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ABSTRACT

Katul and Chang recently compared the performance of two second-order closure models with observations
of wind and turbulence in the Duke Forest canopy, noting that such models ‘‘alleviate some of the theoretical
objections to first-order closure.’’ This paper demonstrates that, notwithstanding those (valid) theoretical objec-
tions, Duke Forest wind simulations of comparable quality can be obtained using a first-order closure, namely,
eddy viscosity K } l , where k is the turbulent kinetic energy and l is a turbulence length scale. It is concludedÏk
that, most often, uncertainty in the drag coefficient will limit the accuracy of modeled wind statistics, regardless
of the turbulence closure chosen.

1. Introduction

As a precursor to rational scientific treatment of many
forest processes, such as aerial spray dispersion or the
spread of pollen or plant pathogens, profiles of mean
horizontal wind velocity and turbulence statistics (e.g.,u
component wind velocity variances , , and ) need2 2 2s s su y w

to be known. Furthermore these statistical properties of
the wind modulate the relationship between the mean
properties of the airstream (e.g., humidity and carbon
dioxide concentration) and the rates of emission/ab-
sorption by the vegetation (leaf transpiration and pho-
tosynthesis). Thus atmosphere–forest interactions are of
great importance in such fields as agronomy and for-
estry.

Dynamical models for wind in a ‘‘horizontally uni-
form’’ plant canopy, in which by definition flow statis-
tics may vary with the height z but not along the hor-
izontal coordinates, are based on a mean streamwise
momentum equation,1

]u9w9 ]p25 2C au 2 , (1)d]z ]x

where is the mean vertical flux of streamwise mo-u9w9
mentum (Reynolds stress), Cda 2 parameterizes drag onu
plant parts [Cd 5 Cd(z) is the drag coefficient, a 5 a(z)

1 For a derivation see Wilson and Shaw (1977) or Raupach and
Shaw (1982). In simplifying to obtain Eq. (1) we assumed the dis-
persive momentum flux to be negligible.

Corresponding author address: J. D. Jean-Paul Pinard, Department
of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building,
University of Alberta, Edmonton, AB T6G 2E3, Canada.
E-mail: jpinard@ualberta.ca

is the leaf area density], and ] /]x is (any) streamwisep
gradient in kinematic pressure. Wind models are distin-
guished as being of first- or second-order closure, ac-
cording to their means of providing the Reynolds stress
in Eq. (1).

Seeking ‘‘a practical framework for computing need-
ed velocity statistics for modeling scalar transport,’’ Ka-
tul and Chang (1999, hereinafter KC99) compared two
second-order closure models (Wilson and Shaw 1977,
hereinafter WS77; and Wilson 1988, hereinafter W88)
with measured winds in the Duke Forest of North Car-
olina. They concluded that WS77 produced a slightly
better mean velocity profile but a worse standard de-u
viation profile su than did W88 and that the modeled
third moments were inconsistent with measurements.
Our point of departure with respect to KC99 is that,
whereas these authors sought to establish which was the
better second-order model of the two they compared,
they did not enquire whether a first-order closure might
have been comparably suitable. In raising this question,
we do not dispute the logical superiority of second-order
closures or overlook their promise to partition the tur-
bulent kinetic energy k 5 1/2( 1 1 ) into its2 2 2s s su y w

components ( , etc.); we merely wish to highlight am-2s w

biguities or uncertainties common to both approaches
(e.g., optimal closure constants, means of providing the
drag coefficient) and query whether these imply that the
vaunted superiority of second-order closure is incon-
sequential. Thus our goal is to establish whether there
is any striking gain in accuracy of modeling the first
and second velocity moments when the more complex
approach (second-order closure) is taken.

In what follows, we briefly review an existing first-
order closure model for canopy flows (that of Wilson
et al. 1998, hereinafter WFR98) and our numerical
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FIG. 1. The plot for (finite-difference based) Cd(z) is highly variable
and shows how sensitive it can be to noise in the shear stress gradient.
The calculated (polynomial based) drag coefficient Cdp(z) is negative
at the ground and positive above z 5 2 m. The value for the height-
averaged drag coefficient , which is the same for both our cal-Cd

culation and that of KC99, is shown for comparison.

method for solving it. In section 3, we discuss the de-
termination of the drag coefficient from measurements.
In section 4, we compare our own simulations of the
Duke Forest winds with the observations and simula-
tions of KC99.

2. A first-order closure model for wind in a
uniform canopy

A balance between the divergence of the mean ver-
tical flux of streamwise momentum and drag on plant
parts controls the airflow within a uniform canopy [Eq.
(1)]. In a first-order (or ‘‘flux-gradient’’) closure, tur-
bulence is approximated as being equivalent to an in-
creased viscosity of the fluid; that is, the shear stress is
modeled as 5 2 K(] /]z 1 ] /]x), where theu9w9 u w
eddy viscosity K is determined by the flow itself. Our
present assumption of a uniform canopy eliminates the
term in mean vertical velocity.

Higher-order closures, such as those exploited by
KC99, use the Navier–Stokes equations to obtain exact
governing equations for and other turbulence sta-u9w9
tistics—equations that are subsequently simplified so as
to attain closure (as many equations as unknowns).
Many mechanisms are thereby resolved exactly, for ex-
ample, the shear production (] /]z) and advectionu9w9 u

(] /]x) of u variance; other mechanisms have to be2u u9
approximated (for example, the triple moments u9u9u9i j k

are often assumed to be fluxes driven by spatial gra-
dients in ). Substitution of a higher-order closureu9u9i j

for a first-order closure is a step in the direction of
greater rigor. However, both types of models require
empirical inputs that are somewhat uncertain (e.g., the
drag coefficient), and it is our contention and the point
of this paper that for many purposes the first-order clo-
sure model will be sufficient.

a. Equations determining the eddy viscosity

Our calculations will use the first-order closure of
WFR98, who parameterized the eddy viscosity as K 5
l(z) , where l(z) is an algebraic length scaleÏc k(z)e

(defined below); ce is a (fairly well known) quasi con-
stant, giving the equilibrium shear-stress: turbulent ki-
netic energy (TKE) ratio ( /k0) immediately above the2u 0*
canopy; and k is the TKE, calculated from a simplified
transport equation

]k ]u ] ]k
5 0 5 2u9w9 1 mK 2 «. (2)1 2]t ]z ]z ]z

Here we neglect buoyant production, because our cal-
culations pertain only to the case of neutral stratification.
The effective diffusion coefficient for TKE, mK, is pro-
portional to the eddy viscosity, and, as in WFR98, we
set m 5 0.2. The viscous dissipation is written as « 5
max(«cc, «fd), where «cc 5 (cek)3/2/l and «fd 5 aCda k.u
The term «cc balances shear production of TKE in the

local equilibrium layer far above the canopy (and is the
standard parameterization for viscous dissipation). The
form drag «fd represents conversion of resolved TKE to
small, rapidly dissipated ‘‘wake scales,’’ and the closure
constant a was reasoned by WFR98 to be approximately
equal to 1.

Crucial to the WFR98 closure is the specification of
the length scale l, which is characterized as the max-
imum of inner and outer length scales

1 1 1
5 1 , and (3a)

l k z li y c

1 1 1
5 1 . (3b)

l k (z 2 d) Lo y `

Here ky 5 0.4 is the von Kármán constant and d is the
displacement height (usually set as 2/3 of the canopy
height hc). The outer scale l0 recognizes the flow dis-
placement by the canopy and, for the case of a wind-
tunnel experiment, a finite limiting value L`. The inner
scale l i recognizes the limitation on eddy size due to
proximity to ground and the presence of the canopy,
which is felt through an upper limit lc to the inner length
scale:

21
]u

l 5 cÏk(h ) . (4)c c 1 2]z
hc
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TABLE 1. Parameters of the Duke canopy experiments.

Property Symbol Value

Canopy height hc 14.0 m
Model height Lid 10hc

Bulk drag parameter calcu-
lated in section 3c

Cdb 5 Cd ahc 0.34

Height-averaged drag coeffi-
cient from section 3b and
as KC99

Cd 0.2

Displacement height d/hc 0.67
Equilibrium variances as giv-

en by KC99
su,y ,w/u*0 2.08, 1.86, 1.22

Closure coefficients c, a, m 1.0, 1.0, 0.2
Limit to length scale L` 1.5
Grid points/iterations 100/100

Equation (4) is based on the suggestion of Raupach et
al. (1996) that the strength of the wind shear at the
canopy height is critical to eddy transport within a can-
opy; WFR98 determined that the closure constant c is
approximately equal to 1.0. Numerous other formula-
tions of the eddy viscosity within and above a plant
canopy have been suggested. The current one has been
tested over a wider variety of uniform canopy flows than
most and has been shown to perform very well for dis-
turbed winds in forest clearings (Wilson and Flesch
1999).

b. Partitioning TKE into its components

An advantage in principle of a second-order model
is its ability to partition the TKE into its components
( , , ) and thus to make specific predictions of2 2 2s s su y w

flow statistics vital to canopy transport—especially
sw(z), which is a necessary input to Lagrangian sto-
chastic dispersion models such as have recently been
used to infer canopy source/sink strengths (e.g., for car-
bon dioxide) from measured concentration profiles. The
K}l closure does not offer this information, and theÏk
best one can easily do is to assume constant partitioning
ratios /k 5 , /k 5 , and /k 5 . The2 2 2 2 2 2s g s g s gu u y y w w

partitioning constants satisfy 1 1 5 2 and2 2 2g g gu y w

allow us to write su/u* 5 g u/ , and so on, whereÏce

u* is friction velocity. Note that the analytical second-
order closure of Massman and Weil (1999) likewise as-
sumed ‘‘that , , are each proportional to (k) and2 2 2s s su y w

that the proportionality constants are the same as those
at the canopy top.’’

c. Numerical method used to implement the K-theory
model

Discretization equations are formulated following the
approach of Patankar (1980). The governing equations
are integrated across a control layer spanning height
range s # z # n to yield a ‘‘neighbor equation,’’ linking
velocity at the Jth grid point to its values above (J 1
1) and below (J 2 1). Our momentum equation, closed
using K theory, upon such integration gives

n
]u 22K 5 2DzC u , (5)J J[ ]]z s

where CJ is the product of the drag coefficient and area
density (see section 3). The momentum fluxes across
the north (n) and south (s) faces are evaluated as

]u u 2 uJ11 JK 5 K ,n1 2]z Dz
n

]u u 2 uJ J21K 5 K , (6)s1 2]z Dz
s

and the resulting neighbor equation for velocity is

]pm m mu u u2A u 1 A u 2 A u 5 Dz 2 , (7)n J11 c J s J21 1 2]x
J

where 5 Kn/Dz, 5 Ks/Dz, 5 1 1u u u u uA A A A An s c n s

DzCdahc | | , and the superscript m designates them21u J

mth iterative guess for the field. Similar results obtainu
for the TKE equation, and solving these equations im-
plies the inversion of tridiagonal matrices.

Grids for mean velocity and TKE were staggered,
with the lowest grid point falling on ground and theu
uppermost TKE grid point lying at z 5 10hc. Upper
boundary conditions were a prescribed value (21) for
the (normalized) momentum influx / and (except2u9w9 u*
in the case of a wind-tunnel simulation, for which we
set ]k/]z 5 0) a prescribed (equilibrium) value for the
normalized TKE, namely, k/ 5 1/ce 5 4.64. At the2u*
bottom boundary, z 5 0, the mean wind speed 5 0,u
and we imposed ]k/]z 5 0 (flux of TKE to ground
vanishes).

d. Revisiting and confirming the Wilson et al. (1998)
simulations

We carried out new simulations of the same three
uniform canopy flows studied by WFR98 in developing
the closure (details of these experiments can be obtained
from WFR98 and references therein). Briefly, ‘‘Furry
Hill’’ was a canopy of flexible strands of fishing line
(hc 5 4.7 cm), stretching upwind and over a model hill
in a wind tunnel; measurements cited here are from the
region upwind from the hill. The ‘‘Tombstone Canopy’’
was a regular array of vertical bars in the same wind
tunnel, each tombstone being hc 5 6 cm high by 1 cm
in cross-stream width, with 6-cm cross-stream and 4.4-
cm alongstream spacing. The Elora field experiment
took place in a mature, uniform corn canopy of height
hc 5 2.2 m at Elora, Ontario, Canada.

We found that grid independence and convergence
were assured in these one-dimensional canopy flow sim-
ulations, when 100 (or more) iterations were performed
with grid spacing Dz 5 hc/100. Our new simulations
compared very closely to those reported by WFR98; the
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differences, which were minor, we attribute to our hav-
ing used higher resolution so as to attain grid indepen-
dence.

3. Provision of the drag coefficient

The drag coefficient parameterizes the drag on the
surfaces of leaves and limbs and exerts a controlling
influence on the wind and turbulence among the plants.
Depending on the quantity and quality of information
given (the profiles of leaf area and of the flow variables

and ), the drag coefficient may be determined atu u9w9
three levels of detail.

a. Height-variable drag coefficient

In principle, the best way to calculate the drag co-
efficient, from good-quality micrometeorological mea-
surements, would be to calculate Cd(z) by rearranging
Eq. (1):

]u9w9 ]p
2 2

]z ]x
C (z) 5 . (8)d 2a(z)u (z)

If we neglect the pressure gradient (which is accept-
able for atmospheric flows) and normalize, we can trans-
form the above to

] u9w9 u9w9
2 2D

2 21 2 1 2]z/h u* u*c

C (z) 5 5 , (9)d 2 2
u(z) z u(z)

h a(z) D h a(z)c c1 2[ ] [ ]u* h u*c

where the D operator implies a ‘‘finite difference’’ along
the height axis.

In the Duke Forest of KC99, mean wind and shear
stress were measured at six points in and above the
canopy. We calculated Cd according to Eq. (9) from the
measured data /u*, / , and a(z) at the five sensor2u u9w9 u*
levels falling within the canopy. An irregular profile of
Cd resulted (Fig. 1), because the observations of /u9w9

carry considerable uncertainty and are (here, as of-2u*
ten) given at an irregularly spaced set of points.

To alleviate this difficulty in the application of Eq.
(9), one might consider ‘‘smoothly fitting’’ continuous
polynomial curves to the measured profiles of mean
wind and shear stress. Substitution of the resulting func-
tions into Eq. (9) will then define a polynomial ap-
proximation Cdp(z) for the drag coefficient. In the cur-
rent case, when this was tried, the outcome (Fig. 1) was
unsatisfactory, giving rise to a negative drag coefficient
Cdp deep in the canopy. Evidently this procedure re-
quires arbitrary steps, such as the choice of order of the
polynomial, in fitting what may be highly irregular pro-
files (e.g., the leaf area density profile reported for the
Duke Forest).

Because of the irregularity of our calculated profiles
of drag coefficients Cd(z) and Cdp(z), we discarded Eq.
(9) in favor of the following methods.

b. Height-averaged drag coefficient

If we have untrustworthy (or nonexistent) information
on but confidence in the profiles a(z) and (z), thenu9w9 u
we can introduce a height-averaged drag coefficient

, defined byCd

hc ]u9w9
dz 5 2t 1 t (0) 5 2t 1 0E h hc c]z0

hc

25 2C a(z)u(z) dz, (10)d E
0

where the kinematic stress 5 2 ( ) Rearrange-t u9w9 .h hc c

ment gives
2t t /u*h hc cC 5 5d h 2c hc u(z)2a(z)u(z) dzE a(z) dzE [ ]u*0 0

1
5 . (11)

2hc u(z)
a(z) dzE [ ]u*0

This approach avoids the differentiation of noisy
data. The value we calculate for the Duke Forestu9w9

( 5 0.2; see Fig. 1) is identical to the drag coefficientCd

cited by KC99, which may therefore be of the same
provenance.

c. Bulk drag coefficient

If, furthermore, we have poor or nonexistent infor-
mation on the leaf area density profile a(z), then we
have no choice but to use a bulk coefficient , whichC ad

is defined by
h hc c]u9w9

2dz 5 2t 1 0 5 2C a u(z) dz. (12)E h d Ec]z0 0

By rearranging, we may define a dimensionless bulk
coefficient Cdb 5 hc ; that is,C ad

1
C 5 . (13)db 21 u z

dE 1 2 1 2u* hc0

Once known, this bulk drag coefficient may be utilized
in a normalized momentum equation, namely,

22 2]u9w9/u* ](p/u* )uh hc c5 2C 2 . (14)db1 2](z/h ) u* ]xc
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FIG. 2. Normalized mean wind speed of the first-order model vsu
observed (dots). The thick solid line is first-order closure with height-
averaged 5 0.2; the thin solid line is with a bulk Cdb 5 0.34. TheCd

long-dashed line is W88; the short-dashed line is WS77 as simulated
by KC99.

FIG. 3. The shear stress , from the first-order model vs observedu9w9
(dots). The thick solid line is first-order closure with height-averaged

5 0.2; the thin solid line is with a bulk Cdb 5 0.34. The long-Cd

dashed line is W88; the short-dashed line is WS77 as simulated by
KC99.

For the Duke Forest, Eq. (13) yields Cdb 5 0.34. We
do not plot Cdb alongside our other estimates of the drag
coefficient on Fig. (1), because Cdb has a different mean-
ing and is imposed in a different momentum equation
than are Cd(z), Cdp(z), and .Cd

4. Comparing the first-order closure model with
Duke Forest observations and the second-order
simulations of Katul and Chang (1999)

Because our objective was to assess the WFR98 first-
order model against the second-order models examined
by KC99, in modeling the Duke Forest we followed
KC99 as closely as possible (see Table 1): the top of
the model domain was chosen as 10hc; the height-av-
eraged drag coefficient was 5 0.2 (same as KC99),Cd

or, where we used a bulk drag coefficient, its value was
Cdb 5 0.34; the zero-plane displacement d/hc 5 0.67;
and the normalized standard deviations su/u*, sy /u*,
and sw/u* were set respectively as 2.08, 1.86, and 1.22

(these being the values at z/hc 5 1.097 cited in Table
3 of KC99), implying ce 5 1/4.64.

Figures 2–5 show results of our simulations of the
Duke Forest; the two second-order simulations of KC99,
namely WS77 and W88, have been overlaid onto the
current (first-order) results for easy comparison.

Our normalized mean wind speed profile, Fig. 2,
closely matches the observed profile of KC99. This re-
sult is not very surprising, given that we derived the
drag coefficients (both height averaged and bulk) by
integration of the observed mean wind speed profile. It
should be expected, then, that the models should repro-
duce the mean wind and shear stress observations well.
If, on the basis of Fig. 2 we are to say that the models
are ‘‘good,’’ then perhaps the second-order models are
not as good as the first-order model. The ‘‘noisiness’’
of the second-order solutions probably results from the
absence of explicit diffusion in the momentum Eq. (1).

The first-order model also closely matches the mea-
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FIG. 4. The turbulent kinetic energy k of the first-order model vs
observed. The solid-dot symbols are the TKE recalculated from su,
sy , and sw given by KC99. The hollow-dot symbols are TKE given
by KC99. The thick solid line is first-order closure with height-av-
eraged Cd 5 0.2; the thin solid line is with a bulk 5 0.34. TheCd

long-dashed line is W88; the short-dashed line is WS77 as simulated
by KC99. Note that our specification ce 5 (k/ ) 5 1/4.64 requires2 21u hc*

our modeled k profile to run through the observation at z/hc ø 1.

FIG. 5. Observed (dots) and modeled profiles of the normalized
standard deviation of vertical velocity sw/u*. The thick solid line is
first-order closure with height-averaged drag coefficient 5 0.2;Cd

the thin solid line is with a bulk drag coefficient Cdb 5 0.34. The
long-dashed line is W88; the short-dashed line is WS77 as simulated
by KC99.

sured stress profile of KC99 (see Fig. 3) and is similar
to that obtained by KC99 using the W88 model. Of
course, one cannot simultaneously do a good job of the
mean wind and a bad job of the shear stress, for it is
implied by the way in which the drag coefficient is
derived that the modeled mean wind and shear stress
must be consistent.

Figure 4 indicates that the first-order model simulates
the profile of TKE reasonably satisfactorily but under-
estimates the magnitude of the above-canopy TKE gra-
dient suggested by the observations. [Note that there is
a discrepancy between values of the (measured) velocity
variances for Duke Forest tabulated by KC99 and the
TKE they have plotted on their Fig. 1. We plot both the
original and the corrected TKE on our Fig. 4.]

Except for the influence of the TKE transport term,
first- and second-order models both would generate a
height-invariant TKE above the canopy; for example,

just as does our Eq. (3), the TKE equation of WS77
reduces, above the canopy and provided the transport
term is dropped, to k3/2 } l3] /]z 5 constant. This2u u*
is because ] /]z } u*/(z 2 d) and l3 } (z 2 d). Thus,u
the differing above-canopy TKE profiles reflect the fact
that treatment of TKE transport has differed, and it may
be that our specification m 5 0.2 (recommended by
WFR98, though recognizing that m 5 1 is the more
frequent suggestion) has resulted in underestimation of
TKE transport.

Figure 5 compares the observed vertical profile of sw

in Duke Forest with simulations. Because the first-order
model underestimates TKE deep in the canopy, it also
underestimates the velocity variances, and thus sw.

5. Conclusions

The preceding results (and those of WFR98) suggest
that the simpler first-order closure model will often sim-
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ulate the fundamental wind properties (mean wind
speed, mean shear stress, and turbulent kinetic energy)
of a canopy flow as well as a second-order closure model
will. The implication is that the theoretical superiority
of a second-order model is moot, in the face of the large
uncertainty with respect to the canopy drag coefficient
that will ordinarily prevail, in any routine application
of these kinds of models. Thus, bearing in mind that for
two- and three-dimensional flows a second-order model
is laborious, one ought not to overlook the competence
of the simpler first-order model.
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