=J_{h}\end{cases}
$$

which guarantees that the total mass flux across the first interior plane $I=1$ will be

$$
\begin{equation*}
Q=\sum_{J} C(0, J) U(J) \Delta z=1 \tag{11}
\end{equation*}
$$

Table 1: Normalized concentration $z_{0} u_{*} C /\left(k_{v} Q\right)$ observed at distance $x=$ 100 m from the source (height $h_{s}=0.46 \mathrm{~m}$) in Project Prairie Grass run 57.

$z[\mathrm{~m}]$	$z_{0} u_{*} \chi /\left(k_{v} Q\right)$
17.5	$1.5 \mathrm{E}-6$
13.5	$6.6 \mathrm{E}-6$
10.5	$1.56 \mathrm{E}-5$
7.5	$3.51 \mathrm{E}-5$
4.5	$7.9 \mathrm{E}-5$
2.5	$1.25 \mathrm{E}-4$
1.5	$1.53 \mathrm{E}-4$
1.0	$1.62 \mathrm{E}-4$
0.5	$1.70 \mathrm{E}-4$

[^0]: ${ }^{1}$ The field of C is the analog of the crosswind integrated concentration $\chi=\chi(x, z)$ due to a steady point source, and Project Prairie Grass provided field measurements of the latter.

