
EAS471,“Atmospheric Modelling” Exam 28 April, 2005

Professor: J.D. Wilson Time available: 120 mins Value: 35%

Please answer in the exam booklet. Some pertinent equations/data are given
at the back.

Multi-choice (15 x 1% = 15%)

1. If vectors−→u and−→v have representation−→u = (α, 0, 1) and−→v = (0, 1, β) when projected
onto orthogonal unit vectors (̂i, ĵ, k̂), then their inner product −→u • −→v =

(a) 0

(b) 1

(c) α

(d) β XX
(e) αβ

2. αi and τij are respectively rank 1 and rank 2 (Cartesian) tensors in a 2-D space. Under
the summation convention the quantity αi ∂τij/∂xj expands to

(a) α1 ∂τ12/∂x1

(b) α2 ∂τ21/∂x2

(c) α1 ∂τ11/∂x1 + α1 ∂τ12/∂x2 + α2 ∂τ21/∂x1 + α2 ∂τ22/∂x2 XX
(d) (α1 − α2) (∂τ11/∂x1 + ∂τ22/∂x2 )

(e) (α2 − α1) (∂τ11/∂x1 + ∂τ22/∂x2 )

3. The Von Neumann stability analysis of a finite-difference discretization scheme covers
but does not account for

(a) any d.e. (differential eq’n) expressed in Cartesian coordinates; time-dependence

(b) any linear d.e.; boundary conditions XX
(c) first- or second-order d.e.’s only; non-linearity

(d) any linear d.e.; influence of unresolved scale of motion

(e) heat/diffusion type equations; inhomogeneities (Q- type terms)
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4. The von Neumann analysis of ∂c
∂t

= −U ∂c
∂x

results in a criterion on the number

(a) Diffusion

(b) Reynolds

(c) Richardson

(d) Courant XX
(e) Euler

5. Which name(s) is/are associated with numerical schemes for solving the heat equation

(a) Crank and Nicolson

(b) Richardson

(c) Dufort

(d) Frankel

(e) all of the above XX

6. The shortest wave that can be represented on a grid with spacing ∆x has wavelength

(a) π/∆x

(b) 2π/∆x

(c) ∆x/2

(d) ∆x

(e) 2∆x XX

7. If Sx(f) is the power spectrum of a random variable x(t), then
∫∞

0
Sx(f) df =

(a) 0

(b) ∞
(c) ∆x, the grid interval

(d) ∆t, the time step

(e) σ2
x, the variance of x(t) XX

8. If the Fourier transform of T (x, t) satisfies ∂/∂t T̃ (k, t) = −K k2 T̃ (k, t) where k is
wavenumber and K is a constant, then T must be governed by a/n

(a) advection equation

(b) diffusion equation XX(1)

(c) advection-diffusion equation

(d) time-independent equation XX(1/2)

(e) inhomogeneity
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9. In relation to the above question, the Fourier mode T̃ (k, t) must

(a) grow logarithmically in proportion to (Kk2t)

(b) grow exponentially in proportion to Kk2t

(c) decay in proportion to
√

Kk2t

(d) decay exponentially in proportion to Kk2t XX
(e) vanish

10. Suppose L [φ(x)] = 0 (where L[ ] is a differential operator) is to be solved on a ≤
x ≤ b using the Bubnov-Galerkin method with basis functions θj(x). The expansion
coefficients aj are optimized by requiring that

(a) aiaj = δij

(b) the residual e(x) = L
[∑N

j=1 aj θj(x)
]

must vanish

(c) the residual e(x) must be minimal

(d) the residual e(x) must be uncorrelated with each θj(x) over a ≤ x ≤ b XX
(e) all of the above

11. Qc is the mean vertical flux density of an admixture ‘c’ across the atmospheric surface
layer (friction velocity u∗, Obukhov length L). According to the Monin-Obukhov
similarity theory, statistics of c (like its standard deviation, σc) scale with

(a) u∗

(b) L

(c) u∗L

(d) Qc/L

(e) Qc/u∗ XX

12. Consider the kinetic energy k of the unresolved motion in a horizontally-uniform layer
of the atmosphere that is in local equilibrium (conservation equation given at back):
if the layer is stably stratified then buoyant production

(a) tends to increase k

(b) has the same sign as shear production

(c) vanishes

(d) balances shear production

(e) when summed with shear production, balances viscous dissipation ε XX
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13. The hemispheric irradiance across a unit of area whose normal is oriented vertically

(ie. parallel to unit vector k̂) is given by Fz =
∫ 2π

θ=0

∫ π/2

φ=0
I(ŝ) (k̂ • ŝ) sin φ dθ dφ where

k̂ • ŝ = cos φ. If the radiation intensity I is isotropic then Fz =

(a) 0

(b) 1/2 sin(2φ)

(c) π I XX
(d) 2π I

(e) 4π I

14. Let X(t) denote the displacement (along direction x) of a particle from its point of
release at time t = 0. Assuming the motion is “diffusive” (with diffusivity K) then

(over an ensemble of trials) the statistic σ2
x(t) ≡

(
X(t)−X(t)

)2
=

(a) 0

(b)
√

2K t

(c) 2K t XX
(d) (2K t)2

(e) ∞

15. The colour of the (unpolluted, cloudless) sky is explained by the

(a) wavelength (λ) selectivity of the Rayleigh scattering function

(b) anisotropy of the Rayleigh scattering function

(c) wavelength selectivity of the Mie scattering function

(d) anisotropy of the Mie scattering function

(e) wavelength-dependence of the (Rayleigh) single scattering albedo (ωo ∝ λ−4)
XX

Short answer: 4 x 5% = 20%

Answer any four questions from this section, writing a (maximum) of one page per question.
Additional pages used for calculations/working/preparation will not be marked. (Turn to
the back for answers)

1. Explain the meaning and implications of the term “neutrally-stratified” as applied

to the atmospheric boundary-layer, making reference both to the mean vertical flux

density of sensible heat (QH) and the vertical temperature (or potential temperature)

gradient. You may assume a dry atmosphere. Explore the implications of neutrality
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with regard to the kinetic energy budget (to this end you may assume steady state and

local equilibrium apply; the equations given as data should help).

2. In the symbolic computing language of your choice, write down a code to evaluate the

formula

T (y) =
20∑
i=1

20∑
j=i

(−1)i+j sin(πy)

for a set of real values of y stored in the array x(k), viz. y = x(k), k = (1, 2, ...10).

Your code need not be executable and need not be in perfect syntax, but all major

tasks except I/O must be addressed, including declaration (typing) of the variables.

3. Suppose φ = φ(x, y) is defined in the quadrant x, z ≥ 0 where it is governed by the

differential equation (d.e.)

U
∂φ

∂x
=

∂2φ

∂z2

(U > 0 is a real constant) and that this equation is to be solved on a uniform grid

whose nodes (i, j) lie at x(i) = (i− 1)∆, z(j) = (j − 1)∆. We may let φn
ij denote the

nth iteration towards the solution away from a first guess field φ0
ij.

Discuss the need for (as yet unspecified) boundary conditions in order to fully pose

(specify) this problem. Explain whether, if we wished to compute the solution for all

0 ≤ x ≤ L, it would be adequate to invoke a single boundary condition on the x-axis

at x = L, ie. specify φ(L, z)? Classify the terms in the d.e., and address whether (and

why) each of the spatial axes is ‘one-way’ or ‘two-way’.

If we impose (∂φ/∂z) = 1 along z = 0 then after the 4th iteration the influence of this

boundary condition will have propogated along the z(j) axis as far as which gridpoint

(j), and why?

4. The lowest order finite difference approximation for ∂4φ/∂x4 is

∂4φ

∂x4
=

φ(x + 2∆)− 8φ(x + ∆) + 20φ(x)− 8φ(x−∆) + φ(x− 2∆)

∆4
+ O(∆2)

Without worrying about whether it will be numerically stable, formulate an explicit
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algorithm to solve the differential equation

∂φ

∂t
= a

∂4φ

∂x4

(where t is time and x is a spatial coordinate). Your algorithm need only be valid at

‘interior’ gridpoints, ie. those distant no less than 2∆ from the edges of the domain.

Suppose instead you formulated an implicit discretization such that (in matrix repre-

sentation) your scheme for advancing the solution over one timestep was φn+1 = A φn.

Explain how many non-zero diagonals would appear in the coefficient matrix A.

5. In a typical weather model whose lowest gridpoint lies in the atmospheric surface layer

at z = za, the surface-atmosphere flux of heat (QH0) is computed as

QH0 = ρcp CM CH ua (T0 − Ta)

Explain the logic of this parameterization, defining all the terms in the above equation.

Explain, too, how coefficients CM , CH are “calibrated.”

6. Using the control volume method, discretize the differential equation

0 =
d

dz

(
K(z)

dC

dz

)
+ q1 δ(z − h)

on the domain 0 ≤ z ≤ L (where L >> h), assuming boundary conditions

C(L) = 0(
− K

dC

dz

)

(z=0)

= q2

(q1, q2 are constants that are not necessarily dimensionless). State the neighbour coef-

ficients for an arbitrary internal control volume (ie. not at or adjacent to a boundary),

and give a diagram of your grid (including uppermost and lowermost control volumes)

that clarifies your procedure. Give also a physical interpretation of the governing

equation, ie. explain speculatively what physical problem it models.

6



Data:

•
kvz

u∗

∂u

∂z
= φm

( z

L

)
(7)

Dimensionless mean wind shear in the horizontally-uniform atmospheric surface layer,

given by the universal Monin-Obukhov function on the r.h.s. (which in neutral strat-

ification, ie. at |z/L| = 0, has the limit φm(0) = 1 ). Similar expressions apply for

gradients in mean temperature, humidity, etc.

•
L =

− u3
∗

kv
g
T0

w′T ′

Definition of the Obukhov length, where: u∗ is the friction velocity, kv is the von

Karman constant, T0 [K] is the mean temperature of the atmospheric surface layer,

and w′T ′ [≡ QH/(ρcp)] is the mean vertical (kinematic) flux density of sensible heat.

• The kinetic energy of the unresolved motion u′i = (u′, v′, w′) is by definition k =

(u′2 + v′2 + w′2 )/2. In a horizontally-homogeneous layer the conservation equation for

k, in a coordinate system aligned with the mean wind, is:

∂k

∂t
= − u′w′ ∂U

∂z
+

g

T0

w′T ′ − ε +
∂

∂z
w′

(
p′

ρ
+

1

2

(
u′2 + v′2 + w′2)

)

Here ε is the ‘rate of dissipation of unresolved kinetic energy’ and terms have their

usual meaning.

• The heat flux budget equation in a horizontally-homogeneous layer is

∂w′T ′

∂t
= − w′2 ∂T

∂z
− ∂

∂z
w′w′T ′ − 1

ρ0

T ′∂p′

∂z
+

g

T0

T ′2 (10)

where ρ0, T0 are the mean density and (Kelvin) temperature of the layer. It is often

assumed that at steady state this reduces to a balance between the first term on the

r.h.s. (gradient production: a source term) and the T ′ ∂p′/∂z covariance term, also a

source term.
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Skeleton short answers

1. Regarding the “neutrally-stratified” atmospheric boundary-layer, any of these points

would gain you a mark:

• QH = 0, or alternatively w′T ′ = 0

• ∂T/∂z − γd = 0, where T is the mean temperature; alternatively ∂θ/∂z = 0,

where θ is the mean potential temperature (since in principle the temperature

fluctuations vanish, no penalty for failing to specify ‘mean’)

• no buoyant production in TKE equation, so (at local equilibrium and steady state)

ε = −u′w′ ∂U/∂z (a half mark if you got part way to this result)

• in the surface layer the MO scale T∗ = −QH/u∗ for temperature fluctuations

vanishes... no temperature fluctuations

• in the surface layer the MO length scale |L| = ∞ (z/L = 0)

• parcels displaced in the vertical experience no consequent buoyancy force

• neutral ABL can be said to be “well-mixed”

2. Evaluate T (y) =
∑20

i=1

∑20
j=i (−1)i+j sin(πy) for a bunch of values of y. What was

tested here was your familiarity with nested loops, and the type of variable generally

called an “accumulator” (here named “sum”). Marked by subtracting 1
2

for each mis-

take. Common mistakes were: wrong lower limit for the j loop; failure to actually so

the summation (as marked ‘wrong’ below) with result that computation yields only

the contribution from i = j = 20.

integer i,j
real pi,sum,y,x(10)
pi=3.14159
read x(k) for k=1,..10 (optional)
do k=1,10

y=x(k)
sum=0.0
do i=1,20

do j=i,20
sum=sum+((-1)**(i+j))*sin(pi*y)

c sum=((-1)**(i+j))*sin(pi*y) wrong!
end do
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end do
print*, y, sum (optional)

end do
end

3. The U ∂φ
∂x

= ∂2φ
∂z2 problem. Marked by assigning +1 per point below (to max of 5)

• to fully pose the problem (ie. render it definite and so solvable) we need 1 b/c on

the x-axis and 2 on the z-axis

• on the z-axis, the problem is ‘elliptic’ (‘jury’ problem), this is a ‘2-way’ axis

• however the x-axis is a ‘1-way’ axis, and the solution φi,j at gridpoint (i, j) can be

affected only by the upstream field φi−1,k (if we take the simplest discretization of

the Laplacian term, the upstream influence is restricted to height range j − 1 ≤
k ≤ j + 1)

• An advection term U∂φ/∂x is best discretized using an ‘upwind’ difference (ie. if

I want ∂φ/∂x where I am standing with my back to the wind, I take the value

of φ where I am minus the value behind my back, and divide by the distance)...

this captures the ‘1-way’ character of the transport process. From the physical

perspective a boundary condition at x = L would not work (it could not influence

the solution at x < L). However since I did not clearly teach and give you notes

on this point (inferiority of a downwind difference for advection) and because

mathematically, by choosing a downwind difference for the advection term, one

could obtain a solution even if one imposed the b/c at x = L, I accepted either

argument.

• since U = const both terms in the d.e. are transport terms, ie. can be written as

the spatial derivative of a flux

• The simplest discretization for the Laplacian term (φi,j+1 + φi,j−1 − 2φi,j) /∆2 is

going to zip the influence of the lower boundary condition upwards along the z (ie.

j) axis by one gridpoint per iteration. So after 4 iteration the boundary influence

is felt up to the 4th internal gridpoint; however since there can be ambiguities

about the counting here, I did not insist on 4
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• Since this is (or can be formulated as) a marching problem on the x-axis, iteration

is not actually necessary... but then the influence of the lower boundary will

propagate up the j-axis by one gridpoint for each downstream step taken

4. Letting φn
i represent the solution at time n∆t and location i∆, an explicit algorithm

for ∂φ
∂t

= a ∂4φ
∂x4 would be

φn+1
i − φn

i

∆t
=

a

∆4

(
φn

i+2 − 8φn
i+1 + 20φn

i − 8φn
i−1 + φn

i−2

)

so in terms of neighbour coefficients we have (3 marks)

φn+1
i = + γ φn

i−2

− 8γ φn
i−1

+ (1 + 20γ) φn
i

− 8γ φn
i+1

+ γ φn
i+2

where γ = a∆t/∆4. Because this algorithm requires values at gridpoints i − 2, i −
1, i, i + 1, i + 2 there would be 5 non-zero diagonals in the coefficient matrix of an

implicit formulation (2 marks).

5. Interpreting/explaining the boundary flux parameterization QH0 = ρcp CM CH ua (T0 − Ta).

• formulation assumes the sensible heat flux density QH0 is ‘driven’ by the (model’s)

surface-to-air temperature difference (T0 − Ta)

• but we need to multiply by a velocity to get units of kinematic heat flux, and ua

(model’s mean horizontal windspeed at z = za) is available from the model (other

choices of a windspeed ‘known to the model’ would be possible, but would result

in different coefficients)

• the factor ρcp converts our kinematic heat flux density into the units [W m−2]

• to get the (dimensionless) coefficients, we turn to Monin-Obukhov similarity

theory (MOST), which is appropriate for a horizontally uniform surface layer
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(since our model doesn’t resolve the surface layer on a scale finer than its grid,

the assumption of horizontal uniformity that is implicit in MOST is consistent

with the modelling approach). We start by noting that according to MOST

kvz

u∗

∂u

∂z
= φm

( z

L

)

kvz

T∗

∂T

∂z
= φh

( z

L

)

where T∗ = −QH0/(ρcpu∗) and φh is the universal MO function for heat (the first

of these equations was given as data). Re-arrange the second of these formulae

∂T

∂z
=
−QH0/(ρcpu∗)

kvz
φh(z/L)

and upon integrating from the surface to z = za

Ta − T0 =
−QH0/(ρcpu∗)

kv

∫ za

0

φh(
z

L
)

dz

z

we have a formula linking QH0 to (T0−Ta) that can be used to determine CMCH

(the coefficient CM enters when we re-express u∗ as a multiple of ua)

6. Control volume discretization of 0 = d
dz

(
K(z) dC

dz

)
+ q1 δ(z − h).

• We have a steady-state, 1-d diffusion problem. There is a source (strength q1)

of the property C inside the domain at z = h, and another (strength q2) at the

lower boundary z = 0 (since we have a prescribed flux at that boundary). The top

boundary z = L is either very remote from the sources, or (better interpretation)

is a perfect sink

• define a uniform grid along the z axis with gridlength ∆

• index the gridpoints (j)

• sketch the grid giving definitions

• integrate the d.e. over the interval zs ≤ x ≤ zn where zs, zn are the upper and

lower boundaries to the control volume (or control layer) associated with gridpoint

j. In view of the δ-function multiplying the source term, the result is

0 =

[
K(z)

dC

dz

]zn

zs

+ q1δjjh
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where δjjh
vanishes unless layer j encloses the source at z = h (in which case it is

unity)

• Introducing central differences we have

0 = K(zn)
Cj+1 − Cj

∆
− K(zs)

Cj − Cj−1

∆
+ q1δjjh

or rearranging

Cj

[
Kn

∆
+

Ks

∆

]
= Cj−1

Ks

∆
+ Cj+1

Kn

∆
+ q1δjjh
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