Disturbed micro-meteorological flows (ctd): flow around windbreaks

* basic effects observed
* elements of the theoretical description

Contours of measured relative mean wind
speed U/U, at z/h=0.5, for diagonally-incident

mean flow through the sheltered square plot
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Disturbed micro-meteorological flows (ctd): flow around windbreaks




Overview of effects of windbreak — on mean wind, turbulence, temperature...
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Overview of effects of windbreak — on mean wind, turbulence, temperature...
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Overview of effects of windbreak

Agricultural and Forest Meteorology, 48 {1089} 185-199
Elagvier Science Publishers B.V., Amaterdam — Printed in The Metherlands

THE MICROCLIMATE IN THE CENTRE OF SMALL SQUARE
SHELTERED PLOTS

J.C. ARGETE® and J.1D. WILSO0N

* same surface flux of thermodynamic
energy Q,,+Qg, ( =- pcu.T ) along with
reduced eddy diffusivity in quiet zone

results in higher Teq

* larger plot size D/H=16 places centre of
plot beyond the quiet zone... eddy
diffusivity increases in the wake zone
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Normalized difference in mean equivalent
temperature between plot centre and same
height in the open, for plot widths D/H=8
(circles) and D/H=16 (squares)
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Digression — quality of fluxes inferred from profiles

Agricultural and Forest Meteorology, 48 {1089) 185-189
Elzevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

THE MICROCLIMATE IN THE CENTRE OF SMALL SQUARE
SHELTERED PLOTS

J.C. ARGETE® and J.1D. WILSON

Q -Q,
.

* fitted MO profiles to measured profiles of
U, T, Q and inferred u*, L , and fluxes Q,,

Qe

= e measured net radiation Q* with net
radiometer and Q with soil heat flux plate




Windbreak flow: theory & observations regarding an idealized case

— infinitely long but thin porous barrier (height h or H, porosity ¢ ), aligned along y-axis

— approach flow is neutrally stratified and mean wind direction is normal to the barrier

— by symmetry, v=0 and %y =0 for any statistic

— things we’d like to be able to anticipate: spatial patterns in

:\_ﬁ M (is this strongly height-dependent?)
Uoh or Uo( 2)
o k “resistance coefficient” (defined over)
Ugy, Ui
. r z h L h Ugp I
as functionof: —, — —, — —, ¢, k,, L, P
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*  Relative windspeed curve. Why is
minimum speed not in immediate lee
of barrier? — adverse grad P

' > x/h

Why the “recovery”? —
downward turbulent
transfer of u-momentum
from the jet aloft, i.e. due
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A FIELD STUDY OF THE MEAN PEESSURE ABOUT A WINDEEEAK Wilson,

FENCE

Boundary-Layer Meteorology 85: 327-358, 1997.

0P/ 0z weak at z << H

: Mean pressure jump across windbreak:

AP ~ 50 p u?,
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4. Numerical Simulations

In Section 4 the field observations of pressure and windspeed will be compared
with numerical sumulations, 1.e., solutions of the mean momentum equations (plus
the confinuity equation, and a turbulence closure). For example the ¢-momentium
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equation 1s: /L
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J —k, u* §(z —0) s(z, H)
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(ﬁ2+ﬁ+ﬁ) +

Localized momentum sink at
x =0, z< H. Proportional to
square of speed at barrier,
and resistance coefficient k,




Governing equations — barrier parameterized as momentum sink
* presence of the barrier implies multiply-connected space; formally, need to define
flow variables as a suitable area- or volume-average

* interaction of the flow with barrier is not resolved: momentum loss has to be
parameterized
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or o2
For a natural windbreak, let a(x,z) be the “drag area Definition of “resistance coefficient” with
density” (m*) and ¢, the drag coefficient respect to a uniform stream forced through
blocking porous screen
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Earliest attempts to apply fluid mechanics to windbreak (Tani, 1958; Kaiser, 1959)

* treat windbreak as a source of mean velocity deficit Au

* treat the velocity deficit as a passive scalar that is advected by the undisturbed
wind ( %) and diffused by the turbulence (eddy diffusivity /s )

/ (kinematic pressure)

a% (@ +x¥+ﬁ) +£ (2w + u'w) :&x

neglect Solve eqgn only in downwind region.
Substitute 7 = g+ k, Au | Solution is “driven” not by this
“Perturbation inhomogeneity (ie. source term), but by

w = k?.ﬂﬁ expansion” in small an inflow boundary condition

— A — arameter k,

p = k Ap g

: 5 . 1. : _ - OAU
Neglecttermsin k- (i.e. linearize) and write u w = —K I
g OAUT ATy ou, OAp . & K OAT
" OX 0z JX 0z 0z

Further simplications; Aw = 0, 9p/dx =0, K = Ky = const., Uy = const.



Kaiser's analytical solution for mean wind speed downwind (only) of barrier

— windbreak of height h represented as collection of strip sources of momentum deficit,
each strip of width dz having strength dQ=k, u? dz

1 Au 1 h+ 2z h—=z
— — = — — |erf + erf —
kr g 2 2\/z Ko | Tg 2\ /z Ko | T
T
Do ©. 1. B, Mereprot, Soc. (1990, 116, pp. 9891004 551.511.61:351.556.2:532.54

A perturbation analysis of turbulent flow through a porous barrier

By J. D WILSON, G, E. SWATERS and F. LISTINA

x/H

Kaiser’s solution necessarily places minimum velocity at the barrier (source of momentum
deficit) — unrealistic. Contrast with later analytic solutions that retain grad P. The dashed line —
no recovery —neglects oy'w'/oz



Numerical solution — various closures

Journal of Wind Engineering and Industrial Aerodynamics, 21 (1985) 119—154
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

NUMERICAL STUDIES OF FLOW THROUGH A WINDBREAK
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JOHN D. WILSON#*

Standard numerical method
(SIMPLE), standard

_" g turbulence closures, no free "
0.6 | 3., physical parameters B =
Ullgy = 038
0.4 - ]
-' e obs
0.2 - — LRR -
Not very sensitive to closure scheme... e S B
(because flow is largely pressure driven) =By
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Bradley-Mulhearn (1983, J. Wind Eng.
Indust. Aerodyn., Vol. 15, 145 -156)

k, =2 h/z =600, |L|= oo
(h=12m, 25 =0.002m)

IClosures :

(3) LRR second order closure




Journal of Wind Engineering and Industrial Aerodynamics, 21 (1985) 119—154

N u m e r-i Cal SO I utio n Of mtm eq nS Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands
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Minimum mean wind speed occurs at about 5H downwind of the AU kr

barrier, and the fractional reduction in wind speed at that point is: U (1 +2 k )0.8
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Windbreak experiment at Ellerslie
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11 cup anemometers

8 two-D sonic anemometers

2 three-D sonic anem/thermometers (16 Hz)
wind vane

2 thermocouple ATs

34 wind signals, 4 T signals, 3 dataloggers




Mean speed... effect of stratification (L) in perpendicular flow

1392 JOURNAL OF APPLIED METEOROLOGY VOLUME 43

Oblique, Stratified Winds about a Shelter Fence. Part II: Comparison of Measurements
with Numerical Models

JoHN D. WILSON

* neutral, L <-50m
* mod. instability, -50 < L <-20 m
* extrm. instability, -5 <L <0m
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Mean speed... effect of obliquity in neutrally-stratified winds

X+

Draft: 2 Sept/03




Computed vs. observed transect - neutral, perpendicular flow...

Domain covers: -20<x/h <120, z/h<50
Resolution: _ Ax/h< 2, Az/h<0.25
Closure: Launder-Reece-Rodi or Rao-Wyngaard-Coté

Ellerslie experiment
2003 (transect at z/H=0.5)
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--=-- RWC, std. coeffts
RWC, refined grid
— RWC, std. grid
O RWC,std.grid&coeffts
== LRR, std. grid
== | RR, fine grid
® RWOC, high res. grid




Computed vs. observed transects - responses to influence of obliquity and
stratification...

Rao-Wyngaard-Coté closure on a refined grid, with k.= 1.8 tuned away from experimental
value (2.4) so that model’s “potential shelter” curve (black) matches observation...

Response to obliquity
1 Response to stratification
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Measured and modelled mean winds S/S_ in forest cutblocks (width X')

Simpler closure K=A(x,z)vk(x,z) with prescribed A and one free parameter (c,ah)

Reference speed S, is in a far-off (5 km distant) large clearing
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Measured and modelled TKE in forest cutblocks
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