
EAS471,“Atmospheric Modelling” Exam 20 April, 2009

Professor: J.D. Wilson Time available: 120 mins Value: 30%

Please answer in the exam booklet. Symbols have their usual meteorological in-
terpretation. Some data are given at the back. Schematic answers to the short answer
questions have been added at the back (April 21, 2009)

Multi-choice (20 x 1
2% = 10%)

1. When the control volume method is applied as the first step in discretizing a conservation
equation such as

∂θ

∂t
= − ∇ · ~f + Q

the transport term

(a) vanishes

(b) must be Reynolds-averaged

(c) can be neglected relative to molecular transport

(d) finds expression in the net flux into the control volume (cell) across its walls XX
(e) equates to the mean value of Q within the cell’s volume ∆x∆y∆z

2. In Cartesian coordinates (x, y, z) the quantity ∇ · ∇φ equates to

(a) 0

(b) ∂φ
∂x

∂φ
∂y

∂φ
∂z

(c) ∂φ
∂x

+ ∂φ
∂y

+ ∂φ
∂z

(d) ∂2φ
∂x2 + ∂2φ

∂y2 + ∂2φ
∂z2 XX

(e) 1

3. Suppose φ = φ(x, t) is governed on −∞ ≤ x ≤ ∞ by the one-dimensional, linear advection
equation

∂φ

∂t
+ c

∂φ

∂x
= 0

(where c is a constant). Then if the initial field is φ(x, 0) = φ0(x) = sin (2πx/L), the
general solution is

(a) φ(x, t) = sin (2π(x− c t)/L) XX
(b) φ(x, t) = sin (2πx/L)− c t/L

(c) φ(x, t) = φ0(x)

(d) φ(x, t) = φ0(x/L + c t)

(e) φ(x, t) = φ0(x/L− c)
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4. Suppose that in a certain spectral NWP model the variation of φ with coordinate x was
represented as

φ(x) =
∞∑

n=−∞
an ej n k0 x ,

where j =
√−1, k0 is some fundamental wavenumber, and the an are expansion coefficients

that are independent of x. Then wherever needed, ∂φ/∂x would be represented as

(a) [φ(x + ∆x)− φ(x−∆x)]/(2∆x)

(b)
∞∑

n=−∞
an

[
ej n k0 (x+∆x) − ej n k0 (x−∆x)

]
/(2∆x)

(c)
∞∑

n=−∞
j n k0 an e− j n k0 x

(d)
∞∑

n=−∞
j n k0 an ej n k0 x XX

(e)
∞∑

n=−∞
∂an

∂x
ej n k0 x

5. In the context of the quasi-geostrophic model of mid-latitude meteorological dynamics
expressed in the (x, z, p, t) coordinate system, the height Z of a constant pressure surface
is related to the vertical component of relative vorticity ζ through a Poisson equation

∇2Z =
f0

g
ζ ,

where f0 is the Coriolis parameter at a fixed central latitude and g is gravitational accel-
eration. The operator ∇ is

(a) ∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

(b) ∇ = î ∂
∂x

+ ĵ ∂
∂y

XX
(c) ∇ = ∂

∂x
+ ∂

∂y
+ ∂

∂z

(d) Ug
∂
∂x

+ Vg
∂
∂y

, where ~Ug is the geostrophic wind

(e) ∂
∂t

+ Ug
∂
∂x

+ Vg
∂
∂y

, where ~Ug is the geostrophic wind

6. The problem of solving the above Poisson equation for the height field Z given the forcing
field ζ(x, y) is classified as a “ ” problem, because the (x, y) axes are

(a) marching; one-way

(b) marching; two-way

(c) jury; one-way

(d) jury; two-way XX
(e) non-linear; periodic
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7. An eddy diffusion closure for the unresolved (kinematic) vertical heat flux density w′θ′

reads

w′θ′ = − Kh
∂θ

∂z

where θ is the potential temperature. Here Kh is the

(a) molecular conductivity [W m−1 K
−1

]

(b) molecular thermal diffusivity [m2 s−1]

(c) eddy diffusivity for heat [m2 s−1] XX
(d) eddy viscosity [m2 s−1]

(e) rate of dissipation of turbulent kinetic energy [m2 s−3]

8. Suppose the mean windspeeds at two heights (z1, z2)=(1.2, 2.4) m in a neutrally-stratified
atmospheric surface layer were U1 = 3 m s−1 and U2 = 3.5 m s−1. Based on the observed
mean wind shear, the friction velocity was m s−1

(a) −0.72

(b) 0.29 XX
(c) 0.72

(d) 1.10

(e) 2.74

9. Taylor gave a Lagrangian theory of dispersion in homogeneous, stationary turbulence,
which we here apply to the spread of particles along the vertical (z) axis. To reconcile
Taylor’s theory with the eddy diffusion treatment one finds the eddy diffusivity must be
a function of the travel time (t) since the particles were released into the flow, viz.

K = σ2
w

t∫

0

R(τ) dτ (1)

where σ2
w is the variance of the vertical velocity and R(τ) is the Lagrangian velocity

autocorrelation function. If TL =
∫∞
0

R(τ) dτ is the Lagrangian integral timescale, then
the “far field eddy diffusivity” is given by

(a) σw TL

(b) σw t

(c) σ2
w TL XX

(d) σ2
w t

(e)
√

2σ2
w TL t
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10. If advection by the resolved wind field were the sole mechanism causing evolution of the
temperature at a point in the atmosphere (or ocean), then the sign and magnitude of the
local tendency in (resolved) temperature ∂T/∂t would be given by

(a) Uj ∂T/∂xj

(b) − Uj ∂T/∂xj XX(same as − ~U · ∇T )

(c) − ~U ×∇T

(d) ~U · ∇T

(e) − ∂w′T ′/∂z

where ~U ≡ Uj is the resolved wind vector and w′T ′ is the unresolved vertical heat flux
density.

11. In the context of the quasi-geostrophic model the geostrophic wind is conveniently related

~Ug = k̂ ×∇ψ

to a streamfunction ψ = gZ/f0 (where Z is the height of a constant pressure surface and
f0 the Coriolis parameter at a reference latitude). The west-east component Ug (directed
along î ) is given by

(a) ∂2ψ/∂x2

(b) −∂ψ/∂x

(c) ∂ψ/∂y

(d) −∂ψ/∂y XX
(e) ∂ψ/∂y − ∂ψ/∂x

12. The “curvature” of a scalar field φ(x, y, z) is given by (or measured by) application of the
operator

(a) ∇
(b) ∇ · ∇ XX
(c) k̂ · ∇
(d) k̂ ×
(e) k̂ ×∇

13. When we use the Reynolds averaging rules to formally separate an atmospheric or oceanic
field a into its resolved (a) and unresolved (a′) components, the expected value of the
unresolved part is

(a) the standard deviation σa ≡
√

a′2

(b) a′

(c) a− a

(d) a′ = 0 XX
(e) a′ ¿ a
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14. Suppose one performed many independent measurements of the vertical displacement Z(t)
at time t of a tracer particle (fluid element) from its initial state Z(0) = 0, in a regime
of homogeneous turbulence (assume there is no mean flow, so that the mean value Z(t)
is zero). According to the “diffusion” paradigm (equivalent to the “drunkard’s walk”
description) one should find that Z2(t), the mean square value of Z(t) defined over the
ensemble of independent trials, is proportional to

(a)
√

t XX
(b) t

(c) t2/3

(d) t2

(e) exp(t)

15. The sheltering effect of a long thin porous windbreak can be computed by the Reynolds-
averaged Navier-Stokes equations, in which it is necessary to parameterize the interaction
of the flow with the windbreak (otherwise one would be compelled to represent the hope-
lessly intricate geometry of the barrier and the microscopic details of flow in and about it).
The salient effect is a loss of momentum to the barrier, and, assuming the barrier (height
H) is located at x = 0 and oriented along the crosswind (y) axis, this drag on the wind
may be represented by a localized source in the mean streamwise (x) momentum equation

U
∂U

∂x
+ W

∂U

∂z
= − 1

ρ0

∂P

∂x
− ∂u′2

∂x
− ∂u′w′

∂z
− kr U2 δ(x− 0) s(z −H)

(kr is a dimensionless “resistance coefficient” of the barrier; the localizing step function
s(z − H) is unity for z ≤ H and zero otherwise). The primary effect of the momentum
sink is to induce a streamwise pressure gradient ∂P/∂x that is of the barrier

(a) adverse (decelerating) both upwind and downwind XX
(b) favourable (accelerating) both upwind and downwind

(c) adverse upwind and favourable downwind

(d) favourable upwind and adverse downwind

(e) infinite “at” the barrier (x = 0, z ≤ H) and zero upwind or downwind

16. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “consistent” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s) XX
(b) truncation error must vanish in the limit of infinite grid interval(s)

(c) the numerical solution φnum equals the true (but generally unknown) solution φ to
the differential equation in the limit of vanishing grid interval(s)

(d) the difference between the numerical solution φnum to the difference equation and the
(generally unknown) exact solution φ∗ to the difference equation vanishes in the limit
of vanishing grid interval(s)
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17. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “convergence” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s)

(b) truncation error must vanish in the limit of infinite grid interval(s)

(c) the numerical solution φnum equals the true (but generally unknown) solution φ to
the differential equation in the limit of vanishing grid interval(s) XX

(d) the difference between the numerical solution φnum to the difference equation and the
(generally unknown) exact solution φ∗ to the difference equation vanishes in the limit
of vanishing grid interval(s)

18. A von Neumann stability analysis of the heat equation ∂T
∂t

= κ ∂2T
∂x2 discretized using a

forward difference in time (timestep ∆t) and a centred difference in space (gridlength ∆x)
results in a stability criterion that the Diffusion number should not exceed 1/2

(a) κ ∆t/∆x2 XX
(b) κ ∆x/∆t

(c) ∆x∆t/κ

(d) ∆x2/(κ ∆t)

(e) T ∗ = κ ∆t−1

19. Suppose the Probability Density Function (PDF) of a certain random variable x defined
on 0 ≤ x ≤ 2 is f(x) = x/2. Any function of x, say G = G(x), has expected value

E[G(x)] =

2∫

0

G(x) f(x)dx ,

where (for example) E[x] is the mean x. Accordingly the mean, mean square, and variance
of x are

(a) 4/3, 2, 2/9 XX
(b) x/3, 2x, 0

(c) 4/3, 16/9, 4/3

(d) 2/3, 4/3, 2/
√

3

(e) you own answer (if not given above):

20. Non-linear computational instability (NLCI) of a finite difference scheme is a consequence
of which factor(s)?

(a) use of low-order computational molecules

(b) aliasing, truncation in spectral space

(c) failure to reformulate advection terms in flux form

(d) wave-wave interaction, aliasing XX
(e) truncation error
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Short answer: 2 x 10% = 20%

Answer any two questions from this section.

1. The Reynolds-averaged u-momentum equation, under the Boussinesq hypothesis, is:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ fv − ∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
+ ν∇2u

where f is the Coriolis parameter, ρ0 is layer mean density, and p is the mean pressure

deviation from a hydrostatic and adiabatic reference state. Deduce the acceleration due to

the “physics” (∂u/∂t)phys and explain the underlying physics of “friction” in a horizontally-

uniform boundary layer. Explain how friction is typically represented in a weather or ocean

model.

2. Determine the 4×4 tridiagonal coefficient matrix M and the right hand side B in a matrix

expression of form M Θ = B for the numerical solution of

∂2θ

∂z2
= 2

on 0 ≤ z ≤ 2, subject to θ(0) = θ(1) = 0. Set up your solution with four, equi-spaced

gridpoints indexed J = (1, 2, 3, 4) positioned at zJ = (0, 1/3, 2/3, 1). At internal gridpoints

(J=2,3) the curvature is to be represented as

∂2θ

∂z2
=

θJ+1 + θJ−1 − 2 θJ

∆z2
.

You need not invert M, nor obtain the (numerical) solution vector Θ = (θ1, θ2, θ3, θ4) since

the continuous analytical solution θ(z) is accessible by elementary Calculus — provide the

latter.

3. In Assignments (3,4) you simulated the vertical profile of crosswind-integrated concentra-

tion (“C”) one hundred metres downstream from a point source of tracer gas in a neutral

surface layer (specifically, Project Prairie Grass Run 57, for which known values of the

friction velocity u∗ and roughness length z0 were given). Consistent (and, as judged by

the observations, rather useful) results were obtained using two different methods, namely

• by solving an advection-diffusion equation (Assignment 2), viz.

U
∂C

∂x
=

∂

∂z

(
K

∂C

∂z

)

where the eddy diffusivity K = (kv/Sc) u∗ z and the mean wind U = (u∗/kv) ln(z/z0).

The von Karman constant kv = 0.4, while the Schmidt number Sc was a free constant.
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• by performing a Lagrangian stochastic trajectory simulation in which you computed

mean residence time within detector “volumes” of particles whose trajectories from

the source you computed by assuming the horizontal velocity was U (as given above),

and the vertical velocity was stochastic, with standard deviation σw = b u∗ and

timescale TL = 2σ2
w/(C0 ε). In your simulation the TKE dissipation rate was specified

ε = u3
∗/(kvz), while b = 1.3 and C0 was a free constant.

Based on your understanding of similarities and differences between these two approaches,

explain why one might have expected these two methods to give consistent results. In doing

so, you should exploit Taylor’s result for the effective far field eddy diffusivity σ2
w TL implied

by the Lagrangian model — this provides a connection between the two free constants, Sc

and C0.

Data

• (̂i, ĵ, k̂) are unit vectors along the Cartesian coordinate directions (x, y, z), and (u, v, w)

are the corresponding Cartesian velocity components

• Dimensionless mean wind shear in the horizontally-uniform atmospheric surface layer

kvz

u∗

∂u

∂z
≡ kv

u∗

∂u

∂ ln(z)
= φm

( z

L

)
.

The universal Monin-Obukhov function on the r.h.s. has the limit φm(0) = 1 in neutral

stratification, ie. at |z/L| = 0. Similar expressions apply for gradients in mean tempera-

ture, humidity, etc. The von Karman constant kv = 0.4, u∗ is the friction velocity, and L

is the Obukhov length

• The Obukhov length

L = − u3
∗ T0

kv g w′T ′

where T0 [K] is the mean temperature of the layer
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Schematic answers

1. The terms that are conventionally grouped together as representing “the acceleration due

to the physics” are (
∂u

∂t

)

phys

= −∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z

and in a horizontally-uniform boundary-layer (hhBL) by definition this reduces to

(
∂u

∂t

)

phys

= −∂u′w′

∂z
.

The Reynolds stress u′w′ is (physically) the covariance of unresolved fluctuations in stream-

wise and vertical velocity, and can be termed a ‘kinematic momentum flux density’; when

multiplied by the reference density ρ0 it is the unresolved vertical flux density of mo-

mentum [N m−2]. Let us continue the discussion specifically in the context of the atmo-

spheric boundary layer (with a change in terminology, the same argument works for ocean

boundary layers). Since (as observations show) mean windspeed vanishes at ground and

gets larger with increasing elevation (implying mean wind shear, which is largest near

ground), the covariance u′w′ normally turns out to be negative (downward-moving

parcels by definition have negative w′ and tend to carry excess streamwise momentum

relative to the mean velocity at the level considered, such that their u′ > 0; the contrary

argument applies for upward moving parcels).

In the context of a horizontally-uniform flow, we can think about friction by considering

layers of the flow. At the top (z = δ) of the hhBL the mean horizontal windspeed attains

its free stream value, say u(δ) = U∞, and by definition the Reynolds stress u′w′(δ) = 0.

Thus we have a profile u′w′ = u′w′(z) of shear stress across the hhBL, the shear stress

becoming increasingly negative as we approach ground. The quantity on the r.h.s.

of our tendency equation (2), which is the term we call “friction,” is (minus) the divergence

of the vertical momentum flux carried by unresolved scales, and it is negative. Any finite

layer of our hhBL receives (courtesy of the unresolved motion) a smaller supply

of momentum downward across its top face than it loses through its lower face

to the flow beneath (it was a nice touch to give a diagram illustrating this).

As for representation of this friction term in a weather or ocean model, one could base

things of a (simplified) budget equation for u′w′ itself, but this is fairly complex approach.

The usual approach in present day models is to invoke the eddy viscosity model, i.e. use

the representation

u′w′(z) = − K
∂u

∂z

which relates the magnitude and direction of the unresolved vertical momen-

tum flux to the mean wind shear. A strategy then has to be found to supply the

eddy viscosity K [m2 s
−1

]. Commonly K is assumed proportional to the product λ
√

k
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of a turbulence length scale and the square root of the turbulent kinetic energy k, an

approximate budget equation for the latter being included.

2. The analytic solution is θ(z) = z(z−1). The set-up for numerical solution goes as follows.

We label the four values at the gridpoints θ1...θ4. The gridlength ∆z = 1/3. We wish to

encode into a matrix the four equations:

θ1 = 1

θ1 − 2θ2 + θ3 = 2∆z2

θ2 − 2θ3 + θ4 = 2∆z2

θ4 = 0

(note the simplicity of the boundary conditions). Thus the matrix formulation of the

problem is: 


1 0 0 0
1 −2 1 0
0 1 −2 1
0 0 0 1







θ1

θ2

θ3

θ4


 =




0
2/9
2/9
0




3. What is called for here is to identify similarities and differences between these two (on the

face of it, very different) scientific descriptions of short range dispersion in the neutrally-

stratified atmospheric surface layer.

• Similarities between or common points of the two models

– rather trivially (because it is so obvious), both models are supplied the same

parameters that (correctly) characterize the meteorology of the surface layer

during PPG57, namely u∗, L and z0

– again, trivially, both models incorporate the same (correct) spatial configuration

of source and detectors

– both models neglect the effect of fluctuations u′ in streamwise velocity (some

students correctly alluded to this approximation as the assumption of “one-way

flow”)

– both advect mass alongwind at the correct local mean rate at any height, as

encoded by the mean wind profile U = (u∗/kv) ln(z/z0)

– both models prohibit any loss of material to ground

– each of the models is supplied with a flexible or disposable dimensionless constant,

the Schmidt number or the Kolmogorov constant, and in each case this is tuned

to optimize agreement with PPG57 observations
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• Differences between the two models

– in view of the noted similarities or common points, the essential factor that

distinguishes the two models is the treatment of vertical motion or vertical spread

– specifically, the Eulerian model focuses on specifying correctly the mean vertical

flux w′c′ which it models by the eddy diffusion paradigm, viz.

w′c′ = −K(z)
∂C

∂z

whereas the Lagrangian model takes the approach of mimicking a large num-

ber of (hopefully) realistic individual (and independent) trajectories. Thus its

treatment of the (Lagrangian) vertical velocity W is the key question.

• Why consistency of the two models is not accidental.

– You were given the hint to consider the effective far field eddy diffusivity implied

by G.I. Taylor’s analysis (which we had studied in class), namely

Keff = σ2
w TL . (2)

My intent and hope was that students would compare this Keff of the Lagrangian

model, with the eddy diffusivity employed in the Eulerian treatment,

K =
kv

u∗
u∗ z . (3)

– You also had formulae

TL =
2σ2

w

C0 ε

ε =
u3
∗

kv z
σw = b u∗

that, substituted into Eq. (2) above, yield

Keff =
2

C0

b4 kv u∗ z . (4)

– Now we would expect the two models to produce similar results if Eqs. (3, 4) for

the eddy diffusivity were equivalent. What would their equality imply? Equating

the two diffusivities we get the equation

1

Sc

=
2

C0

b4 , (5)

which inter-relates the model’s tuning parameters C0 and Sc.

– If you substitute C0 = 3.6 (i.e. the value we found optimal for the Lagrangian

model) into Eqn. (5), you find (since we used b = 1.3) that the Eulerian model

should match the Lagrangian model if Sc = 0.63 — exactly the value we did find

optimal
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