EAS 471, Optional 2" scored Cmpt’g Assignment, 2010

Spectral solution of the non-linear 1D advection equa-
tion
The non-linear advection equation, also known as the inviscid (frictionless)

one-dimensional Burgers’ equation! is
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Adopting the spectral method, solve this equation on —1 < x < 1, with

periodic boundary condition U(—1,¢) = U(1,t) and initial condition
U(z,0) = Up(x) = cos(mx) . (2)
Theory underlying the spectral method

The trial solution is
N
u(a,t) = Y un(t) & (3)
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where u,(t) is the (complex) amplitude of the n' wave, and note that the
u, carry the time-dependence of u(x,t). Substituting into the advection
equation, the error function is:
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!The one-dimensional Burgers’ equation
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is a time-dependent advection-diffusion equation. Here € is the viscosity, and in the inviscid
limit € — 0.




To determine the optimal coefficients w,(t), multiply the error through

by e7#P7% and integrate over the range of x, requiring
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But we have an orthogonality rule (Spiegel, Advanced Mathematics, p187)
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Exploiting this rule it can be shown that the rate of change of the coefficients
is
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This is a set of 2N + 1 coupled ordinary differential equations for the ad-
vancement in time of the complex coefficients u,(t), p = —N.....N.

Splitting the coefficients into their real and imaginary parts,

un(t) = uy (t) + juy (1) (9)
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it is straightforward to show that
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Numerical Method

The domain size (a length of 2) and the maximum initial velocity (1) imply
a timescale. The timestep At can be chosen arbitrarily — the Courant
condition does not apply since we do not discretize in x — but should be
small with respect the timescale. Pick an arbitrary number of waves, e.g. to
start off with, N = 5.

Eqns. (10) are used to advance the coefficients, e.g.
R

w(t+dt) = uli(t) + % At, (11)

and at any time the solution is constructed as
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The initial velocity field must be represented by the decomposition:
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In our chosen case we initialize with a single long cosine wave corresponding
ton = 1, ie. u(z,0) = cos(mz). Thus only the coefficient u; is non-zero
at commencement of the integration (ie. u;(0) # 0), with uff(0) = 1 and

ul(0) = 0.



