EAS 471 "Optional Computing Task" Jan., 2010

Linear 1D advection

Numerically integrate the linear advection equation

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+U \frac{\partial \theta}{\partial x}=0 \tag{1}
\end{equation*}
$$

on domain $-1 \leq x \leq 1$, subject to the periodic boundary condition $\theta(-1, t)=$ $\theta(1, t)$. As initial condition assume

$$
\begin{equation*}
\theta(x, 0)=\sin (\pi x) \tag{2}
\end{equation*}
$$

Specify the advecting velocity as $U=1$. Use the following explicit, upstream differencing method, viz. use the algorithm

$$
\begin{equation*}
\frac{\theta_{I}^{n+1}-\theta_{I}^{n}}{\Delta t}+U \frac{\theta_{I}^{n}-\theta_{I-1}^{n}}{\Delta x} . \tag{3}
\end{equation*}
$$

This is expected to be stable provided $0 \leq C \leq 1$, where the numerical parameter $C=U \Delta t / \Delta x$ is the Courant number.

Note that the natural timescale for this problem is $\tau=2 / U=2$, so that presumably we need a timestep $\Delta t \ll 2$. A second, artificial timescale will enter the treatment by virtue of your choice of a gridlength Δx, where as Δx is refined we have finer resolution. You should be able to examine the consequence of violating the Courant condition (which as stated above, requires $C=U \Delta t / \Delta x \leq 1$). Convey the behaviour of your solutions by presenting plots of $\theta(x)$ for several values of t that cover $t \ll \tau, t \sim \tau$, and $t \gg \tau$. The analytical solution valid at those times should also be shown.

