
EAS471,“Atmospheric Modelling” Exam 19 April, 2007

Professor: J.D. Wilson Time available: 120 mins Value: 35%

Please answer in the exam booklet. Symbols have their usual meteorological in-
terpretation (see details given at the back). Note: Schematic answers added at back, 23
April, 2007.

Multi-choice (14 x 1% = 14%)

1. τij ≡ u′iu
′
j is the Reynolds stress tensor, and δij =

{
1 i = j

0 i 6= j
is the Kronecker delta. The

quantity τij δij/2 expands to

(a) U ∂u′2/∂x + V ∂v′2/∂y + W ∂w′2/∂z

(b) 0

(c) 1

(d) −u2
∗ (where u∗ is the friction velocity)

(e) the turbulent kinetic energy k = (σ2
u + σ2

v + σ2
w)/2 XX

2. In a purely gaseous atmosphere, longwave radiation can be treated , while (with
the exception of the ultraviolet and near infra-red spectral bands where absorption is
significant) solar radiation can be treated

(a) neglecting absorption and emission; neglecting scattering

(b) neglecting scattering; neglecting absorption XX
(c) assuming an isotropic scattering function; neglecting extinction

(d) assuming an isotropic scattering function; assuming isotropic Planck (black body)
emission

(e) assuming Rayleigh scattering; by assuming the photon mean free path is zero

3. Under the assumption of a “plane parallel atmosphere,” the intensity of diffuse solar
radiation Iλ(p, θ, φ) [J s−1 m

−2
µm−1 steradian

−1
] is

(a) independent of time

(b) independent of wavelength λ

(c) independent of height (indexed above by pressure, p)

(d) independent of the elevation angle θ measured away from the zenith

(e) independent of the azimuth angle φ measured away from due north XX
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4. The solid angle dω subtended at the origin by an elementary area dA of a spherical surface
at a distance r from the origin is (note added 23 April 2007: qualification in italics
ought to have been present)

(a) dω dA

(b) r dA

(c) r2 dω/A

(d) dA/r2 XX
(e) r dω

5. If an atmosphere is optically at wavelength λ, then radiant energy transport at
that wavelength can be treated as a process controlled by the spatial gradient in
the

(a) thin; convection; temperature

(b) thick; diffusion; Planck emission/absorption function XX
(c) thin; diffusion; Planck emission/absorption function

(d) thick; scattering; photon mean free path

(e) transparent; diffusion; wavelength

6. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “consistent” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s) XX
(b) truncation error must vanish in the limit of infinite grid interval(s)

(c) the numerical solution φnum equals the true (but generally unknown) solution φ to
the differential equation in the limit of vanishing grid interval(s)

(d) the difference between the numerical solution φnum to the difference equation and the
(generally unknown) exact solution φ∗ to the difference equation vanishes in the limit
of vanishing grid interval(s)

7. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “convergence” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s)

(b) truncation error must vanish in the limit of infinite grid interval(s)

(c) the numerical solution φnum equals the true (but generally unknown) solution φ to
the differential equation in the limit of vanishing grid interval(s) XX

(d) the difference between the numerical solution φnum to the difference equation and the
(generally unknown) exact solution φ∗ to the difference equation vanishes in the limit
of vanishing grid interval(s)
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8. Which of the following is not a limitation/approximation/restriction/assumption of the
quasi-geostrophic system of equations?

(a) restricted to extra-tropical region

(b) latitudinal variation of Coriolis parameter approximated as linear (f = f0 + βy)

(c) advection approximated by substituting the Geostrophic wind for the true wind

(d) horizontal divergence Dp of the true wind assumed to vanish XX
(e) vertical advection of vorticity neglected

9. The von Neumann stability analysis of the heat equation ∂T
∂t

= κ ∂2T
∂x2 results in a criterion

on the number

(a) Diffusion XX
(b) Reynolds

(c) Richardson

(d) Courant

(e) Euler

10. Under certain simplifying assumptions and in the usual notation, the rate of shear produc-
tion of turbulent kinetic energy can be written −u′w′ ∂U/∂z, while buoyant production is
(g/T0) w′T ′. The ‘flux Richardson number’ is defined to be

(a) minus the ratio of buoyant over shear production of turbulent kinetic energy XX
(b) z/L (where L is the Obukhov length)

(c) w′T ′/L

(d) w′T ′/T0 (where T0 is a bulk Kelvin reference temperature)

(e) −w′T ′/u′w′

11. Suppose the Probability Density Function (PDF) of a certain random variable x defined
on −∞ ≤ x ≤ ∞ is

f(x) =





1/(b− a) a ≤ x ≤ b

0 x < a

0 x > b

(1)

Then the mean square value of x is E[x2] =
∫∞
−∞ x2f(x)dx =

(a) 0

(b) 1

(c) -1

(d) (1/3) (b3 − a3) (b− a)−1 XX
(e) a b/3
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12. Non-linear computational instability (NLCI) of a finite difference scheme is a consequence
of which factor(s)?

(a) false diffusion, use of low-order computational molecules

(b) aliasing, truncation in spectral space

(c) failure to reformulate advection terms in flux form

(d) wave-wave interaction, aliasing XX
(e) truncation error

13. Suppose L [φ(x)] = 0 (where L[ ] is a differential operator) is to be solved on a ≤ x ≤ b
using the Bubnov-Galerkin method with basis functions θj(x), viz. φ(x) =

∑
j aj θj(x).

The (constant) expansion coefficients aj are optimized by requiring that

(a) aiaj = δij

(b) the residual e(x) = L
[∑

j aj θj(x)
]

must vanish

(c) the residual e(x) must be minimal

(d) the covariance (over a ≤ x ≤ b) of the residual e(x) with each basis function θj(x)
must vanish XX

(e) the residual e(x) must be maximally correlated with each θj(x) over a ≤ x ≤ b

14. Gridpoint computations for the influence of unresolved scales of motion in the ABL on
the resolved absolute humidity ρv will involve the equation

(
∂ρv

∂t

)phys

= − [.] w′ρ′v (2)

The missing operator “[.]” is

(a) U ∂/∂x + V ∂/∂y (U, V the resolved horizontal velocity components)

(b) W ∂/∂z (W the resolved vertical velocity)

(c) ∂/∂x

(d) ∂/∂z XX
(e) K ∂/∂z (K the eddy diffusivity)
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Short answer: 3 x 7% = 21%

Answer any three questions from this section, writing a (maximum) of one single-sided page
per question. Additional pages used for calculations/working/preparation will not be marked.

1. Assuming a hydrostatic atmosphere, the (vertical) vorticity equation is

∂ζ

∂t
+ ~V · ∇H (ζ + f) + ω

∂ζ

∂p

= − (ζ + f) ∇H · ~V + k̂ ·
(

∂~V

∂p
×∇Hω

)
(3)

where ~V is the horizontal wind vector and ω [Pa s−1] the vertical velocity. Explain the fur-

ther limitations/assumptions/substitutions and/or simplifications that lead to the quasi-

geostrophic vorticity equation

∂ζ

∂t
= −Ug

∂ζ

∂x
− Vg

∂ζ

∂y
− Vg β + f0

∂ω

∂p
(4)

where ~Vg is the Geostrophic wind vector defined at a reference latitude φ0, f0 is the Coriolis

parameter at that latitude, and β = (∂f/∂y)φ0 its northerly gradient.

2. Conservation of the mass of a pollutant in the atmosphere is expressed

∂c

∂t
= − ∇ · ~Fc + q (5)

where c = c(x, y, z, t) is the instantaneous concentration, ~Fc the instantaneous vector flux

density of c, and q the volumetric source/sink density. In the case of turbulent dispersion

in a horizontally uniform atmospheric surface layer, the mean concentration C due to a

continuous line source is often modelled by the advection-diffusion equation

U
∂C

∂x
=

∂

∂z

(
K

∂C

∂z

)
(6)

where U = U(z) is the mean velocity and K = K(z) is the eddy diffusivity. List and

justify the simplifications and restrictions and assumptions underlying this model (most

safely done by deriving it from eqn. 5).
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3. Using the control volume method and assuming constant but unequal gridlengths (∆x, ∆y),

discretize the differential equation

0 = ∇2T + h(x, y) (7)

governing T = T (x, y) on the domain 0 ≤ x ≤ X, 0 ≤ y ≤ L. State the neighbour

coefficients AN , AS, AE, AW , AC (North, South, East, West and Centre) for an arbitrary

internal control volume (ie. a gridpoint not lying on a boundary), and give a diagram of

your grid that clarifies your procedure. Give also a physical interpretation of the governing

equation, ie. explain speculatively what physical problem it models, and comment on the

significance of the boundary condition (not specified above).

4. In the accompanying diagram, the separation between the gridpoints is 200 km. Arrows

with affixed numbers give the direction and magnitude [m s−1] of the horizontal wind vector

~VH at each interface, and the diagonals are contours of absolute humidity ρv [kg m−3]. For

this cell calculate: the Laplacian of the humidity, ∇2ρv ; the velocity divergence, ∇H · ~VH ;

and the rate of moisture accession by horizontal advection, ∇H ·
(
ρv

~VH

)
.

| VH | = 4

7
10

1

ρv=9 x 10-3

5 x 10-3

7 x 10-3
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5. In a particular NWP model, vertical fluxes carried by the unresolved scales of motion are

modelled using an eddy diffusivity (word should have been ‘viscosity’) K = aλ
√

k, where

k is the “turbulent kinetic energy” lying in the unresolved scales and λ is a length scale.

Assuming a neutral surface layer near ground in which

U =
u∗
kv

ln

(
z

z0

)

k = 5u2
∗

λ = kvz (8)

(where U is the mean windspeed, u∗ is the friction velocity, z0 is the roughness length, and

kv = 0.4 is the von Karman constant), determine the value of the proportionality constant

“a” in the eddy diffusivity (should have been ‘viscosity’) that ensures exact satisfaction of

the steady-state turbulent kinetic energy balance equation:

∂k

∂t
= 0 = K

(
∂U

∂z

)2

+
∂

∂z

(
K

∂k

∂z

)
− k3/2

λ
(9)

Data

• Cartesian velocity components (u, v, w) along the Cartesian coordinate directions (x, y, z)

• Reynolds decomposition a = A + a′, where A is the mean and a′ the fluctuation

• Obukhov length L = − u3
∗ T0

(
kv g w′T ′ )−1
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Skeleton answers to the short answer questions

1. This question was somewhat given away, by multichoice question #8. It was marked by

subtracting 1 mark for any essential step missed. The steps required to obtain the QG

vorticity equation were

• restrict the latitude to the extra-tropics

• approximate latitudinal variation of Coriolis parameter as linear, f(y) = f0 + βy

(‘beta-plane approximation’)

• evaluate horizontal advection of vorticity using the Geostrophic (as opposed to true)

windspeed, the latter evaluated using f = f0

• neglect vertical advection of vorticity

• neglect the term involving ∂~V /∂p

Extra clarification that could have been given included:

- that the term Vg β originates from the term in northward advection of absolute vorticity,

viz. from Vg ∂(ζ + f0 + βy)/∂y

- that the term f0 ∂ω/∂p stems from (ζ + f) ∇H · ~V by using the continuity equation

∇H · ~V ≡ −∂ω/∂p, and adopting the approximation ζ + f ≈ f0

2. Question was marked by subtracting 1/2 mark for every essential logical step missing. The

necessary steps are:

• Identify the flux, ~Fc = ~uc− κ∇c where κ is the molecular diffusivity of c in air. For

the subsequent steps it is easiest to use the tensor notation, Fic = uic− κ∂c/∂xi

• neglect molecular diffusion (drop terms in κ... can be done later).

• neglect any internal production/destruction, i.e. q = 0

• Reynolds average, c = C + c′ (etc.) where C ≡ c is the mean.

• use an explicitly defined terminology that distinguishes c from C, u from U , etc.
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• upon Reynolds averaging the instantaneous equation transforms to

∂C

∂t
= − ∂

∂xi

(ui c)

= − ∂

∂xi

(
Ui C + u′ic′

)

• assume the concentration field is in steady state

0 = − ∂

∂xi

(
Ui C + u′ic′

)

• assume line source lies parallel to the y axis, so that mean concentration field is

invariant along y

0 = − ∂

∂x

(
U C + u′c′

) − ∂

∂z

(
W C + w′c′

)

(n.b. that this does not imply ∂Fyc/∂y = 0, for the latter is the divergence of the

instantaneous flux, a turbulent quantity)

• in the hhASL, W = 0 and U = U(z), so

0 = − U
∂C

∂x
− ∂

∂x
u′c′ − ∂

∂z
w′c′

• neglect alongwind transport by the fluctuations, relative to transport by the mean

flow.

• Assume the vertical eddy flux can be modelled as a diffusion process with eddy

diffusivity K, viz

w′c′ = − K
∂C

∂z

Explicitly distinguish this eddy diffusivity from the neglected molecular diffusivity κ

• in cumulation, these steps (whose ordering does matter) yield the approximation

U
∂C

∂x
=

∂

∂z

(
K

∂C

∂z

)
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3. Having given a diagram defining the indices, the general gridpoint (I, J), and the faces

(e, w, n, s) of the control volume it lies within, perform an integration

0 =

∫ x2

x1

∫ y2

y1

(
∂2T

∂x2
+

∂2T

∂y2

)
dx dy + h ∆x ∆y

(where h is the mean value for the control volume in question). This simplifies to

0 = ∆y

[
∂T

∂x

]e

w

+ ∆x

[
∂T

∂y

]n

s

+ h ∆x ∆y

where the face ‘e’ is defined by x = x2 (etc). Now taking finite differences we have

0 = ∆y

[
TI+1,J − TI,J

∆x
− TI,J − TI−1,J

∆x

]
+ ∆x

[
TI,J+1 − TI,J

∂y
− TI,J − TI,J−1

∂y

]
+ hI,J ∆x ∆y

This can be rearranged to the form:

0 = AN TI,J+1 + AS TI,J−1 + AE TI+1,J + AW TI−1,J + AC TI,J hI,J ∆x ∆y

where

AN ≡ AS = ∆x/∆y

AE ≡ AW = ∆y/∆x

AC = − 2 (∆x/∆y + ∆y/∆x)

(Note that if ∆x = ∆y this simplifies considerably.)

As to the origin of the equation, one could plausibly regard it as emerging from a balance

of the form (see also short answer question #1)

∂c

∂t
= 0 − ∇ · ~FT + h

where

~FT = −κ∇T

Thus we have a steady state diffusion problem in the plane, with a distributed sink/source

h(x, y) (equivalently, we can consider it a conduction problem, in which case T specifically

is a temperature). Note especially that there is no advection process for T in this problem.

Either the diffusivity (equivalently, conductivity) κ = 1, or, its value has been absorbed
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into the definition of h. The curvature of the field of T (x, y) is constrained to equal −h.

This is an elliptic (or ‘jury’) problem, and the solution for T (x, y) is controlled by the

(unspecified) boundary values.

If the explicit integration step was not shown, and you had simply plugged computational

molecules for ∂2T/∂x2, ∂2T/∂y2 into the differential equation, then you had not used a

‘control volume method’ and I imposed a penalty 1 mark loss.

4. This involved straightforward application of the computational molecules for the first

derivative, and for the curvature (ie. second derivative). Don’t forget ∇2() has two con-

tributions, ie. curvature on x-axis plus curvature on y-axis... in this case, both zero. Give

the units, even if the numerical value is zero.

∇2ρv = 0 [kg m−5]

∇H · ~VH = 0 [s−1]

∇H ·
(
ρv

~VH

)
= − 1.2× 10−7 [kg m−3 s−1]

5. It is crucial to recognize that the surface-layer velocity scale u∗ is to be regarded as a

constant, in which case ∂k/∂z = 0 and the transport term in the TKE balance vanishes.

To evaluate the shear production term, differentiate the given formula for U(z), viz.

∂U

∂z
=

u∗
kv

∂

∂z
ln

(
z

z0

)

=
u∗
kv

1

z0

∂

∂z/z0

ln

(
z

z0

)

=
u∗
kv

1

z0

1

z/z0

=
u∗
kv z

(10)

Straightforward substitution gives a = 5.

Though it does not bear on the marking of the question, the question was subtly wrong

in the way the dissipation term was set up, and ought to have been framed this way:
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Revised framing of short answer question #5

In a particular NWP model, vertical fluxes carried by the unresolved scales of motion are

modelled using an eddy viscosity K = λ
√

a k, where k is the “turbulent kinetic energy” ly-

ing in the unresolved scales and λ is a length scale. This eddy viscosity is to be ‘calibrated’

for a reference flow, specifically a neutral surface layer near ground in which

U(z) =
u∗
kv

ln

(
z

z0

)

k = 5u2
∗

λ(z) = kvz (11)

where U is the mean windspeed (the von Karman constant kv, the friction velocity u∗,

and the roughness length z0 are all to be regarded as constants). Determine the value of

the proportionality constant “a” in the eddy viscosity that ensures exact satisfaction (in

the given reference flow) of the steady-state turbulent kinetic energy balance equation:

∂k

∂t
= 0 = K

(
∂U

∂z

)2

+
∂

∂z

(
K

∂k

∂z

)
− (a k)3/2

λ
(12)

The answer to this corrected statement would be: a = 1/5.
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