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Common micrometeorological techniques for determining surface emissions
(e.g., eddy covariance, flux gradient, integrated horizontal flux) have two impor-
tant limitations. On a practical level they require substantial or complex instru-
mentation: e.g., multiple height measurements of concentration and windspeed,
fast-response concentration sensors, etc. A more fundamental problem is the
restrictions these techniques place on a measurement site. Most require a flat and
homogeneous location with a spatially extensive and uniform source. In many
situations these limitations are a problem. The difficulty may be the expense of
field equipment, the inconvenience of placing sensors in an appropriate location,
or the inability to meet site requirements. One solution might be to use surface
chambers, although this technique has other weaknesses and limitations. Another
alternative is a method based on a dispersion model.

An atmospheric dispersion model predicts the time-average tracer concen-
tration downwind of a source. By combining this prediction with a field measure-
ment of concentration, one can diagnose a source emission rate. This approach is
often called “inverse modeling,” since the goal is to deduce information about the
source from known downwind concentration, rather than the more common mod-
eling objective of deducing downwind concentration from a known source.
Inverse dispersion modeling has been applied to a broad range of problems: from
the small scale (observations at distances <10 m from the source) to the continen-
tal scale, from point sources to area sources to volume sources, from continuous
emission sources to time varying sources; and from neutrally buoyant tracers to
“heavy” pathogen spores (e.g., Wilson et al., 1982; Raupach, 1989; Carter et al.,
1993; Seibert, 1999; Aylor & Flesch, 2001).

This chapter looks at one type of application of the inverse-dispersion
method: the estimation of tracer emissions from a discrete surface area source,
using concentration observations taken near the source (within 1 km). This might
include emissions from small soil treatment plots, feedlots, ponds, landfills,
industrial grounds, etc. We focus on situations where the terrain is “tolerably”
homogeneous, and amenable to a Monin-Obukhov similarity description of the
surface winds. The advantages of the inverse-dispersion method for these prob-
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lems are experimental simplicity, the absence of limitations on the size and shape
of the source, and flexibility in the type and location of the concentration meas-
urement used to infer emissions. The accuracy of the method rests on having an
accurate atmospheric dispersion model. This chapter describes a promising
avenue for application of the inverse-dispersion method, the backward
Lagrangian stochastic technique. Three example problems are used to illustrate
this technique.

DISPERSION-MODEL-BASED METHOD

Consider the hypothetical problem in Fig. 22–1. A surface area source is
emitting a tracer with a continuous and unknown emission rate Q (kg m–2 s–1). Let
us choose a point M within the tracer plume, where the time-average tracer con-
centration above background (C) is measured. One can use an atmospheric dis-
persion model to simulate the transport of tracer from the source to M, and
predict the ratio of concentration at M to the source emission rate, (C/Q)sim. For
now, we ignore the details of this prediction. One can then infer the true emission
rate as:

[1]

This is the basis of the inverse-dispersion method: a field measurement C is com-
bined with the model prediction (C/Q)sim to give Q.

If the dispersion model accurately mimics atmospheric transport there are
no fundamental restrictions on the size or shape of the source. There also is flexi-
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Fig. 22–1. The inverse-dispersion method for estimating tracer emission rate (Q). Average tracer con-
centration C is measured at point M. A dispersion model predicts the ratio of concentration at M to
the emission rate (C/Q)sim.



bility in the location M: any point in the emission plume is acceptable in princi-
ple. Furthermore, different types of concentration measurements can be used to
diagnose Q. Any tracer quantity that can be both measured and predicted by a
dispersion model (and uniquely related to Q) can be employed. For example, a
line-average concentration CL could be substituted for C, in which case (CL/Q)sim

would be the object of model prediction. One of the example problems included
in this chapter relies on an open-path laser to measure CL.

Equation [1] is deceptively simple, for (C/Q)sim is not a trivial calculation.
Many types of dispersion models could provide this prediction (e.g., Gaussian
plume, K-theory, Lagrangian, etc.). These models have their roots in the scalar
mass-conservation equation, where the instantaneous concentration c at time t
and position (x, y, z) is given by: 

[2]

where (u, v, w) are instantaneous wind velocities in the x, y, z direction (molecu-
lar diffusivity and internal tracer source terms are ignored). But Eq. [2] must be
time-averaged, transformed, and combined with other information to give
(C/Q)sim. This operation is difficult and no uniquely correct expression for
(C/Q)sim results. Instead there are a variety of solutions, following from a variety
of simplifications, giving a variety of dispersion models. These range in com-
plexity from relatively easy-to-use Gaussian plume–puff models (but built on
unrealistic assumptions of atmospheric structure) to more rigorous large-eddy
simulation models (with a complexity that restricts their use).

Whatever the type of model used to predict (C/Q)sim, one must furnish both
the average wind and turbulence statistics of the atmosphere. This is a difficult
proposition, as wind statistics are spatially and temporally dependent; however, if
our interest is short-time intervals in the horizontally homogeneous surface layer
(height z < ~100 m, but above a plant canopy), the windflow characteristics are
reasonably well-known from a few surface observations. Monin-Obukhov simi-
larity theory (MOST) states that statistical properties of the wind are character-
ized by the surface drag and buoyancy as quantified by two scaling parameters:
the atmospheric friction velocity u* and the Obukhov stability length L (see Gar-
ratt, 1992). A complete wind description also requires the surface roughness
length z0 and the wind direction *. Modeling surface layer dispersion thus
requires only specification of u*, L, z0, and *. While their measurement is beyond
the scope of this chapter, possible scenarios are:

1. A three-dimensional sonic anemometer is used to: determine u* from
velocity fluctuation covariances; calculate L from the vertical heat flux
and u*; and measure *. The z0 can be inferred from the average wind
velocity, L, and u* (i.e., the stability corrected log wind profile can be
rearranged to give z0).

2. Windspeed and air temperature are measured at several heights. Fit-
ting these to theoretical wind and temperature profiles yields u*, z0,
and L. A wind vane gives *.
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3. A single anemometer and qualitative atmospheric observations are
used to estimate L (e.g., Pasquill, 1961; Gifford, 1976). The z0 is
inferred from the surface cover (bare soil, short grass, etc.). Then u* is
calculated from windspeed, z0, and L. A vane gives *.

An “ideal surface-layer problem” is defined as one needing only a MOST
description of the atmosphere to accurately predict (C/Q)sim. This would be the
case when the emission source and point M lie in the horizontally homogeneous
surface layer, where tracer dispersion above the surface layer was inconsequen-
tial (e.g., the source-to-M distance < ~1000 m), and dispersion within a plant
canopy can be neglected (i.e., M is well above the canopy).

There is no fundamental reason to limit the inverse-dispersion method to ideal
surface-layer problems (or surface area sources). Dispersion models have been used
successfully over continental scales, within plant canopies, around buildings, behind
fences, in forest clearings, etc. The capability to infer Q in these non-ideal settings is
an advantage of the method when compared with other techniques; however, such
problems require a more complicated treatment of dispersion, and the ability to
accurately model dispersion in complicated flows is less certain. Fortunately there
are many agricultural and environmental problems that potentially fit under the cate-
gory of an “ideal surface-layer problem.” The rest of this chapter focuses on such
cases, and highlights the simplicity of the backward Lagrangian stochastic (bLS)
dispersion model as the basis for emission inference in these problems.

BACKWARD LAGRANGIAN STOCHASTIC TECHNIQUE

The success of the inverse-dispersion method depends upon an accurate
dispersion model. To be broadly useful the model also should be easy-to-use,
even by non-specialists. The backward Lagrangian stochastic model meets these
dual objectives, having the proven accuracy of traditional forward Lagrangian
stochastic models but with greater simplicity and flexibility.

Forward LS Models

The most natural and accurate means of modeling atmospheric dispersion
is the Lagrangian stochastic (LS) approach (Wilson & Sawford, 1996). A forward
LS model mimics the trajectories of thousands of tracer “particles” as they travel
downwind of a source. Each trajectory is made up of a series of discrete changes
in particle position and velocity. The changes in position !xi (x1, x2, x3 = x, y, z:
the along-wind, across-wind, and vertical coordinates) and velocity !ui (u1, u2 , u3

= u, v, w: the along-wind, across-wind, and vertical velocities) over a model
timestep !t are calculated with Langevin equations:

[3]

where the coefficients ai and bi are functions of position and velocity, and Ri is a
Gaussian random number (from a population having zero average and variance

! !
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!t). The model timestep !t is typically of order 0.1 to 10 s (a fraction of the local
turbulence timescale).

The correct form of ai and bi in the atmosphere is an ongoing research
problem—as yet there is no uniquely correct solution for these coefficients in
multi-dimensional models; however, the solution given by Thomson (1987) for
Gaussian turbulence (i.e., probability density functions for Eulerian velocities are
Gaussian) is widely used. This solution requires specification of the time-average
Eulerian velocity statistics: the average wind velocity in each component (U, V,
W), the variance of the velocity fluctuations (�u

2, �v
2, �w

2), the velocity fluctuation
covariances (<u�v�>, <u�w�>, <v�w�>), and the turbulent kinetic energy dissipation
rate (�). In the ideal surface layer we assume the average vertical velocity W = 0,
and by placement of the y coordinate perpendicular to the average wind direction
take V = <u�v�> = <v�w�> = 0, and <u�w�> = –u*

2. If we furthermore approximate
u*, �u

2, and �v
2 as constant with height (but allow �w2 to be height dependent),

Thomson’s solution reduces to:

[4]

The stochastic coefficients are:

[5]

where C0 is a “universal” constant1. A more traditional definition is b =
(2�w

2/TL)1/2, where TL is a Lagrangian timescale (Wilson et al., 1981, give formu-
lae for TL).

The atmospheric statistics needed to implement Thomson’s solution (U,
�u

2, �v
2, �w

2, �) are reasonably well known for the surface layer if one knows u*, L,
and z0 (common formulae are given by Panofsky et al., 1977; Hanna, 1982;
Rodean, 1996, etc.). With these statistics specified, the calculation of (C/Q)sim for
location M is straightforward. Thousands of model particles are released with
uniform density across the source area, each being given a random initial velocity
consistent with U, �u

2, �v
2, �w

2 at the source location. Downwind trajectories are
calculated using Eq. [3]. A “sensor volume” is placed around M, and the particle
residence time in this volume gives (C/Q)sim (see Flesch et al., 1995).
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1Reported values of C0 range between 2 and 9. Wilson et al. (2001) found C0 � 4.5 gave LS model
agreement with experimental data (for traditional parameterizations of �w and �).
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Backward LS Models

The “backward” LS approach is a particularly efficient way of determining
(C/Q)sim for surface area sources (Flesch et al., 1995). In a backward LS model
(denoted bLS) the upwind trajectories of tracer particles are calculated from point
M (Fig. 22–2). Only a slight modification of the above Langevin model is needed
to transform the forward model to a backward model: the time increment !t will
now be negative, and the negative sign of the first term on the right-hand side of
each a coefficient (the “fading memory” terms in Eq. [4]) is reversed.

The important information in an ensemble of backward trajectories origi-
nating from M is the location (x0, y0) where particles impact the ground (“touch-
downs”)2, and the vertical “touchdown velocity” at impact, w0. The calculation of
(C/Q)sim focuses on the touchdowns within the source boundary:

[6]

where N is the total number of particles released from M, and the summation cov-
ers only touchdowns within the source. The summation in Eq. [6] is the equiva-
lent residence time of particles inside the source “volume” (i.e., for an
infinitesimally thin source layer), a quantity that corresponds to the average con-
centration “in” the source. So the concentration at point M due to an area source
can be alternatively calculated as the average concentration “within” the area
source due to a release of tracer from M—using a properly calculated set of back-

C Q
N w

/( ) = 'sim

1 2

0

Fig. 22–2. Illustration of the bLS technique for estimating tracer emission rate (Q). Average concen-
tration C is measured downwind of the source, with u*, z0, L, and * determined from wind meas-
urements. Backward (upwind) trajectories are calculated using a bLS model. The ratio (C/Q)sim is
calculated from trajectory “touchdowns” inside the source.

2LS models do not resolve the atmosphere below a reflection height zr. This height is referred to as
the ground, but it may be significantly above ground. When a model particle crosses below zr (i.e., a
touchdown) it is reflected back into the resolved atmosphere.



ward trajectories. Hereafter the term “bLS technique” will refer to the implemen-
tation of the inverse-dispersion method with this bLS calculation.

An attraction of the bLS technique is the ease with which complex source
shapes can be handled. After creating an ensemble of touchdowns, all that is
required is a method of separating those inside and outside the source. Flesch et
al. (1995) also found that backward models are generally more efficient than for-
ward models for simulating short-range dispersion from an area source (i.e.,
fewer model particles needed). A more substantial advantage is the ability to pre-
run the dispersion model without knowledge of the eventual source geometry (for
a horizontally homogeneous atmosphere). An important consequence of a simple
MOST parameterization of the wind field (with U, �u, �v, �w, and � scaled on u*)
is that the bLS touchdown field (x0, y0, w0/u*) has generality:

1. x0 and y0 are independent of windspeed (for given L, z0, and release
height zm);

2. x0 and y0 can be horizontally translated to different M locations;
3. x0 and y0 can be rotated with changing wind direction;
4. w0/u* is independent of windspeed (for given L, z0, and zm).

Thus, for a given z0, L, and zm, a single touchdown catalog (x0, y0, w0/u*)
provides the solution to any future problem. A set of catalogs can be calculated in
advance, and later mapped onto a particular problem geometry, so that (C/Q)sim

can be calculated from touchdowns occurring within the source.

Using a Line-averaging Concentration Sensor

An advantage of the inverse-dispersion method is flexibility in the type of
concentration measurement used to deduce Q. For instance, an open-path laser
can measure line-average tracer concentration (CL) along an atmospheric path.
The bLS technique can be modified to predict (CL/Q)sim. For a horizontal path this
is done easily, by simulating CL as the average of many point measurements equi-
spaced along the path, and repeatedly translating the touchdown catalog to these
points along the path.

Using a line-averaging sensor has the potential to reduce error in the inverse-
dispersion method. Consider a small area source emitting tracer, with a laser posi-
tioned downwind of the source and having a long path perpendicular to the wind
(completely traversing the plume by a large margin). Here the value of CL is inde-
pendent of the lateral spread of the plume: the tracer mass in the path is independent
of the y position of the tracer elements. The predicted (CL/Q)sim will be similarly
insensitive to the modeled lateral dispersion, and insensitive to model errors. This is
an important consideration, as modeling horizontal dispersion is more error prone
than modeling vertical dispersion. This is due to the greater, and less predictable,
range of turbulent scales dispersing material in the horizontal. The use of line-aver-
age concentration observations can therefore be beneficial for the inverse-dispersion
method.

Potential Errors

The accuracy of the bLS technique in diagnosing an emission rate (QbLS)
depends upon: (i) accurate field measurements of concentration; (ii) accurate
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meteorological measurements; (iii) an accurate map of the tracer source and sen-
sor; (iv) having no additional tracer sources immediately upwind of the source of
interest; and (v) accuracy in the bLS dispersion model. A brief discussion of
some of these errors follows.

Errors in C

Errors in the QbLS are proportional to errors in C: a 10% error in C will
result in a 10% error in QbLS.

Errors in u*, L, and z0

Errors in these meteorological parameters will result in remove incorrect
wind statistics in bLS model. It is difficult to generalize the effect of these errors
on QbLS, as this depends on the size and location of the source (some M locations
will have very large sensitivity to these errors, while other locations will not).

Location of Meteorological Observations

Values of u*, L, z0, and * should be representative of the atmosphere over
the site. In horizontally homogeneous terrain the measurement location is not
critical. But if the bLS technique is applied to somewhat inhomogeneous situa-
tions (but not so seriously non-uniform as to render QbLS unusable), then there is
an evolution of windflow over the terrain, and ambiguity in the proper measure-
ment location (an intuitive choice would be between the tracer source and point
M). An example of this problem is given in Wilson et al. (2001) for a lagoon
source.

Appropriate Measurement Intervals

Measurement intervals (for C, u*, etc.) should be consistent with the inter-
nal bLS description of the atmosphere: traditional MOST formulae built from 15
to 60 min average wind statistics. The proper measurement interval should there-
fore be 15 to 60 min; however, intervals as short as three minutes (Flesch et al.,
1995) and as long as 4 h (Flesch et al., 2002) have been used.

Accurate Problem Map

For most problems an accurate map of the source-sensor layout is crucial,
as (C/Q)sim depends on the distance and direction of point M from the source, the
source dimensions, and wind direction (the exception is when point M is inside a
large source). This demands an accurate problem map. A handheld global posi-
tioning system (GPS) unit is an ideal tool for this task.

No Additional Nearby Tracer Sources

Distant tracer sources, which cause an essentially uniform background con-
centration Cb over the landscape, are not a problem. Then C is just the average
concentration above background. A more difficult problem arises with nearby
sources (how near depends on problem geometry). Then there is an intermingling
of evolving tracer plumes, which confounds the apportionment of tracer to any
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one source. In theory, allocating tracers to multiple sources is possible, but it
requires multiple concentration measurements (at different locations) with the
potential for very large uncertainties.

Inaccuracy in the bLS Model

For uniform terrain and typical daytime conditions there is little doubt as to
the overall accuracy of LS dispersion models (Wilson & Sawford, 1996); how-
ever, there is inherent uncertainty in any dispersion model calculation. Model
predictions represent the hypothetical average of many tracer releases, all made
under identical conditions. The stochastic variability that exists in any one release
is not represented. Therefore it is unrealistic to expect a one-time inference of Q
to be better than perhaps ±10%, even with perfect knowledge of the wind statis-
tics (similar uncertainties exist in other micrometeorological techniques). And of
course there is never perfect knowledge of the wind statistics, so there is addi-
tional variability in QbLS due to variability in atmospheric statistics about the
average represented by the MOST formulae. More significant errors should be
expected during periods of extreme atmospheric stratification or rapid atmos-
pheric transitions (e.g., sunrise), given the likely inapplicability of MOST (Gar-
ratt, 1992). Model accuracy also will depend on the position of M. The bLS
model will more accurately predict (C/Q)sim near the plume centerline than at the
plume edge (where plume characteristics are defined by the more extreme, and so
less predictable, tracer paths).

USING THE BLS TECHNIQUE: CASE STUDIES

The following three examples illustrate application of the bLS technique.
In the first two examples the emission source is in flat and open terrain, and the
vegetation was short or nonexistent. These can readily be classified as “ideal
surface-layer problems.” The third example takes place in a more complex set-
ting, around a hog-waste lagoon, where care must be taken to ensure an ideal
surface-layer environment.

A computer program was designed to simplify application of the bLS tech-
nique in these problems. It combines a MOST bLS model (see Flesch et al.,
1995) with a GIS-type interface. The user draws the emission source and concen-
tration sensor on a map, and enters C and the atmospheric conditions (z0, L, *). In
the present applications the windspeed S at height zm was used as an input, with
u* calculated internally based on S, z0, and L. The appropriate touchdown catalog
(for the given L, z0, and zm) was either created ab initio by running the Lagrangian
model or selected from a previously created “library” of catalogs, and then over-
laid onto the map. Touchdowns within the source were identified and used to cal-
culate QbLS.

Chemical Evaporation from a Small Area Source

Flesch et al. (1995) described an experiment where the bLS technique was
used to calculate Q from a small surface source. Volatile chemicals were applied
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to create rectangular sources of either 24 × 16 m, 48 × 16 m, or 100 × 25 m.
Chemical concentration and winds were measured near the downwind edge of
these sources, across intervals from 0–3 to 210–300 min after contamination. The
QbLS predictions were based on windspeed S and concentration C measured at zm

= 1 m. The experiments took place in near-neutral stability over an expansive
shortgrass plain (z0 � 0.025 m).

The first step was to create a problem map (see Fig. 22–3). Then a touch-
down catalog was created, using 15 000 model particles, z0 = 0.025 m, and neu-
tral stability. For each C observation this catalog was rotated to the proper wind
direction, overlaid on the problem map, and QbLS was calculated from touch-
downs in the source (Fig. 22–3). Independent estimates of Q were given by inte-
grated horizontal flux (IHF) measurements (see Denmead & Raupach, 1993).
Vertical profiles of C and S at the downwind edge of the source gave:

[7]

where D is the along-wind source length. Eq. [7] neglects the turbulent flux of
tracer past the sensor array, likely resulting in QIHF overestimating Q by about
10% (Wilson & Shum, 1992).

Figure 22–4 shows evolution of emissions from one of the experiments.
Notice the rapid decrease in emissions as evaporation proceeded. The bLS esti-
mates tracked QIHF closely. In this example QbLS was initially smaller than QIHF,
but this bias disappeared over time. Perhaps the early bias was due to an inade-
quate averaging times (as short as three minutes). A comparison of QbLS and QIHF

over all experiments showed excellent agreement: an overall 2% bias in the QbLS

predictions (although QIHF overprediction was ignored), with a 15% scatter in
individual predictions.
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Fig. 22–4. Time evolution of tracer emission rate (Q) from one chemical evaporation experiment as
estimated by the IHF mass balance technique and the bLS technique.



This problem also provides an opportunity to examine the sensitivity of
QbLS to various measurement errors. Table 22–1 lists the fractional change in QbLS

for changes in input variables (for neutral stability and southerly winds)3. For
example, if z0 is increased 50% while other variables are unchanged, QbLS

decreases 3%. Here the bLS estimates are insensitive to an overestimate of z0.
There also is low sensitivity to atmospheric stability, to minor changes in wind
direction, to the size of the source, and to the x,y position of C. Overall this prob-
lem is insensitive to measurement errors (at least for a southerly wind), indicating
a good measurement location.

The small tracer source in this example shows one major advantage of the
bLS technique: the ability to examine sources that are too small to quantify with
more common micrometeorological techniques. This study also showed that in
an ideal setting (horizontally homogeneous terrain) the bLS technique should
predict Q to within approximately 20% for individual one-time estimates, with
greater accuracy for multi-observation averages.

Pesticide Volatilization from a Large Field

Flesch et al. (2002) used the bLS technique to estimate pesticide volatiliza-
tion (metolachlor) from a bare field after a surface application. Average meto-
lachlor concentration was measured at several heights near the center of the field
and used to calculate QbLS. The field was large and located in flat and open terrain
in central Iowa.

The site layout, with an example of an overlaid touchdown catalog, is given
in Fig. 22–5. Profiles of windspeed S and a sensible heat flux observation gave the
meteorological information needed to run the bLS model. Nineteen observation
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Table 22–1. Fractional change in bLS estimates of Q (�QbLS/QbLS) to changes in measurement vari-
ables for the three example problems presented in this chapter. The additional Case 4 is the lagoon
experiment using a different concentration measurement height zm.

�QbLS/QbLS

Variable Change Case 1† Case 2† Case 3† Case 4†

S increased 10% 0.1 0.1 0.1 0.1
C increased 10% 0.1 0.1 0.1 0.1
z0 increased 50% –0.03 0.06 –0.1 –0.07
z0 decreased 50% 0.18 –0.07 0.18 0.13
L = –10 m 0.13 0.45 –0.24 –0.09
L = + 10 m 0.08 –0.3 0.61 0.2
Source dimensions increased 10% –0.09 –0.05 –0.22 –0.2
C moved 1 m downwind –0.05 –0.004 –0.07 –0.06
zm increased 10% 0.13 0.06 0.21 0.04
* increased 10° –0.02 –0.01 –0.08 –0.07

†Case 1, (small rectangular source): L = �, * = 180°, zm = 1.0 m, z0 = 0.025 m; Case 2 (large field
source): L = �, * = 180°, zm = 1.05 m, z0 = 0.008 m; Case 3 (lagoon): L = �, * = 270°, zm = 1.4 m,
z0 = 0.005 m; Case 4 (lagoon): identical to Case 3, but with zm=1.0 m.

3 Some of these results are specific to the particular procedure used to implement the bLS analy-
sis. For example, errors in z0 result in errors in u* (because u* is calculated fron S, z0, and L). A pro-
gram that takes u* as an independent input will show different sensitivity to z0.
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periods were used to calculate QbLS, using touchdown catalogs with the appropri-
ate L for each period. It is interesting to compare the example touchdown catalog
in Fig. 22–5, which is for unstable atmospheric stratification, with the neutral cat-
alog in Fig. 22–3 (keeping in mind the very different map scales). Greater turbu-
lence in an unstable atmosphere results in a catalog that is broader in the
crosswind direction, denser near the sensor (more rapid vertical mixing gives a
measurement “footprint” nearer the sensor), and that extends slightly upwind.

Integrated horizontal flux measurements (QIHF) were made near the edge of
the field (Eq. [7]) to compare with QbLS; the QIHF estimates here having been
reduced to account for the neglected turbulent flux. The ratio QbLS/QIHF averaged
1.06 (Fig. 22–6) indicating an average bLS overprediction of 6%; however, the
variability between observations was high, with QbLS/QIHF ranging from 0.4 to
1.95. Flesch et al. (2002) attribute some of this variability to measurement uncer-
tainty in C. The long measurement intervals used in this experiment (either 2 or 4
h) may also have contributed to large uncertainties: as the sampling interval
increases the assumption of atmospheric stationarity becomes less realistic. For
instance, if * is changing during an interval the C “footprint” (the ground area
from which tracer emissions influence measurement—given by the touchdown
map) will be broader than predicted by a bLS simulation that assumes a constant
*. The longer the measurement interval, the greater the potential for departure
from stationarity, and the greater the likelihood of inaccuracy in the MOST statis-
tics used in the bLS model.

The sensitivity of the bLS estimates to measurement errors in this problem
can be deduced from Table 22–1 (for southerly winds, neutral stability, zm = 1.05
m). For example, if L is changed to –10 m (a strongly unstable atmosphere) while
other variables are unchanged, QbLS increases 45%. We therefore conclude the
bLS estimates are sensitive to atmospheric stability errors; however, there is low
sensitivity to other errors: z0, source size, C location, and wind direction. This is
different from the previous example, where QbLS was sensitive to C measurement
location errors, but not atmospheric stability.

Fig. 22–6. Ratio of metolachlor emission rates from bLS and IHF measurements (QbLS/QIHF) for a
series of 2- and 4- h periods. The observations span 5 d and are presented in chronological order
(but not continuous). Error bars are the standard deviation of five simultaneous bLS estimates
using C taken at five measurement heights.



This is a much larger scale problem than the previous example, for here the
field dimensions are hundreds of meters. This means that other micrometeorolog-
ical techniques, such as flux-gradient methods, could be used to determine Q. In
this case, however, the choice of the bLS technique might be still be attractive
because of the simplicity of the needed field measurements.

Ammonia Emissions from a Hog Waste Lagoon

Dzikowski et al. (1999) estimated ammonia emissions from a hog waste
lagoon using the bLS technique. The lagoon was approximately 2800 m2 in size
and was surrounded by a low grass-covered berm (Fig. 22–7). The lagoon surface
was approximately 1 m below the top of the berm, which gently fell away to the
surrounding stubble field (1 to 2 m below the berm top). An open-path laser sen-
sor was used to measure line-average ammonia concentration (CL) across the
lagoon, 1.4 m above the liquid surface.

Windspeed and temperature profiles were measured on the low berm to
determine S, z0, L, and * (from a wind-vane). Lagoon emissions were estimated
during a 52-h period, broken into 30-min intervals. Touchdown catalogs corre-
sponding to the proper L for each interval were rotated to the proper * and trans-
lated to equi-spaced measurement points along the laser path. The example
touchdown catalog in Fig. 22–7, which is for stable atmospheric stratification, is
visually different from the unstable catalog in Fig. 22–5. Because of the lower
turbulence in this stable atmosphere, the catalog is much narrower in the cross-
wind direction (as can be deduced by inspection of the touchdown cloud where it
spreads away from the ends of the line sensor) and the nearest touchdown points
are seen to be much further from the sensor (reduced mixing means that source
material passing through the sensor must come from a larger distance upwind).

North or easterly winds put the lagoon downwind of the barns and fence,
which would presumably “disturb” the winds over the lagoon, and invalidate a
MOST wind description. Wind from those directions also would bring ammonia
from the hog barns over the lagoon, violating the assumption of a single ammonia
source. Therefore, only periods with * from 135 to 315° were used to calculate
QbLS (the aerodynamic effect of obstacles does not propagate very far upwind).
Such selectiveness is recommended at complex sites4. Only 34% of measurement
periods had wind directions that allowed “good” QbLS estimates (Fig. 22–8).
Dzikowski et al. (1999) then used other information to fill-in the missing gaps.

How accurate were the predictions? A mass balance technique based on the
IHF (McGinn & Janzen, 1998) was used to independently estimate emissions
(QIHF), and there was a single period of overlap between the bLS and IHF esti-
mates. A four-hour QIHF measurement was compared with five half-hour QbLS

measurements over the same interval. Here the average QbLS was 79% of QIHF. If
QIHF is reduced 10% to account for turbulent flux, then the bLS estimate was
within 15% of the IHF estimate. This was surprisingly good agreement, consider-
ing the bLS and IHF estimates relied on two different approaches for measuring
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4When faced with a complex site there are three possibilities: (i) either select periods where
MOST is likely upheld; (ii) use all observations but accept larger uncertainties in QbLS; or (iii) use a
more sophisticated dispersion model that incorporates the true windflow complexity.
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ammonia concentration (a salicylate technique versus an open-path laser), and
the measurement footprints of the two estimates corresponded to different por-
tions of the lagoon.

The sensitivity of the bLS estimates to measurement errors for this case is
deduced from Table 22–1 (for westerly winds and neutral stability). For example,
if the lagoon dimensions are increased by 10% while other parameters are
unchanged, QbLS will decrease by 22%. Here the bLS estimates are sensitive to
errors in the mapping of source and sensor. Unlike the previous examples, the
inferred QbLS is sensitive to most measurement variables, including z0, L, sensor
location, and wind direction. Why the greater sensitivity? The CL observations in
this case were nearer the upper edge of the tracer plume, a location where
(CL/Q)sim is very sensitive to atmospheric conditions and changes in the source
location. A better choice would have been to decrease the laser height zm to 1.0
m, which would significantly reduce this sensitivity (Table 22–1).

This lagoon was not an ideal surface-layer site. The surrounding berm
surely altered the wind and turbulence around the lagoon. The lagoon itself, a
smooth liquid surface warmer or colder than the surrounding ground, would also
act to modify the ambient aerodynamics. Yet from this short period of intercom-
parison, it would seem that the bLS technique does estimate emissions quite well.
Apparently the departures from ideal MOST conditions were insignificant with
regard to QbLS predictions. This implies a robustness in MOST wind statistics
despite topographic variations, and an insensitivity in tracer transport to disturbed
surface aerodynamics.

SUMMARY

The inverse-dispersion method overcomes some of the limits of traditional
micrometeorological methods for estimating tracer emissions. It allows the deter-
mination of Q without restrictions on the size and shape of the source, with less
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Fig. 22–8. Ammonia emission rates (Q) from the hog waste lagoon. The bLS estimates were made
during suitable wind directions (barns downwind of the lagoon), and these data are indicated by
circles. At other times Q was estimated using a statistical model based on the surrounding QbLS

estimates. The short solid line on September 2 gives an IHF estimate of Q during one 4-h period.



onerous instrumentation requirements, and with considerable freedom in choos-
ing convenient measurement locations. Furthermore the method can be easily
adapted for use with line-average concentration sensors (i.e., open-path lasers),
which not only are convenient but also provide for more accurate inference of
emissions. The bLS technique described in this chapter is one implementation of
the method. Besides the accuracy of the underlying bLS dispersion model, its
advantage is the simplicity of application for ideal surface-layer problems
(homogeneous sites where MOST accurately describes the windflow). Based on
the examples given in this chapter, and on the results of other experiments (e.g.,
Denmead et al., 1998; McGinn & Jansen, 1997; Flesch et al., 2004), the tech-
nique is as accurate as other alternative methods.

The simplicity of the bLS technique depends on having a site where MOST
is upheld. While more sophisticated dispersion models can be invoked for cases
involving non-ideal settings, and Q inferred for such problems, the simplicity of
application is lost. Fortunately many agricultural and environmental problems
meet the requirement that MOST give a reasonable picture of the winds, at least
loosely. An important research question is how far can one move away from an
ideal surface-layer problem, yet retain the accuracy of a simple bLS technique
based on MOST? The theoretical study of Wilson et al. (2001) looked at this
issue in a lagoon setting, where the aerodynamic environment evolves as the
wind moves from the surrounding upwind land surface to a smoother and
warmer–cooler lagoon surface. They found that bLS estimates of Q from the
lagoon, inferred with a MOST bLS model, were relatively insensitive to the aero-
dynamic modifications induced by the lagoon. This is encouraging, as it suggests
robustness of the technique. And a preliminary field study by Flesch et al. (2005)
found that even for a tracer source in a dramatically “disturbed” aerodynamic
environment (a source surrounded by a fence), it was possible to use the simple
bLS method to accurately infer emissions by avoiding measurement locations
near the source of the wind disturbance (i.e., the fence).

The bLS technique is just one of many possible implementations of the
inverse-dispersion method for inferring emissions. It has the advantage that,
when applied to situations where MOST is upheld, or the departure from MOST
is minimal, it is both easy to use and demonstrably accurate. Irrespective of the
bLS technique, inverse-dispersion methods for calculating emissions will
become increasingly important. The need to evaluate emissions from complex
sites where traditional methods cannot be applied, along with the increasing
capability of dispersion models and wind flow models, guarantees this will be the
case.
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