Professor: J.D. Wilson Time available: $120 \mathrm{mins} \quad$ Value: $35 \%$

Please answer in the exam booklet. Some pertinent equations/data are given at the back.

## Multi-choice

## $(15 \times 1 \%=15 \%)$

1. If vectors $\vec{u}$ and $\vec{v}$ have representation $\vec{u}=(\alpha, 0,1)$ and $\vec{v}=(0,1, \beta)$ when projected onto orthogonal unit vectors $(\hat{i}, \hat{j}, \hat{k})$, then their inner product $\vec{u} \bullet \vec{v}=$ $\qquad$
(a) 0
(b) 1
(c) $\alpha$
(d) $\beta \quad \checkmark \checkmark$
(e) $\alpha \beta$
2. $\alpha_{i}$ and $\tau_{i j}$ are respectively rank 1 and rank 2 (Cartesian) tensors in a 2-D space. Under the summation convention the quantity $\alpha_{i} \partial \tau_{i j} / \partial x_{j}$ expands to
(a) $\alpha_{1} \partial \tau_{12} / \partial x_{1}$
(b) $\alpha_{2} \partial \tau_{21} / \partial x_{2}$
(c) $\alpha_{1} \partial \tau_{11} / \partial x_{1}+\alpha_{1} \partial \tau_{12} / \partial x_{2}+\alpha_{2} \partial \tau_{21} / \partial x_{1}+\alpha_{2} \partial \tau_{22} / \partial x_{2} \quad \checkmark \checkmark$
(d) $\left(\alpha_{1}-\alpha_{2}\right)\left(\partial \tau_{11} / \partial x_{1}+\partial \tau_{22} / \partial x_{2}\right)$
(e) $\left(\alpha_{2}-\alpha_{1}\right)\left(\partial \tau_{11} / \partial x_{1}+\partial \tau_{22} / \partial x_{2}\right)$
3. The Von Neumann stability analysis of a finite-difference discretization scheme covers __ but does not account for $\qquad$
(a) any d.e. (differential eq'n) expressed in Cartesian coordinates; time-dependence
(b) any linear d.e.; boundary conditions
$\checkmark \checkmark$
(c) first- or second-order d.e.'s only; non-linearity
(d) any linear d.e.; influence of unresolved scale of motion
(e) heat/diffusion type equations; inhomogeneities ( $Q$ - type terms)
4. The von Neumann analysis of $\frac{\partial c}{\partial t}=-U \frac{\partial c}{\partial x}$ results in a criterion on the $\qquad$ number
(a) Diffusion
(b) Reynolds
(c) Richardson
(d) Courant
(e) Euler
5. Which name(s) is/are associated with numerical schemes for solving the heat equation
(a) Crank and Nicolson
(b) Richardson
(c) Dufort
(d) Frankel
(e) all of the above $\quad \checkmark \checkmark$
6. The shortest wave that can be represented on a grid with spacing $\Delta x$ has wavelength
(a) $\pi / \Delta x$
(b) $2 \pi / \Delta x$
(c) $\Delta x / 2$
(d) $\Delta x$
(e) $2 \Delta x \quad \checkmark \checkmark$
7. If $S_{x}(f)$ is the power spectrum of a random variable $x(t)$, then $\int_{0}^{\infty} S_{x}(f) d f=$ $\qquad$
(a) 0
(b) $\infty$
(c) $\Delta x$, the grid interval
(d) $\Delta t$, the time step
(e) $\sigma_{x}^{2}$, the variance of $x(t) \quad \checkmark \checkmark$
8. If the Fourier transform of $T(x, t)$ satisfies $\partial / \partial t \widetilde{T}(k, t)=-K k^{2} \widetilde{T}(k, t)$ where $k$ is wavenumber and $K$ is a constant, then $T$ must be governed by a/n $\qquad$
(a) advection equation
(b) diffusion equation $\quad \checkmark \checkmark(1)$
(c) advection-diffusion equation
(d) time-independent equation $\quad \checkmark \checkmark(1 / 2)$
(e) inhomogeneity
9. In relation to the above question, the Fourier mode $\widetilde{T}(k, t)$ must
(a) grow logarithmically in proportion to $\left(K k^{2} t\right)$
(b) grow exponentially in proportion to $K k^{2} t$
(c) decay in proportion to $\sqrt{K k^{2} t}$
(d) decay exponentially in proportion to $K k^{2} t$
(e) vanish
10. Suppose $L[\phi(x)]=0$ (where $L[$ ] is a differential operator) is to be solved on $a \leq$ $x \leq b$ using the Bubnov-Galerkin method with basis functions $\theta_{j}(x)$. The expansion coefficients $a_{j}$ are optimized by requiring that $\qquad$
(a) $a_{i} a_{j}=\delta_{i j}$
(b) the residual $e(x)=L\left[\sum_{j=1}^{N} a_{j} \theta_{j}(x)\right]$ must vanish
(c) the residual $e(x)$ must be minimal
(d) the residual $e(x)$ must be uncorrelated with each $\theta_{j}(x)$ over $a \leq x \leq b \quad \checkmark \checkmark$
(e) all of the above
11. $Q_{c}$ is the mean vertical flux density of an admixture ' $c$ ' across the atmospheric surface layer (friction velocity $u_{*}$, Obukhov length $L$ ). According to the Monin-Obukhov similarity theory, statistics of $c$ (like its standard deviation, $\sigma_{c}$ ) scale with $\qquad$
(a) $u_{*}$
(b) $L$
(c) $u_{*} L$
(d) $Q_{c} / L$
(e) $Q_{c} / u_{*} \quad \checkmark \checkmark$
12. Consider the kinetic energy $k$ of the unresolved motion in a horizontally-uniform layer of the atmosphere that is in local equilibrium (conservation equation given at back): if the layer is stably stratified then buoyant production $\qquad$
(a) tends to increase $k$
(b) has the same sign as shear production
(c) vanishes
(d) balances shear production
(e) when summed with shear production, balances viscous dissipation $\epsilon$
13. The hemispheric irradiance across a unit of area whose normal is oriented vertically (ie. parallel to unit vector $\hat{k}$ ) is given by $F_{z}=\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi / 2} I(\hat{s})(\hat{k} \bullet \hat{s}) \sin \phi d \theta d \phi$ where $\hat{k} \bullet \hat{s}=\cos \phi$. If the radiation intensity $I$ is isotropic then $F_{z}=$ $\qquad$
(a) 0
(b) $1 / 2 \sin (2 \phi)$
(c) $\pi I \quad \checkmark \checkmark$
(d) $2 \pi I$
(e) $4 \pi I$
14. Let $X(t)$ denote the displacement (along direction $x$ ) of a particle from its point of release at time $t=0$. Assuming the motion is "diffusive" (with diffusivity $K$ ) then (over an ensemble of trials) the statistic $\sigma_{x}^{2}(t) \equiv \overline{(X(t)-\bar{X}(t))^{2}}=$
(a) 0
(b) $\sqrt{2 K t}$
(c) $2 K t \quad \checkmark \checkmark$
(d) $(2 K t)^{2}$
(e) $\infty$
15. The colour of the (unpolluted, cloudless) sky is explained by the $\qquad$
(a) wavelength $(\lambda)$ selectivity of the Rayleigh scattering function
(b) anisotropy of the Rayleigh scattering function
(c) wavelength selectivity of the Mie scattering function
(d) anisotropy of the Mie scattering function
(e) wavelength-dependence of the (Rayleigh) single scattering albedo ( $\omega_{o} \propto \lambda^{-4}$ )
$\checkmark \checkmark$

## Short answer:

$$
4 \times 5 \%=20 \%
$$

Answer any four questions from this section, writing a (maximum) of one page per question. Additional pages used for calculations/working/preparation will not be marked. (Turn to the back for answers)

1. Explain the meaning and implications of the term "neutrally-stratified" as applied to the atmospheric boundary-layer, making reference both to the mean vertical flux density of sensible heat $\left(Q_{H}\right)$ and the vertical temperature (or potential temperature) gradient. You may assume a dry atmosphere. Explore the implications of neutrality
with regard to the kinetic energy budget (to this end you may assume steady state and local equilibrium apply; the equations given as data should help).
2. In the symbolic computing language of your choice, write down a code to evaluate the formula

$$
T(y)=\sum_{i=1}^{20} \sum_{j=i}^{20}(-1)^{i+j} \sin (\pi y)
$$

for a set of real values of $y$ stored in the array $x(k)$, viz. $y=x(k), k=(1,2, \ldots 10)$. Your code need not be executable and need not be in perfect syntax, but all major tasks except I/O must be addressed, including declaration (typing) of the variables.
3. Suppose $\phi=\phi(x, y)$ is defined in the quadrant $x, z \geq 0$ where it is governed by the differential equation (d.e.)

$$
U \frac{\partial \phi}{\partial x}=\frac{\partial^{2} \phi}{\partial z^{2}}
$$

( $U>0$ is a real constant) and that this equation is to be solved on a uniform grid whose nodes $(i, j)$ lie at $x(i)=(i-1) \Delta, z(j)=(j-1) \Delta$. We may let $\phi_{i j}^{n}$ denote the $n^{\text {th }}$ iteration towards the solution away from a first guess field $\phi_{i j}^{0}$.

Discuss the need for (as yet unspecified) boundary conditions in order to fully pose (specify) this problem. Explain whether, if we wished to compute the solution for all $0 \leq x \leq L$, it would be adequate to invoke a single boundary condition on the $x$-axis at $x=L$, ie. specify $\phi(L, z)$ ? Classify the terms in the d.e., and address whether (and why) each of the spatial axes is 'one-way' or 'two-way'.

If we impose $(\partial \phi / \partial z)=1$ along $z=0$ then after the $4^{\text {th }}$ iteration the influence of this boundary condition will have propogated along the $z(j)$ axis as far as which gridpoint (j), and why?
4. The lowest order finite difference approximation for $\partial^{4} \phi / \partial x^{4}$ is

$$
\frac{\partial^{4} \phi}{\partial x^{4}}=\frac{\phi(x+2 \Delta)-8 \phi(x+\Delta)+20 \phi(x)-8 \phi(x-\Delta)+\phi(x-2 \Delta)}{\Delta^{4}}+\mathrm{O}\left(\Delta^{2}\right)
$$

Without worrying about whether it will be numerically stable, formulate an explicit
algorithm to solve the differential equation

$$
\frac{\partial \phi}{\partial t}=a \frac{\partial^{4} \phi}{\partial x^{4}}
$$

(where $t$ is time and $x$ is a spatial coordinate). Your algorithm need only be valid at 'interior' gridpoints, ie. those distant no less than $2 \Delta$ from the edges of the domain.

Suppose instead you formulated an implicit discretization such that (in matrix representation) your scheme for advancing the solution over one timestep was $\phi^{\mathbf{n + 1}}=\mathbf{A} \phi^{\mathbf{n}}$. Explain how many non-zero diagonals would appear in the coefficient matrix $\mathbf{A}$.
5. In a typical weather model whose lowest gridpoint lies in the atmospheric surface layer at $z=z_{a}$, the surface-atmosphere flux of heat $\left(Q_{H 0}\right)$ is computed as

$$
Q_{H 0}=\rho c_{p} C_{M} C_{H} u_{a}\left(T_{0}-T_{a}\right)
$$

Explain the logic of this parameterization, defining all the terms in the above equation. Explain, too, how coefficients $C_{M}, C_{H}$ are "calibrated."
6. Using the control volume method, discretize the differential equation

$$
0=\frac{d}{d z}\left(K(z) \frac{d C}{d z}\right)+q_{1} \delta(z-h)
$$

on the domain $0 \leq z \leq L$ (where $L \gg h$ ), assuming boundary conditions

$$
\begin{aligned}
C(L) & =0 \\
\left(-K \frac{d C}{d z}\right)_{(z=0)} & =q_{2}
\end{aligned}
$$

( $q_{1}, q_{2}$ are constants that are not necessarily dimensionless). State the neighbour coefficients for an arbitrary internal control volume (ie. not at or adjacent to a boundary), and give a diagram of your grid (including uppermost and lowermost control volumes) that clarifies your procedure. Give also a physical interpretation of the governing equation, ie. explain speculatively what physical problem it models.

## Data:

$$
\begin{equation*}
\frac{k_{v} z}{u_{*}} \frac{\partial \bar{u}}{\partial z}=\phi_{m}\left(\frac{z}{L}\right) \tag{7}
\end{equation*}
$$

Dimensionless mean wind shear in the horizontally-uniform atmospheric surface layer, given by the universal Monin-Obukhov function on the r.h.s. (which in neutral stratification, ie. at $|z / L|=0$, has the limit $\phi_{m}(0)=1$ ). Similar expressions apply for gradients in mean temperature, humidity, etc.

$$
L=\frac{-u_{*}^{3}}{k_{v} \frac{g}{T_{0}} \overline{w^{\prime} T^{\prime}}}
$$

Definition of the Obukhov length, where: $u_{*}$ is the friction velocity, $k_{v}$ is the von Karman constant, $T_{0}[\mathrm{~K}]$ is the mean temperature of the atmospheric surface layer, and $\overline{w^{\prime} T^{\prime}}\left[\equiv Q_{H} /\left(\rho c_{p}\right)\right]$ is the mean vertical (kinematic) flux density of sensible heat.

- The kinetic energy of the unresolved motion $u_{i}^{\prime}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ is by definition $k=$ $\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right) / 2$. In a horizontally-homogeneous layer the conservation equation for $k$, in a coordinate system aligned with the mean wind, is:

$$
\frac{\partial k}{\partial t}=-\overline{u^{\prime} w^{\prime}} \frac{\partial U}{\partial z}+\frac{g}{T_{0}} \overline{w^{\prime} T^{\prime}}-\epsilon+\frac{\partial}{\partial z} \overline{w^{\prime}} \overline{\left(\frac{p^{\prime}}{\rho}+\frac{1}{2}\left(u^{\prime 2}+{v^{\prime}}^{2}+w^{\prime 2}\right)\right)}
$$

Here $\epsilon$ is the 'rate of dissipation of unresolved kinetic energy' and terms have their usual meaning.

- The heat flux budget equation in a horizontally-homogeneous layer is

$$
\begin{equation*}
\frac{\partial \overline{w^{\prime} T^{\prime}}}{\partial t}=-\overline{w^{\prime 2}} \frac{\partial \bar{T}}{\partial z}-\frac{\partial}{\partial z} \overline{w^{\prime} w^{\prime} T^{\prime}}-\frac{1}{\rho_{0}} \overline{T^{\prime} \frac{\partial p^{\prime}}{\partial z}}+\frac{g}{T_{0}} \overline{T^{\prime 2}} \tag{10}
\end{equation*}
$$

where $\rho_{0}, T_{0}$ are the mean density and (Kelvin) temperature of the layer. It is often assumed that at steady state this reduces to a balance between the first term on the r.h.s. (gradient production: a source term) and the $T^{\prime} \partial p^{\prime} / \partial z$ covariance term, also a source term.

## Skeleton short answers

1. Regarding the "neutrally-stratified" atmospheric boundary-layer, any of these points would gain you a mark:

- $Q_{H}=0$, or alternatively $\overline{w^{\prime} T^{\prime}}=0$
- $\partial \bar{T} / \partial z-\gamma_{d}=0$, where $\bar{T}$ is the mean temperature; alternatively $\partial \bar{\theta} / \partial z=0$, where $\bar{\theta}$ is the mean potential temperature (since in principle the temperature fluctuations vanish, no penalty for failing to specify 'mean')
- no buoyant production in TKE equation, so (at local equilibrium and steady state) $\epsilon=-\overline{u^{\prime} w^{\prime}} \partial U / \partial z$ (a half mark if you got part way to this result)
- in the surface layer the MO scale $T_{*}=-Q_{H} / u_{*}$ for temperature fluctuations vanishes... no temperature fluctuations
- in the surface layer the MO length scale $|L|=\infty(z / L=0)$
- parcels displaced in the vertical experience no consequent buoyancy force
- neutral ABL can be said to be "well-mixed"

2. Evaluate $T(y)=\sum_{i=1}^{20} \sum_{j=i}^{20}(-1)^{i+j} \sin (\pi y)$ for a bunch of values of $y$. What was tested here was your familiarity with nested loops, and the type of variable generally called an "accumulator" (here named "sum"). Marked by subtracting $\frac{1}{2}$ for each mistake. Common mistakes were: wrong lower limit for the j loop; failure to actually so the summation (as marked 'wrong' below) with result that computation yields only the contribution from $i=j=20$.
```
integer i,j
real pi,sum,y,x(10)
pi=3.14159
read x(k) for k=1,..10 (optional)
do k=1,10
    y=x(k)
    sum=0.0
    do i=1,20
        do j=i,20
            sum=sum+((-1)**(i+j))*sin(pi*y)
                sum=((-1)**(i+j))*sin(pi*y) wrong!
            end do
```

c

```
        end do
        print*, y, sum
        (optional)
end do
end
```

3. The $U \frac{\partial \phi}{\partial x}=\frac{\partial^{2} \phi}{\partial z^{2}}$ problem. Marked by assigning +1 per point below (to max of 5 )

- to fully pose the problem (ie. render it definite and so solvable) we need $1 \mathrm{~b} / \mathrm{c}$ on the $x$-axis and 2 on the $z$-axis
- on the $z$-axis, the problem is 'elliptic' ('jury' problem), this is a ' 2 -way' axis
- however the $x$-axis is a ' 1 -way' axis, and the solution $\phi_{i, j}$ at gridpoint $(i, j)$ can be affected only by the upstream field $\phi_{i-1, k}$ (if we take the simplest discretization of the Laplacian term, the upstream influence is restricted to height range $j-1 \leq$ $k \leq j+1)$
- An advection term $U \partial \phi / \partial x$ is best discretized using an 'upwind' difference (ie. if I want $\partial \phi / \partial x$ where I am standing with my back to the wind, I take the value of $\phi$ where I am minus the value behind my back, and divide by the distance)... this captures the '1-way' character of the transport process. From the physical perspective a boundary condition at $x=L$ would not work (it could not influence the solution at $x<L)$. However since I did not clearly teach and give you notes on this point (inferiority of a downwind difference for advection) and because mathematically, by choosing a downwind difference for the advection term, one could obtain a solution even if one imposed the $\mathrm{b} / \mathrm{c}$ at $x=L$, I accepted either argument.
- since $U=$ const both terms in the d.e. are transport terms, ie. can be written as the spatial derivative of a flux
- The simplest discretization for the Laplacian term $\left(\phi_{i, j+1}+\phi_{i, j-1}-2 \phi_{i, j}\right) / \Delta^{2}$ is going to zip the influence of the lower boundary condition upwards along the $z$ (ie. j) axis by one gridpoint per iteration. So after 4 iteration the boundary influence is felt up to the $4^{\text {th }}$ internal gridpoint; however since there can be ambiguities about the counting here, I did not insist on 4
- Since this is (or can be formulated as) a marching problem on the $x$-axis, iteration is not actually necessary... but then the influence of the lower boundary will propagate up the j-axis by one gridpoint for each downstream step taken

4. Letting $\phi_{i}^{n}$ represent the solution at time $n \Delta t$ and location $i \Delta$, an explicit algorithm for $\frac{\partial \phi}{\partial t}=a \frac{\partial^{4} \phi}{\partial x^{4}}$ would be

$$
\frac{\phi_{i}^{n+1}-\phi_{i}^{n}}{\Delta t}=\frac{a}{\Delta^{4}}\left(\phi_{i+2}^{n}-8 \phi_{i+1}^{n}+20 \phi_{i}^{n}-8 \phi_{i-1}^{n}+\phi_{i-2}^{n}\right)
$$

so in terms of neighbour coefficients we have (3 marks)

$$
\begin{aligned}
\phi_{i}^{n+1}= & +\gamma \phi_{i-2}^{n} \\
& -8 \gamma \phi_{i-1}^{n} \\
& +(1+20 \gamma) \phi_{i}^{n} \\
& -8 \gamma \phi_{i+1}^{n} \\
& +\gamma \phi_{i+2}^{n}
\end{aligned}
$$

where $\gamma=a \Delta t / \Delta^{4}$. Because this algorithm requires values at gridpoints $i-2, i-$ $1, i, i+1, i+2$ there would be 5 non-zero diagonals in the coefficient matrix of an implicit formulation (2 marks).
5. Interpreting/explaining the boundary flux parameterization $Q_{H 0}=\rho c_{p} C_{M} C_{H} u_{a}\left(T_{0}-T_{a}\right)$.

- formulation assumes the sensible heat flux density $Q_{H 0}$ is 'driven' by the (model's) surface-to-air temperature difference $\left(T_{0}-T_{a}\right)$
- but we need to multiply by a velocity to get units of kinematic heat flux, and $u_{a}$ (model's mean horizontal windspeed at $z=z_{a}$ ) is available from the model (other choices of a windspeed 'known to the model' would be possible, but would result in different coefficients)
- the factor $\rho c_{p}$ converts our kinematic heat flux density into the units $\left[\mathrm{Wm}^{-2}\right.$ ]
- to get the (dimensionless) coefficients, we turn to Monin-Obukhov similarity theory (MOST), which is appropriate for a horizontally uniform surface layer
(since our model doesn't resolve the surface layer on a scale finer than its grid, the assumption of horizontal uniformity that is implicit in MOST is consistent with the modelling approach). We start by noting that according to MOST

$$
\begin{aligned}
& \frac{k_{v} z}{u_{*}} \frac{\partial \bar{u}}{\partial z}=\phi_{m}\left(\frac{z}{L}\right) \\
& \frac{k_{v} z}{T_{*}} \frac{\partial \bar{T}}{\partial z}=\phi_{h}\left(\frac{z}{L}\right)
\end{aligned}
$$

where $T_{*}=-Q_{H 0} /\left(\rho c_{p} u_{*}\right)$ and $\phi_{h}$ is the universal MO function for heat (the first of these equations was given as data). Re-arrange the second of these formulae

$$
\frac{\partial \bar{T}}{\partial z}=\frac{-Q_{H 0} /\left(\rho c_{p} u_{*}\right)}{k_{v} z} \phi_{h}(z / L)
$$

and upon integrating from the surface to $z=z_{a}$

$$
T_{a}-T_{0}=\frac{-Q_{H 0} /\left(\rho c_{p} u_{*}\right)}{k_{v}} \int_{0}^{z_{a}} \phi_{h}\left(\frac{z}{L}\right) \frac{d z}{z}
$$

we have a formula linking $Q_{H 0}$ to $\left(T_{0}-T_{a}\right)$ that can be used to determine $C_{M} C_{H}$ (the coefficient $C_{M}$ enters when we re-express $u_{*}$ as a multiple of $u_{a}$ )
6. Control volume discretization of $0=\frac{d}{d z}\left(K(z) \frac{d C}{d z}\right)+q_{1} \delta(z-h)$.

- We have a steady-state, 1-d diffusion problem. There is a source (strength $q_{1}$ ) of the property $C$ inside the domain at $z=h$, and another (strength $q_{2}$ ) at the lower boundary $z=0$ (since we have a prescribed flux at that boundary). The top boundary $z=L$ is either very remote from the sources, or (better interpretation) is a perfect sink
- define a uniform grid along the $z$ axis with gridlength $\Delta$
- index the gridpoints (j)
- sketch the grid giving definitions
- integrate the d.e. over the interval $z_{s} \leq x \leq z_{n}$ where $z_{s}, z_{n}$ are the upper and lower boundaries to the control volume (or control layer) associated with gridpoint j . In view of the $\delta$-function multiplying the source term, the result is

$$
0=\left[K(z) \frac{d C}{d z}\right]_{z_{s}}^{z_{n}}+q_{1} \delta_{j j_{h}}
$$

where $\delta_{j j_{h}}$ vanishes unless layer j encloses the source at $z=h$ (in which case it is unity)

- Introducing central differences we have

$$
0=K\left(z_{n}\right) \frac{C_{j+1}-C_{j}}{\Delta}-K\left(z_{s}\right) \frac{C_{j}-C_{j-1}}{\Delta}+q_{1} \delta_{j j_{h}}
$$

or rearranging

$$
C_{j}\left[\frac{K_{n}}{\Delta}+\frac{K_{s}}{\Delta}\right]=C_{j-1} \frac{K_{s}}{\Delta}+C_{j+1} \frac{K_{n}}{\Delta}+q_{1} \delta_{j j_{h}}
$$

