EAS 471, Optional $2^{\text {nd }}$ scored Cmpt'g Assignment, 2010

Spectral solution of the non-linear 1D advection equation

The non-linear advection equation, also known as the inviscid (frictionless) one-dimensional Burgers' equation ${ }^{1}$ is

$$
\begin{equation*}
\frac{\partial U}{\partial t}+U \frac{\partial U}{\partial x}=0 \tag{1}
\end{equation*}
$$

Adopting the spectral method, solve this equation on $-1 \leq x \leq 1$, with periodic boundary condition $U(-1, t)=U(1, t)$ and initial condition

$$
\begin{equation*}
U(x, 0)=U_{0}(x)=\cos (\pi x) \tag{2}
\end{equation*}
$$

Theory underlying the spectral method

The trial solution is

$$
\begin{equation*}
u(x, t)=\sum_{-N}^{N} u_{n}(t) e^{j n \pi x} \tag{3}
\end{equation*}
$$

where $u_{n}(t)$ is the (complex) amplitude of the $n^{\text {th }}$ wave, and note that the u_{n} carry the time-dependence of $u(x, t)$. Substituting into the advection equation, the error function is:

$$
\begin{equation*}
e(x)=\sum_{n=-N}^{N} \frac{d u_{n}}{d t} e^{j n \pi x}+\sum_{n=-N}^{N} u_{n}(t) e^{j n \pi x} \sum_{m=-N}^{N} j m \pi u_{m}(t) e^{j m \pi x} \tag{4}
\end{equation*}
$$

[^0]To determine the optimal coefficients $u_{n}(t)$, multiply the error through by $e^{-j p \pi x}$ and integrate over the range of x, requiring

$$
\begin{equation*}
\int_{-1}^{1} e(x) e^{-j p \pi x} d x=0 \quad p=-N, \ldots N \tag{5}
\end{equation*}
$$

Then

$$
\begin{align*}
0 & =\sum_{n=-N}^{N} \frac{d u_{n}}{d t} \int_{-1}^{1} e^{-j p \pi x} e^{j n \pi x} d x \\
& +\sum_{n=-N}^{N} u_{n}(t) \sum_{m=-N}^{N} \frac{j m \pi}{L} u_{m}(t) \int_{-1}^{1} e^{j n \pi x} e^{j m \pi x} e^{-j p \pi x} d x \tag{6}
\end{align*}
$$

But we have an orthogonality rule (Spiegel, Advanced Mathematics, p187)

$$
\begin{align*}
& \int_{-1}^{1} e^{j m \pi x} e^{-j p \pi x} d x \\
= & \int_{-1}^{1}(\cos m \pi x+j \sin m \pi x)(\cos p \pi x-j \sin p \pi x) d x \\
= & 2 \delta_{m, p} \tag{7}
\end{align*}
$$

Exploiting this rule it can be shown that the rate of change of the coefficients is

$$
\begin{equation*}
\frac{d u_{p}}{d t}=-\sum_{n=-N}^{N} \sum_{m=-N}^{N} j m \pi u_{n}(t) u_{m}(t) \delta_{m+n, p} \tag{8}
\end{equation*}
$$

This is a set of $2 N+1$ coupled ordinary differential equations for the advancement in time of the complex coefficients $u_{p}(t), p=-N \ldots . N$.

Splitting the coefficients into their real and imaginary parts,

$$
\begin{equation*}
u_{n}(t)=u_{n}^{R}(t)+j u_{n}^{I}(t) \tag{9}
\end{equation*}
$$

it is straightforward to show that

$$
\begin{align*}
\frac{d u_{p}^{R}}{d t} & =\sum_{n=-N}^{N} \sum_{m=-N}^{N} m \pi\left[u_{n}^{I}(t) u_{m}^{R}(t)+u_{m}^{I}(t) u_{n}^{R}(t)\right] \delta_{m+n, p} \\
\frac{d u_{p}^{I}}{d t} & =\sum_{n=-N}^{N} \sum_{m=-N}^{N} m \pi\left[u_{n}^{I}(t) u_{m}^{I}(t)-u_{n}^{R}(t) u_{m}^{R}(t)\right] \delta_{m+n, p} \tag{10}
\end{align*}
$$

Numerical Method

The domain size (a length of 2) and the maximum initial velocity (1) imply a timescale. The timestep Δt can be chosen arbitrarily - the Courant condition does not apply since we do not discretize in $x —$ but should be small with respect the timescale. Pick an arbitrary number of waves, e.g. to start off with, $N=5$.

Eqns. (10) are used to advance the coefficients, e.g.

$$
\begin{equation*}
u_{p}^{R}(t+d t)=u_{p}^{R}(t)+\frac{d u_{p}^{R}}{d t} \Delta t \tag{11}
\end{equation*}
$$

and at any time the solution is constructed as

$$
\begin{equation*}
u(x, t)=\sum_{-N}^{N} u_{n}^{R}(t) \cos n \pi x-u_{n}^{I}(t) \sin n \pi x \tag{12}
\end{equation*}
$$

The initial velocity field must be represented by the decomposition:

$$
\begin{equation*}
u(x, 0)=\sum_{n=-N}^{N} u_{n}(0) e^{j n \pi x} \tag{13}
\end{equation*}
$$

In our chosen case we initialize with a single long cosine wave corresponding to $n=1$, ie. $u(x, 0)=\cos (\pi x)$. Thus only the coefficient u_{1} is non-zero at commencement of the integration (ie. $u_{1}(0) \neq 0$), with $u_{1}^{R}(0)=1$ and $u_{1}^{I}(0)=0$.

[^0]: ${ }^{1}$ The one-dimensional Burgers' equation

 $$
 \frac{\partial U}{\partial t}+U \frac{\partial U}{\partial x}=\epsilon \frac{\partial^{2} U}{\partial x^{2}}
 $$

 is a time-dependent advection-diffusion equation. Here ϵ is the viscosity, and in the inviscid limit $\epsilon \rightarrow 0$.

