EAS 471 "Optional Computing Task" Feb., 2010

Use the relaxation method to obtain a numerical solution to the steady state heat equation

$$
\begin{equation*}
\kappa \nabla^{2} T+Q(x, y)=0 \tag{1}
\end{equation*}
$$

on the domain $-1 / 2 \leq x, y \leq 1 / 2$. Assume the thermal diffusivity $\kappa=1$, and that along the boundary condition $T=0$. Specify the source term (heating function) as the Gaussian

$$
\begin{equation*}
Q(x, y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right) \tag{2}
\end{equation*}
$$

where $\sigma=0.1$. You might enjoy experimenting with other functions. Produce a contour plot of your solution(s).

