
EAS 471, Optional 2nd scored Cmpt’g Assignment, 2010

Lagrangian Stochastic Simulation of Short Range Dis-
persion

In an earlier computing assignment you wrote a Latlab program to calcu-

late the mean concentration field C = C(x, z) downwind from a continuous

crosswind crosswind line source at located at x = 0, z = hs = 0.46 m in

the horizontally-uniform, neutrally-stratified atmospheric surface layer. As

noted in that assignment, the field of C is the analog of the crosswind inte-

grated concentration χ = χ(x, z) due to a steady point source, and Project

Prairie Grass provided field measurements of the latter.

In this assignment we implement an alternative, Lagrangian approach to

simulate short range dispersion, in order to simulate atmospheric dispersion

as observed in these two Project Prairie Grass dispersion trials:

• Run 57: u∗ = 0.50 m s−1, z0 = 0.0058 m, |L| = ∞ (neutral stratifica-

tion).

• Run 59: u∗ = 0.14 m s−1, z0 = 0.005 m, L = 7 m (stable stratification).

L is the Obukhov length, the stratification parameter in the surface layer1.

The PPG concentration profiles are given in Table 1.

1The numerical value of L is determined essentially by the friction velocity u∗ and the
vertical flux of heat w′T ′ across the layer, viz. L = −u3

∗ T0

(
kv g w′T ′

)−1
where T0 is the

mean Kelvin temperature of the layer. However those details do not concern us here.
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The LS model

Motion in a horizontally-homogeneous atmospheric surface layer can be ad-

equately simulated by assuming the particle’s horizontal velocity equal to

the mean Eulerian velocity u(Z) wherever it happens to be located, while

its vertical velocity is random. Specifically, we shall assume particle position

(X, Z) evolves in finite steps

X(t + dt) = X(t) + U(t) dt , (1)

Z(t + dt) = Z(t) + W (t) dt (2)

where dt is the timestep. The particle’s horizontal velocity is

U(t) = u(Z(t)) (3)

while the particle’s vertical velocity W evolves in time according to 2

W (t + dt) = W (t) + dW , (4)

dW = − C0 ε(Z)

2σ2
w

W dt +
√

C0 ε(Z) dξ (5)

For each timestep the random increment dξ is evaluated as dξ = r
√

dt where

each successive value r is chosen at random from a standardized Gaussian

distribution (i.e. normal distribution with zero mean and unit variance).

Where needed the micro-meteorological properties are determined from

2This model for the vertical velocity can be proven to be the uniquely correct choice
under the approximation that vertical velocity fluctuations in the surface layer belong to
a Gaussian distribution whose variance σ2

w is height independent. This is an acceptable
approximation for the atmospheric surface layer during neutral or stable stratification.
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the following relationships, by setting z = Z (the particle’s height):

u(z)

u∗
=

1

kv

(
ln

z

z0

+ β
z − z0

L

)
, (6)

σw

u∗
= 1.3 , (7)

kv z ε(z)

u3∗
=

(
1 + (β − 1)

z

L

)
, (8)

where β = 5. The timestep must be set as a fixed proportion of the timescale,

ie.

dt = µ TL(z) (9)

where µ ≤ 0.1. The initial vertical velocity should be a random Gaussian

number with zero mean and standard deviation σw.

Numerical details

• Compute an ensemble of NP ∼ 105 (or more) random paths from the

source to a distance sufficiently far downstream from the point of obser-

vation that the trajectory can be abandoned, e.g. to X = 105 m. The

profile of mean concentration is to be estimated from the mean particle

residence times in a stack of sampling “volumes” centred on x = 100

m and having dimensions ∆x = 0.001 m, ∆z = 0.2 m. The detectors

can be indexed J and effectively, when each particle passes x = 100 m

within detector J we increment the residence time counter TJ for that

detector by the amount ∆x/U(zJ). Then when all trajectories have

been computed the mean concentration is obtained as
(

z0u∗C
kvQ

)

J

=
z0u∗
kv

TJ

NP ∆x ∆z
. (10)
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• Reflection boundary condition: Wherever a particle attains a height

Z < z0, its trajectory must be reflected according to

Z = 2z0 − Z ,

W = −W . (11)

• For each experiment, perform simulations with C0 = (1, 3.6, 10)

• In the case of PPG57, compare your Lagrangian simulations with the

outcome of assignment 3 (advection-diffusion equation)

Table 1: Normalized concentration z0u∗C
kvQ

observed at distance x = 100 m

from the source (height hs = 0.46 m) in Project Prairie Grass runs 57, 59.

z [m] Run 57 Run 59
17.5 1.5E-6 0
13.5 6.6E-6 0
10.5 1.56E-5 0
7.5 3.51E-5 0.09E-5
4.5 7.9E-5 0.26E-4
2.5 1.25E-4 1.31E-4
1.5 1.53E-4 2.19E-4
1.0 1.62E-4 2.68E-4
0.5 1.70E-4 3.00E-4
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