
EAS 471 3rd Scored Assignment (20%) Due: 7 Apr. 2016

Option A: Lagrangian Simulation of Project Prairie Grass

In the Project Prairie Grass tracer gas dispersion trials (Barad, 1958; Haugen, 1959), sulphur

dioxide was released continuously from a nozzle at height z = hs = 0.46 m over a flat prairie,

and the resulting 10-min mean concentrations of gas were observed on downstream arcs

at radii x = (50, 100, 200, 400, 800) m. Here we will focus on the concentrations observed

at x = 100 m, where six 20 m towers sampled mean concentration at multiple heights,

providing sufficient information to compute the vertical profile of crosswind-integrated mean

concentration

χ(100, z) =

π∫
θ=−π

c(x, θ, z) r dθ . (1)

Earlier analyses suggest that absorption of SO2 by the dry prairie grass can be considered

negligible. We shall assume the wind statistics to be consistent with Monin-Obukhov Sim-

ilarity Theory (MOST), and that the underlying probability density function ga(w) for the

Eulerian vertical velocity is a Gaussian, with zero mean and a known standard deviation σw.

Let X(t) ≡ (X,Z) represent the coordinates of a fluid element, and U ≡ (U,W ) its veloc-

ity on the radial (i.e. downstream, x) and vertical axes. We shall perform two-dimensional

simulations of these experiments, making the approximations that (i) radial motion occurs

at the local mean cup wind speed; and (ii) the Lagrangian vertical velocity can be simulated

using the (unique) one-dimensional, first-order Lagrangian stochastic (LS) trajectory model

for Gaussian inhomogeneous turbulence.

By computing trajectories in the (x, z) plane, compute the vertical profiles of crosswind-

integrated concentration at x = 100 m for each of the Project Prairie Grass dispersion ex-

periments documented in Tables (1, 2). Compare the simulated and measured concentration

profiles graphically. More specifically, please perform a total of 7 simulations:

• Simulate Run 57 repeatedly, comparing outcomes for three values of the universal

constant C0, viz. C0 = (1, 3.1, 10) with the parameter µ = 0.1 (showing the impact of

choice of C0
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• Run a fourth simulation of Run 57 with C0 = 3.1, µ = 0.02 (showing the impact of the

choice of time step, if any)

• Simulate each of Runs (33, 50, 59) with C0 = 3.1, µ = 0.1

Each simulation should use a large enough ensemble (particle count NP ) to give statistically

reliable outcome. Before embarking on your “final” simulations, you should experiment with

increasing the particle count. A fourfold increase in NP will halve the statistical uncertainty

(irregularity) in your computed concentration profiles. (Note: Figure (2) of Wilson (2015)

gives comparable simulations of PPG runs 57 & 50.)

Further details of the LS model

Assume particle position (X,Z) evolves in time with velocity (U,W ) where

U = u(Z(t)) (2)

and where W evolves in time according to the unique, 1-d, first-order, well-mixed model for

Gaussian inhomogeneous turbulence, ie.

dW = a dt+ b dξ . (3)

Here dW is the increment in particle velocity over timestep dt (computed as indicated below),

and dξ is a Gaussian random variate with dξ = 0, (dξ)2 = dt. The conditional mean

acceleration and the coefficient b of the random forcing are:

a = − C0 ϵ(z)

2σw2(z)
W +

1

2

∂σw
2

∂z

(
W 2

σw2
+ 1

)
,

b =
√
C0 ϵ(z) , (4)

where C0 is a universal coefficient introduced by Kolmogorov, and ϵ is the turbulent kinetic

energy (TKE) dissipation.

The MO profile for the mean wind speed u is

u(z) =
u∗
kv

[
ln

z

z0
− ψm

( z
L

)
+ ψm

(z0
L

) ]
(5)
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where the function ψm(z/L) is

ψm =

{
2 ln

(
1+ϕm

−1

2

)
+ ln

(
1+ϕm

−2

2

)
− 2 atan

(
ϕm

−1
)
+ π

2
, L ≤ 0

−5z/L , L > 0 .
(6)

Wherever needed the MO function ϕm (dimensionless mean wind shear), is given by

ϕm =

{
(1− 28z/L)−1/4 , L ≤ 0

1 + 5 z/L , L > 0 .
(7)

The turbulent kinetic energy dissipation rate ϵ should be obtained from

kvz

u3∗
ϵ ≡ ϕϵ

( z
L

)
= ϕm

( z
L

)
− z

L
(8)

and the velocity standard deviation should be computed as

σw =

{
1.25 u∗ (1− 3z/L)1/3 , L ≤ 0

1.25 u∗ , L > 0 .
(9)

The timestep should be set as a fixed proportion of the following turbulence timescale

TL =
2σw

2(z)

C0 ϵ(z)
, (10)

ie. dt = µ TL(z) where µ ≪ 1. The initial vertical velocity should be a random Gaussian

number with zero mean and standard deviation σw.

Confining particles (surface reflection

Trajectories should be “reflected” about a surface zr ≥ z0 (in practise it is probably acceptable

to set zr ∼ 10z0); each time a particle moves below zr it should be “bounced” back to the

same distance above zr, and the sign of the vertical velocity that carried it below zr must be

reversed, viz.

if(Z.lt.zr) then

Z=zr+(zr-Z)

W=-W

endif
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How is mean concentration derived from computed trajectories?

Imagine a mast or vertical axis standing at distance x = 100 m downwind from the source.

Divide the vertical axis into layers of depth ∆z, which will define the vertical resolution of

your computed concentration profile. Label your layers with index J .

Each time a particle passes x = 100 m, increase the count N(J) in the layer it occupies.

When you have computed all NP independent trajectories, the ratio N(J)/NP is clearly

the probability that a single particle released at the source crosses x = 100 m in layer J .

Therefore N(J)/NP is related to the mean horizontal flux Fx(J) of particles in that layer, in

fact

N(J)

NP

=
Fx(J) ∆z

Q
(11)

where Q is the real world (physical) source strength. And since we have no horizontal

fluctuations u′ in our treatment, we have Fx(J) ≡ C(J) U(J) (the streamwise convective

flux density is entirely due to the mean velocity), and so by rearrangement

C(J)

Q
=

N(J)

NP ∆z U(J)
. (12)

Don’t make your bins too thin (∆z too small) or there will be a very small probability

of any trajectory passing through your bins... with the result that unless you release an

immense number (NP ) of trajectories, you will have a statistically unreliable (noisy, albeit

high resolution) concentration profile. Probably ∆z ∼ 0.1 m is satisfactory.
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Table 1: Normalized cross-wind integrated concentration u∗χ/Q [m−1] observed at distance
x = 100 m from the source (height hs = 0.46 m) in several Project Prairie Grass runs.

z [m] Run 57 Run 33 Run 50 Run 59
17.5 1.1E-4 1.3E-4 2.3E-4 0
13.5 4.5E-4 4.8E-4 7.1E-4 0
10.5 1.08E-3 1.17E-3 1.72E-3 0
7.5 2.42E-3 2.80E-3 3.41E-3 0.07E-3
4.5 0.55E-2 0.58E-2 0.61E-2 0.21E-2
2.5 0.86E-2 0.92E-2 0.85E-2 1.05E-2
1.5 1.06E-2 1.08E-2 0.96E-2 1.75E-2
1.0 1.12E-2 1.16E-2 1.00E-2 2.14E-2
0.5 1.17E-2 1.22E-2 1.07E-2 2.40E-2

Table 2: Micro-meteorological parameters for the above Project Prairie Grass runs.

Run 57 Run 33 Run 50 Run 59
u∗ [m s−1] 0.5 0.55 0.44 0.14
L [m] -239 -93 -26 7
z0 [m] 0.0058 0.0075 0.0033 0.005

Wilson, J.D. 2015. Dispersion from an area source in the unstable surface layer: an approx-

imate analytical solution. Q.J.R. Meteorol. Soc., 141(693), 3285–3296.
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