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A  Lagrangian  stochastic  (LS)  implementation  of an interaction  by  exchange  with  the  conditional  mean
(IECM)  micromixing  model  is used  to estimate  concentration  fluctuations  in plumes  dispersing  from
an  in-canopy,  localized  source  into  a  model  plant  canopy  flow.  The  sensitivity  of  the  LS-IECM  model  to
the  underlying  Eulerian  flow  statistics  is investigated  by comparing  model  predictions  from  simulations
driven  by  two  interpolations  of  the  same  water-channel  flow  data.  The  two simulations  showed  minor
anopy flow
oncentration fluctuations
icromixing model

calar dissipation

differences  in  the predicted  mean  concentration  but marked  differences  in the standard  deviation,  skew-
ness  and  kurtosis  of  concentration.  This  is shown  to  be  caused  by  differences  in the  turbulent  kinetic
energy  (TKE)  dissipation  rates  between  the  two  interpolations  and  their  effects  on  the  IECM  model.  The
LS-IECM  model  predictions  of the  first four  moments  of the scalar  concentration  field  showed  fair  to
good  conformance  (depending  on  which  TKE  dissipation  rate  is  used)  with  experimental  water-channel

dispersion  data.

. Introduction

Chemotaxis is a phenomenon through which insects can locate
ood and mates by modulating their travel paths in response to
hemical signals (Murlis et al., 1992 and references therein). If
he insect is seeking pollen then pollination may  occur, bene-
ting the agricultural and forest sectors. However, if this insect
arries a disease or is herbivorous then crop and economic losses
ay  result. Some species, such as bark beetles, emit an aggrega-

ion pheromone to signal other beetles to a feeding location in an
ffort to overcome a tree’s natural defenses. This pheromone and,
ore importantly, the corresponding anti-aggregation pheromone

an be synthesized and used to prevent colonization of bark bee-
les into new areas (e.g., Graves et al., 2008; Gillette et al., 2009).
he mixed success so far achieved by this practice is due to a
ack of understanding of the biology of insect odour detection and
he complexity of odour dispersion within a forest canopy (e.g.,
ickers, 2000). The odour concentrations within canopy flows are
ften highly intermittent, with high concentrations frequently fol-
owed by near-zero concentrations at a measurement location. This

s caused by the meandering, entrainment and dissipation of the
dour plume. Some insects may  be sensitive to these variations of
oncentration (Baker et al., 1998; Murlis, 1997) and therefore an
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improved understanding of the dispersion process in canopy flow
and the resulting concentration fluctuations would be beneficial to
agricultural and forest managers.

Advances in computer power and an increase in the availabil-
ity of computational resources have made possible the prediction
of concentration fluctuations in atmospheric dispersion models. A
variety of different modelling techniques have been employed to
this end: solving the Reynolds-averaged Navier–Stokes equation
and scalar transport equation, along with various closure assump-
tions (Hsieh et al., 2007; Wang et al., 2009), fluctuating plume
models (Gifford, 1959) with added parametrization for relative,
in-plume concentration fluctuations (Yee et al., 1994; Luhar et al.,
2000; Yee and Wilson, 2000; Franzese, 2003; Gailis et al., 2007), and
probability density function (PDF) modelling techniques (Sawford,
2004a,b; Luhar and Sawford, 2005; Cassiani et al., 2005a,b,c, 2007;
Yee et al., 2009; Postma et al., 2011a,b). This last approach is fol-
lowed here.

The Sequential Particle MicroMixing Model (SPMMM)  couples a
three-dimensional Lagrangian stochastic (LS) trajectory model (see
Rodean, 1996 for a review) with the Interaction by Exchange with
the Conditional Mean (IECM) micromixing model (Fox, 1996; Pope,
1998). To “drive” the dispersion in LS models, a statistical descrip-
tion of the flow field such as the mean winds, Reynolds stresses
and turbulent kinetic energy (TKE) dissipation rate must be pro-

vided. These “driving flow statistics” may  come from full-scale field
experiments, water-channel or wind-tunnel experiments or from
another numerical model. A strength of LS trajectory models is their
ability to represent many scales of motion, from extremely small
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o extremely large. However, the underlying Eulerian fields used
o drive the LS models are often provided on a relatively coarse
rid. To realise the full potential of the scale-free nature of LS
odels, it is advantageous to perform some form of interpolation

f the relatively coarse experimental data onto a finer numerical
rid. Interpolation schemes can produce profiles that pass through
he experimental data or use it as a guide. Both techniques can
esult in a smooth profile, but conforming to the data exactly often
esults in a profile which contains oscillations or ringing between
he measurements. It is unknown whether this ringing is consistent
ith reality, and certainly only additional flow measurements can

ddress this issue.
In this study, we investigate the accuracy with which SPMMM

an predict the first four moments of the scalar concentration
eld (mean, standard deviation, skewness and kurtosis) resulting

rom the release of a passive scalar from an in-canopy, localized
ource into a neutrally stratified model plant canopy flow. Fur-
hermore, the sensitivity of SPMMM  to the driving flow statistics is
nvestigated by comparing results from simulations driven by two
ifferent piecewise, cubic polynomial interpolations of the experi-
ental driving flow statistics.

. Setup

.1. SPMMM

A full description of the governing equations and numerical
mplementation of SPMMM can be found in Postma et al. (2011a).
ach particle has assigned to it a velocity, a position and a scalar
oncentration. The Lagrangian velocity fluctuation relative to the
ulerian mean U ′

i
= Ui − 〈ui〉 and the Lagrangian position Xi evolve

ccording to

U ′
i = ai(X, U ′, t) dt + bij(X, U ′, t) d�j(t), (1)

Xi =
(
〈ui〉 + U ′

i

)
dt, (2)

here dt is the timestep and d�j(t) represents an incremental
iener process with a mean of zero and variance equal to dt.  The

onditional mean acceleration ai is deterministic and dependent
pon the Reynolds stresses and their gradients. The well-mixed
ondition (Thomson, 1987) and the assumption of stationary, Gaus-
ian turbulence are used to determine ai in SPMMM.  The drift
oefficient bij is determined from the Kolmogorov scaling relation-
hip for the velocity structure function in the inertial subrange
mplying bij = (C0ε)1/2ıij, where C0 is the Kolmogorov constant and

 is the turbulent kinetic energy (TKE) dissipation rate. The scalar
oncentration � evolves according to the IECM micromixing model,

� = − 1
tm

(� − 〈�| u〉) dt, (3)

here tm is the scalar micromixing time scale and 〈�| u〉 =
�| u〉(x, y, z, u, v, w) is the mean scalar concentration conditioned
n the local velocity (also called the conditional mean concentra-
ion). The parametrization of the micromixing time scale used in
PMMM is based upon inertial-subrange theory and was originally
roposed by Cassiani et al. (2005a).

For short and medium time scales, it is assumed that

m = �

(
�2

r

�2

)1/2

, (4)

Ur

here � is the empirically determined micromixing con-
tant which depends upon the type of turbulence, the source
onfiguration and the stage of development of the plume. It is
orology 166– 167 (2012) 127– 136

treated as a free parameter. The instantaneous plume width �r is
modelled as

�2
r = d2

r

1 + (d2
r − �2

0 )/(�2
0 + 2�2TLt)

, (5)

where Richardson’s law

d2
r = Crε(t + t0)3, (6)

is used to calculate the root-mean-square separation between par-
ticle pairs and TL ≡ 2�2/(C0ε) is the Lagrangian integral time scale.
The constants in Eqs. (5) and (6) include: the initial source width �0,
the Richardson constant Cr and t0 = ts/C1/3

r , where ts = (�2
0 /ε)1/3

is the characteristic time scale of the source. The variance of the
Lagrangian relative velocity fluctuation �2

Ur
is modelled (Franzese,

2003; Cassiani et al., 2005a)  as

�2
Ur

= �2
(

�r

L

)2/3
, (7)

with �2 = 2k/3 where k is the TKE and

L = (3�2/2)3/2

ε
,  (8)

is a characteristic length scale of the most energetic eddies. Wher-
ever �r > L, the constraint �2

Ur
= �2 is imposed. If tm is larger than

the turbulence timescale � = k/ε, then tm is reset to �. The turbulence
timescale also applies for regions outside of the plume.

The required conditional mean concentration field is pre-
calculated by releasing N� particles, one at a time, from the source
and accumulating the amount of time they spend in each bin of the
discretized position-velocity space. A dynamical grid that grows
with the plume captures the details of plume growth close to the
source. Once all particles have been transported outside the spatial
domain, the conditional mean concentration is calculated as

〈�|u〉 = 〈�|u〉(xI, yJ, zK , uL, vM, wN) = Qtv
r

VNv
�

, (9)

where Q is the source strength, tv
r = tv

r (xI, yJ, zK , uL, vM, wN) is the
total accumulated residence time, V = V(xI, yJ, zK ) is the volume of
the spatial bin and

Nv
� = Nv

�(xI, yJ, zK , uL, vM, wN) = N�fu�u�v�w,  (10)

is the number of particles during the simulation that visit bin
(xI, yJ, zK , uL, vM, wN). In the above equation, fu is the PDF  of the
velocity statistics used to drive the dispersion model and �u, �v
and �w are respectively the bin widths of the discretized stream-
wise, spanwise and vertical velocity dimensions.

In SPMMM,  particles are released sequentially from the
upstream face of the spatial domain and allowed to propagate
downstream, mixing with the conditional mean concentration field
according to Eq. (3).  If a particle originates in the source area,
it is assigned a non-zero initial concentration, the exact value of
which depends on the source configuration and the source strength.
Depending on the chosen source configuration, there are three or
four free parameters that need to be set in SPMMM:  the Kolmogorov
constant C0, the Richardson constant Cr and the micromixing con-
stant � (used in the parametrization of tm) are the three mandatory
free parameters. In addition, for an initial Gaussian source distri-
bution, the effective source “width” �0 is also a free parameter,
whereas for an initial top-hat distribution, this parameter is fixed
by the actual source size (assumed to be known a priori).

SPMMM  has been used to estimate with good accuracy the

mean concentration and the standard deviation of concentration
for plumes dispersing from elevated and ground-level compact
sources in wall shear-layer flow (Postma et al., 2011a). It has also
been used to estimate with fair accuracy the mean concentration
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Fig. 1. A plan view of a portion of the model plant canopy. Points A–S are velocity
statistic data extraction locations used by Hilderman and Chong (2007). Extraction
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ocations A–J correspond to the extraction locations used by Raupach et al. (1986).
he thin rectangles represent the canopy obstacles. Note that the axes do not use
he same scale.

nd the standard deviation of concentration for plumes dispers-
ng from an elevated line source into a canopy flow (Postma et al.,
011b). This was somewhat surprising since tm is defined in terms
f inertial-subrange theory and canopy flows lack a well-defined
nertial subrange. Nevertheless, it has been shown by Cassiani et al.
2007) and Postma et al. (2011b) that predictions of the first two

oments of the scalar concentration field in a canopy flow using
his parametrization of tm are qualitatively and quantitatively sat-
sfactory. It is important to note that SPMMM  does not resolve the
anopy obstacles. Instead, the effects of the canopy are manifested
hrough its effects on the driving velocity statistics and the TKE
issipation rate.

In theory, SPMMM can predict any order moment of the scalar
oncentration field but in practice this is limited by the availabil-
ty of computational resources—predictions of the higher-order

oments require more particles. However, the non-interactive
ature of the particles in SPMMM  allows for trivial parallelization
s well as simple programming and short execution times.

.2. Model plant canopy

The model plant canopy consisted of a regular diamond-shaped
rray of rectangular aluminum obstacles measuring 10 mm in
idth, 1 mm in streamwise thickness and H = 60 mm in height

Raupach et al., 1986). The streamwise and spanwise centre-to-
entre obstacle spacings were 44 mm and 60 mm,  respectively.

ind-tunnel dispersion experiments were carried out within the
anopy for an elevated plane source (Coppin et al., 1986) and an ele-
ated line source (Legg et al., 1986). Hilderman and Chong (2007)
evisited scalar dispersion in an identical canopy using a near
round-level localized source, a configuration that was  not exam-
ned by the original wind-tunnel study. The latter experiments

ere performed in the Coanda Research and Development Corpora-
ion (Burnaby, British Columbia) recirculating water channel, with

 test section measuring 10.0 m × 1.5 m × 1.0 m in length, width
nd depth, respectively. There were 210 rows of canopy elements
ithin the test section of the water channel. These experiments are

ereafter referred to as the Coanda experiments. A portion of the
anopy in plan view can be seen in Fig. 1.

The water-channel flow was seeded with titanium dioxide par-
icles to allow the extraction of velocity statistics with laser Doppler
orology 166– 167 (2012) 127– 136 129

velocimetry. Measurements of the u, v, and w velocity components
at 19 points (A–S) were made in the unit cell centred on the sev-
enth tab of row 160, x = 7.04 m into the canopy and y = 0.42 m from
the sidewall of the water channel. At all points, velocity measure-
ments were made up to a height of 3H = 180 mm.  For points D and J,
velocity measurements were made up to a height of 12H = 720 mm.

The scalar source was  a horizontally oriented tube with a diam-
eter of ds = H/4 =15 mm positioned immediately behind a canopy
obstacle at a height of zs = 0.2H = 12 mm.  Since the sharp-sided alu-
minum tabs are very efficient turbulence generators, Hilderman
and Chong (2007) found that the concentration field resulting from
dispersion from a very small source was extremely sensitive to the
exact placement within the canopy, and that the plume could easily
be biased to one side of the channel or the other by a slight change in
the release angle or velocity. As this is undesirable from the stand-
point of being able to reproduce experimental results, a relatively
large source was  used. The source was designed to have minimal
momentum and had a fine mesh over the end, to ensure a uniform
distribution of the dye over the source area. Sodium fluorescein
dye was used as the dynamically passive tracer. The velocity of the
dye at the source was us = 2.26 × 10−3 m s−1, which corresponds to
a release rate of Q = 24 mL  min−1. Sodium fluorescein is a weakly
diffusive scalar, with a (molecular) Schmidt number of 1920 in
water. Laser-induced fluorescence was used to extract concentra-
tion data 1, 2, 4, 7, 8, 12, and 16 rows downstream from the source
at 7 to 10 heights, depending on the location. The measurements
were made dimensionless by dividing by the source concentration
(i.e., �* = �/�s). The source concentration is �s = Q/(Asus) where As

is the area of the source. Once dimensionless, higher-order statis-
tical quantities were calculated. The dimensionless quantities are
denoted with a superscript asterisk: 〈�*〉 for the mean, �∗

�
for the

standard deviation, Sk∗
� for the skewness and Ku∗

� for the kurtosis
of the dimensionless concentration.

2.3. Interpolation techniques

Two  interpolation techniques are used in this study: cubic spline
interpolation and Savitzky–Golay filtering (Savitzky and Golay,
1964; Steinier et al., 1972). Both techniques involve fitting piece-
wise polynomials to the experimental data but differ considerably
in the details of the fitting. Cubic splines use third-degree poly-
nomials to interpolate between data points. The resulting profile
passes through the experimental data exactly and is continuous
and smooth, as is its first derivative. Its second derivative is also
continuous. Passing through the experimental data exactly is per-
haps the most desirable feature of cubic spline interpolation but
can result in oscillations between the data points as the curvature
of the spline may  have to change frequently and drastically to reach
the next data point. There are a variety of end point conditions that
can be imposed upon the cubic spline. The natural spline allows the
spline to equilibrate such that the oscillatory nature is minimized,
which is suitable for fitting a curve to experimental data.

The Savitzky–Golay filter is also known as the digital smoothing
polynomial filter or the least-squares smoothing filter. It performs
a least-squares polynomial fit to data within the filter window. The
degree of the polynomial and the width of the filter window are
variables. The Savitzky–Golay filter has as a strength the ability to
maintain data features while reducing noise, provided the degree
and window width are chosen carefully. In this study, we used
a third-degree polynomial and a filter window width of 2H/3 as

we found that these values smoothed the experimental data while
maintaining the general trends in the measurements. As originally
described, the Savitzky–Golay filter required uniformly spaced data
but modern algorithms have relaxed this requirement.
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NMSE = (Qo − Qp)

Qo Qp

, (12)
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.4. Driving velocity statistics

To drive the SPMMM simulations, a horizontally homogeneous
ow field was produced by spatially averaging the data from points
–J. The data from points L–S filled in details between points A–J

measurement locations in the original study) and therefore were
ot included in the averaging. Above 3H, the averaged velocity
tatistics from points D and J were used. The spatially averaged
elocity statistics are shown by the symbols in Fig. 2.

From these data, the friction velocity at the top of the canopy
as determined to be u∗ = 0.02 m s−1 and the roughness length
as z0 = 9 mm.  The boundary layer depth was ı = 540 mm  and

he free-stream velocity was 〈u〉ı = 0.175 m s−1, giving a Reynolds
umber (based on ı and 〈u〉ı) of Reı = 9.4 × 104. At the top of the
anopy the mean streamwise velocity was 〈u〉c = 0.07 m s−1, giving
ec = 4.2 × 103 (based on H and 〈u〉c). The lines in Fig. 2 represent
he two interpolations used to drive the SPMMM  simulations. The
olid lines represent the cubic spline interpolations, which more
losely match the experimental data resulting in “bumps” and “wig-
les” in the vertical profiles. The smoother, dotted lines represent
avitzky–Golay interpolations of the experimental data. The effects
f the canopy are apparent in this figure—rapid attenuation of all
elocity statistics below the canopy and maxima of the stresses
ear the canopy top. The most notable difference between the two

nterpolations is that the maxima of the Savitzky–Golay interpo-
ated stresses �2

v , �2
w and 〈u′w′〉 are smaller than the maxima of the

orresponding cubic spline interpolated stresses.
As no measurements or estimations of ε were made in the

oanda experiments, it was approximated as the sum of wake
nd shear production of TKE: ε ≈ Ps + Pw . Both the shear produc-
ion of TKE, Ps = −〈u′w′〉 ∂〈u〉/∂z and the wake production of TKE,
w = −〈u〉 ∂〈u′w′〉/∂z are in closed form and readily calculated from
he measured velocity statistics. This approximation ignores the
urbulent transport of TKE since it has no closed form and there-
ore would have had to be modelled, introducing other tunable
arameters into the model. We  viewed this as undesirable. Since
urbulent transport was a major loss in the TKE budget just above
he canopy and was the principal gain within the upper canopy
n the wind-tunnel experiments (Raupach et al., 1986), the above
pproximation is subject to error. However, in Postma et al. (2011b)
he approximation was shown to produce a vertical profile of the
KE dissipation rate that conformed well with data from the wind-
unnel experiments. The resulting profiles shown in Fig. 2 seem
easonable, having their maxima near the canopy top and rapidly
ttenuating above and below it. The Savitzky–Golay interpolated
KE dissipation rate has its larger maximum slightly higher in the
anopy and experiences greater attenuation below the canopy than
he cubic spline interpolated TKE dissipation rate.

This experimental data set could be used to investigate whether
he use of inhomogeneous velocity statistics (e.g, the statistics from
oints A-S) results in more accurate model predictions than the use
f horizontally homogeneous velocity statistics (e.g., the spatially
veraged statistics described above). However, the use of strongly
nhomogeneous velocity statistics may  result in the generation of
nrealistically high particle velocities which can strongly affect
odel predictions, particularly for the higher-order concentration
oments (Postma et al., 2012) and therefore this is left for a future

tudy.

.5. Free parameters and discretization

The experimental source configuration is well represented by

 top-hat initial source distribution. Therefore, �0 is set equal to
he source diameter and the initial concentrations of those parti-
les originating in the source region are given by �s (see end of
ection 2.2). The remaining free parameters were set to C0 = 2.0,
orology 166– 167 (2012) 127– 136

Cr = 0.12 and � = 0.75. These values of C0 and Cr are identical to
those used by Postma et al. (2011a). The value of � has been
decreased from 0.82 (suitable for a line source) to 0.75 (suitable for
a localized source) due to the difference in the source configuration.
This reduction of the micromixing timescale reflects the increased
dimensionality of the localized source configuration—entrainment
of the scalar occurs in both the lateral and vertical directions
whereas it occurs only in the vertical direction for a line source,
and thus the micromixing constant should be reduced (Thomson,
1996; Sawford, 2004b). The value � = 0.75 was  used by Postma et al.
(2011a) for simulations of dispersion from a localized source.

The required conditional mean concentration field was pre-
calculated in a domain that was divided into 60 bins in the x, y,
and z directions and 20 bins in the u, v, and w dimensions. The
timestep was chosen to be two  percent of either the Lagrangian
integral timescale or the mixing timescale, whichever was smaller.
The pre-calculation of the conditional mean concentrations utilized
5 × 107 particles while the micromixing phase of the simulations
utilized 108 particles. More particles were needed in the micromix-
ing phase of the simulation in order to reduce the statistical noise
in the predictions of skewness and kurtosis of concentration. Even
with 108 particles, SPMMM  simulations were quite fast, taking
approximately two  hours to run on a quad-core desktop computer.

3. Results and discussion

Results for two  SPMMM  simulations are presented below. The
SPMMM-CS simulations utilized the cubic spline interpolated flow
statistics to drive the model while the SPMMM-SG simulations
used the Savitzky–Golay interpolated flow statistics. The SPMMM
predictions1 for the first four moments of the scalar concentration
field were compared with experimental data at 12 xz-positions.
At the x/H = 1.40, 2.87, 5.80 and 11.67 downstream locations (cor-
responding to 2, 4, 8 and 16 rows downstream from the source),
the comparison heights z/H = 0.1 and z/H = 1.0 were used. The third
comparison height farther above the canopy varied with the down-
stream location: z/H = 1.5, 2.0, 2.0 and 3.0 for the respective x/H
positions. At each of the xz-positions, the measured data and the
SPMMM  predictions were compared across the full extent of the
spanwise domain, for a total of n = 482 comparison pairs.

3.1. Concentration moments

The SPMMM  predictions were evaluated with three perfor-
mance measures. The fractional bias,

FB = (Qo − Qp)

0.5(Qo + Qp)
, (11)

quantifies the systematic bias of the model (i.e., the differ-
ence between the observed and predicted quantities Qo − Qp). An
observed quantity (water-channel data) is denoted by Qo and a
predicted quantity (SPMMM  prediction) is denoted by Qp. An over-
bar indicates an arithmetic mean of the available observations or
predictions. A positive (negative) FB corresponds to model under-
prediction (overprediction). The normalised mean square error,

2

1 If a result or comment is applicable to both the SPMMM-CS and SPMMM-SG
predictions or simulations then they will be collectively referred to as the SPMMM
predictions or simulations
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F n rate from the Coanda water-channel experiments. The circles represent the experimental
d Golay interpolations of the data. No measurements of the TKE dissipation were taken.

q
F

F

A
a
−
p
o
S

p

Table 1
Performance measures for the SPMMM-CS and SPMMM-SG simulations calculated
over the spanwise domain of the 12 xz-positions (n = 482).

Statistic Simulation FB NMSE FAC2

〈�*〉 CS −0.46 1.06 0.66
SG  −0.52 0.83 0.33

�∗
�

CS −0.08 0.13 0.96
SG  −0.48 0.77 0.63

Sk∗
� CS 0.28 0.50 0.78

SG  −0.22 0.44 0.58
∗

ig. 2. Vertical profiles of the spatially averaged velocity statistics and TKE dissipatio
ata,  the solid lines are cubic spline interpolations and the dotted lines are Savitzky–

uantifies the mean relative scatter of the model predictions. The
AC2 is defined as,

AC2 = fraction of data that satisfy 0.5 ≤ Qp

Qo
≤ 2.0. (13)

 perfect model would have: FB = 0, NMSE = 0 and FAC2 = 1. Chang
nd Hanna (2004) suggest that an acceptable model should have:
0.3 < FB < 0.3, NMSE < 4 and FAC2 > 0.5. It is possible for a non-
erfect model to have FB = 0 if underprediction exactly cancels

verprediction. The performance measures for the SPMMM-CS and
PMMM-SG simulations are shown in Table 1.

Streamwise transects of the concentration moments for the
lume centre line (y/H = 0) at three heights are shown in Fig. 3.
Ku� CS 0.70 8.20 0.45
SG  −0.02 5.17 0.36
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(a) mean concentration (b) standard deviation of concentration

(c) skewness of concentration (d) kurtosis of concentration

Fig. 3. Streamwise transects of the first four concentration moments for the plume centre line (y/H = 0). The solid line shows the Coanda data, the triangles show the SPMMM-
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S  predictions and the circles show the SPMMM-SG predictions. The vertical positi
ownstream positions and therefore the lines do not extend across the full stream
oncentration, (c) skewness of concentration and (d) kurtosis of concentration.

panwise transects of the concentrations moments at three heights
or x/H = 11.67 are shown in Figs. 4 and 5.

These results display the better performance of the SPMMM-CS
imulations. Qualitatively, the SPMMM-CS and SPMMM-SG predic-
ions of the mean concentration are very similar at all comparison
ocations. Minor differences in the transects are attributable to
he minor differences in the driving velocity statistics and TKE

issipation rates. Excluding any stochastic effects, particles origi-
ating at exactly the same location in the two SPMMM simulations
ill follow slightly different trajectories due to differences in

he underlying Eulerian fields used to drive the two simulations.
e shown on the panels. The Coanda measurements did not cover all heights at all
 domain in the z/H = 1.5 panels: (a) mean concentration, (b) standard deviation of

The predictions of mean concentration shown in Figs. 3(a) and
4 show a combination of under and overprediction depending
on the downstream position and the height. Both simulations
tended to overpredict the mean concentration within the canopy
(z/H < 1; resulting in a negative FB that is outside of its acceptable
range) which may  be a result of particles being trapped below the
canopy. This below-canopy overprediction was also observed in

predictions of mean concentration for dispersion from an above-
canopy line source using SPMMM  (Postma et al., 2011b)  and a
similar model (Cassiani et al., 2007). The below-canopy overpredic-
tion is balanced by above-canopy underprediction, which is most
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ig. 4. Spanwise transects of mean concentration (left column) and standard devia
how  the SPMMM-CS predictions and the circles show the SPMMM-SG predictions.

ronounced near the top edge of the plume at positions closer to
he source. The x/H = 1.40 location in Fig. 3(a) demonstrates this as
oes the x/H = 2.87 location to a lesser extent. This occurs at the
/H = 5.80 and 11.67 positions too but is not shown in the figures
s the upper edge of the plume has grown to be above the heights
hown in Figs. 3(a) and 4. Predictions above the canopy but away
rom the plume edge were generally quite good as is demonstrated
n the z/H = 1 panels of Figs. 3(a) and 4. As shown in Fig. 3(a), the
ccuracy of the SPMMM  predictions of 〈�*〉 remained more or less
he same with increasing downstream distance.

These results suggest that even though SPMMM  performed
cceptably (particularly the SPMMM-CS simulations), the verti-
al distribution of material in the SPMMM  simulated plume is
ot as accurate as it could be. This may  be due to simplifications
o the driving velocity statistics (e.g., assumption of horizontal
omogeneity) or to the fact that SPMMM  does not resolve canopy

bstacles. When a fluid encounters an obstacle, it may be deflected
ver and around the obstacle. This process could be represented
y an inhomogenous flow field. For example, several of the data
xtraction locations behind the tabs in Fig. 1 (e.g., A, K, L, M,  N, F,
f concentration (right column). The solid line shows the Coanda data, the triangles
ownstream and vertical positions are shown on the panels.

G, O) display mean vertical velocities greater than zero for z/H ≤ 1.
In addition, directly in front of the tab (e.g., points Q and R) the
mean vertical velocities are greater than zero at the canopy top
(z/H = 1), presumably the result of the water being deflected over
the tab. These positive vertical velocities would help eject material
out of the canopy and potentially reduce the below-canopy over-
predictions and the upper-edge underpredictions. In contrast, the
spatially averaged mean vertical velocity was approximately zero,
which does not aid in the removal of material from the canopy. This
process of deflection over and around the obstacles could in part
be represented numerically (regardless of the flow: horizontally
homogeneous or inhomogenous) by explicitly resolving the canopy
obstacles and treating them as reflection surfaces. An important
consequence of this treatment is that marked fluid particles would
be reflected from the various resolved surfaces of the obstacles, and
provide a physical mechanism that would allow these particles to

more readily escape the canopy.

The assumption of Gaussian turbulence likely did not negatively
affect the SPMMM  predictions of mean concentration, as Flesch and
Wilson (1992) demonstrated that the use of non-Gaussian velocity
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ig. 5. Spanwise transects of skewness (left column) and kurtosis (right column) of
redictions and the circles show the SPMMM-SG predictions. The downstream and 

tatistics does not improve LS model performance (at least as far as
he mean concentration is concerned). The FAC2 for the SPMMM-
G simulation is half that of the FAC2 for the SPMMM-CS simulation
ue to an overprediction at the lateral plume edges caused by a less
ccurate spanwise spread of the mean concentration transects. This
an be seen in Fig. 4. Since the mean concentration is very small
long the plume edges, it is easier for overprediction to occur.

The three performance measures are well within their accept-
ble ranges for the SPMMM  predictions of the standard deviation
f concentration. The SPMMM-CS predictions are more accu-
ate however. The SPMMM-SG simulations predicted greater �∗

�

han the SPMMM-CS simulations at all twelve comparison loca-
ions. At two of the twelve xz-locations: (x/H, z/H) = (2.87, 2.0)
nd (11.67, 1.0), this resulted in better conformance between
he SPMMM-SG predictions and the experimental data. At the

ther 10 xz-locations, the SPMMM-CS predictions were more
ccurate with respect to the maximum standard deviation of
oncentration and the spanwise spread. This is reflected in the per-
ormance measures. Differences in the SPMMM-CS and SPMMM-SG
ntration. The solid line shows the Coanda data, the triangles show the SPMMM-CS
al positions are shown on the panels.

predictions were less pronounced closer to the source. The predic-
tions at x/H = 1.40 were approximately the same but by x/H = 11.67
they were markedly different. This is a result of the increased
travel time to reach the farther downstream positions, which
amplifies the effects of differences in the micromixing timescales
between the two simulations. Fig. 3(b) shows that the accuracy of
the SPMMM  predictions of �∗

�
is good at almost all downstream

locations.
The SPMMM-CS predictions of skewness of concentration are

more accurate in both magnitude and general shape than the
SPMMM-SG predictions. This is true at all comparison positions
but is most apparent at x/H = 11.67. The two  SPMMM  simulations
make very similar predictions at x/H = 1.40 but exhibit progres-
sively larger differences with increasing downstream distance, as
is shown in Fig. 3(c). Note that the predictions in this figure look

poorer than the overall spanwise transects shown in Fig. 5 since
both the Coanda skewness data and the SPMMM predictions are
relatively noisy and the comparison between data and predictions
is for only one point, namely at y/H = 0. Both SPMMM  simulations
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Fig. 6. Vertical profiles of the micromixing timescale for x/H = 5.80 (8 rows down-
stream from source). The mixing timescale is scaled by an advection timescale,
J.V. Postma et al. / Agricultural and Fores

ade their most accurate predictions at the x/H = 1.40 (excluding
he plume edges where edge effects2 affected the experimental

easurements and the SPMMM  predictions) and x/H = 11.67 com-
arison locations. At the x/H = 2.87 and 5.80 positions the skewness
f concentration was generally overpredicted. However, the per-
ormance measures are within their acceptable ranges for both
imulations. Note that the performance measures are negatively
ffected by edge effects, particularly at the x/H = 1.40 position,
here not enough particles were released to enable the higher-

rder concentration moments to be computed with good accuracy.
o reliably predict skewness and kurtosis of concentration on the
dge of the plume, a very large number of particles (e.g., N � 108)
ould have to be released.

The observations for the skewness of concentration apply
qually well for the kurtosis of concentration. Being the next
igher-order moment above skewness, more particles are needed
o reliably predict it and edge effects more strongly affected the
erformance measures, all of which are outside of their acceptable
anges. Qualitatively, the SPMMM-CS predictions are satisfactory,
articularly at the x/H = 1.40 and 11.67 positions. They also out-
erformed the SPMMM-SG predictions. At the x/H = 2.87 and 5.80
ositions, both SPMMM simulations tended to overpredict the
urtosis of concentration. As an alternative to predicting the higher-
rder concentration moments such as the skewness and kurtosis,
t has been demonstrated (Yee, 2009) using a large number of high-
esolution concentration data sets that the one-point concentration
DF can be determined by a specification of two parameters. Mod-
ls that predict only mean concentration and standard deviation
f concentration well can potentially be used with an assumed
oncentration PDF to predict all the higher-order moments of
oncentration. Given this, SPMMM  may  be more usefully applied
depending on the complexity of the flow field and the availability
f computational resources) to predict only the first two concentra-
ion moments and an assumed concentration PDF (such as a clipped
amma  distribution) can be used more effectively to predict all the
igher-order moments (without the disadvantage of edge effects
rising from using a finite number of particles).

.2. Sensitivity to the underlying Eulerian fields

The SPMMM  predictions for mean concentration showed little
ensitivity to the underlying Eulerian fields but predicted higher-
rder concentrations moments were strongly sensitive to the
hoice of the interpolating scheme. The lack of sensitivity in the
rst-order concentration predictions at first seems to be in conflict
ith the findings of Poggi et al. (2006),  which showed that predic-

ions of the mean concentration obtained from a three-dimensional
S model are strongly sensitive to the TKE dissipation rate. How-
ver, the profiles of ε used by Poggi et al. (2006) were significantly
ore different than the ones shown in Fig. 2, so there is no conflict

etween these findings. The sensitivity of the higher-order concen-
ration moments is due to the IECM micromixing model, which in
o way affects first-order concentration statistics. In particular, it is
elated to the parametrization of the micromixing timescale, which
n turn depends upon both the driving velocity statistics and the
KE dissipation rate. To isolate the effects of the velocity statistics
nd the TKE dissipation rate on the SPMMM  predictions, a third
imulation which used the velocity statistics from the SPMMM-
G simulation and the TKE dissipation rate from the SPMMM-CS

imulation was performed. This simulation, referred to as SPMMM-
, predicted mean concentrations that were nearly identical to
he SPMMM-CS and SPMMM-SG simulations. The predictions of

2 Edge effects are an increase in noise along the plume edges due to insufficient
ampling.
�a = x/〈u(zs)〉. The solid line is from the SPMMM-CS simulation, the dotted line is from
the SPMMM-SG simulation and the dashed line is for the SPMMM-ε  simulation. Note
that the solid and dashed lines almost completely overlap.

the higher-order concentration moments were virtually indistin-
guishable from the the SPMMM-CS. This can be explained by the
micromixing timescale as follows.

Fig. 6 shows vertical profiles of the micromixing timescale for
the three SPMMM  simulations at x/H = 5.80. Other downstream
locations share the same characteristics of these profiles due to
the assumption of horizontal homogeneity.

The profiles from the SPMMM-CS and SPMMM-ε  simulations
display only minor differences between them, showing that the
parametrization of the micromixing timescale used by SPMMM is
more sensitive to the TKE dissipation rate than it is to the veloc-
ity statistics. At most heights, the micromixing timescale from the
SPMMM-SG simulation is greater than or approximately equal to
the micromixing timescale from the other two  simulations. Longer
micromixing timescales correspond to slower dissipation of fluc-
tuations and therefore the SPMMM-SG simulation predicted larger
standard deviation, skewness and kurtosis of concentration than
the SPMMM-CS simulation.

4. Conclusions

It has been shown that the LS-IECM model SPMMM  is capa-
ble of predicting with acceptable to good accuracy the first four
moments of the scalar concentration field for plumes dispersing in
a model plant canopy flow. The SPMMM  simulations consistently
overpredicted the below canopy mean concentration (resulting
in a FB outside of its acceptable range) as a result of particles
getting trapped within the canopy. The below-canopy overpre-
diction is balanced by an above-canopy underprediction which
is particularly marked along the upper edge of the plume. The
vertical distribution of material in the plume may be better pre-
dicted by more realistic driving velocity statistics which account
for the horizontally inhomogeneous and intermittent nature of
canopy flow. In addition, explicit resolution of the canopy obsta-
cles would introduce new reflection surfaces for the particles
to reflect off, thereby providing another possible mechanism of
escape.
Cubic spline interpolation of the underlying Eulerian velocity
statistics and TKE dissipation rate was  shown to produce more
accurate predictions than Savitzky–Golay interpolation for the con-
centration moments examined. Further investigation revealed that



1 t Mete

t
t
v
f
p
s
t
p
a
r
p
s
T
t

A

c
c

R

B

C

C

C

C

C

C

F

F

F

G

G

G

G

36 J.V. Postma et al. / Agricultural and Fores

his was almost exclusively due to differences in the TKE dissipa-
ion rate resulting from the two interpolations. SPMMM  showed a
ery slight sensitivity to the underlying Eulerian velocity statistics
or the mean concentration and a strong sensitivity to the TKE dissi-
ation rate for the higher-order concentration moments. This latter
ensitivity was the result of the ε-dependency of the micromixing
imescale. While this study demonstrated this sensitivity for one
arametrization of the micromixing timescale, it likely would also
ffect other parametrizations that incorporate the TKE dissipation
ate. The differences in the cubic spline and Savitzky–Golay inter-
olated TKE dissipation rate were relatively minor and yet these
eemingly small differences can have marked effects, as shown.
his highlights the need for careful measurement or estimation of
he TKE dissipation rate.

cknowledgements

The authors wish to thank the anonymous reviewers for their
areful and comprehensive evaluation of the paper and their helpful
omments, both of which improved the quality of this work.

eferences

aker, T.C., Fadamiro, H.Y., Cosse, A.A., 1998. Moth uses fine tuning for odour reso-
lution. Nature 393 (6685), 530.

assiani, M.,  Franzese, P., Giostra, U., 2005a. A PDF micromixing model of dispersion
for  atmospheric flow. Part I. Development of model, application to homogeneous
turbulence and to a neutral boundary layer. Atmos. Environ. 39, 1457–1469.

assiani, M.,  Franzese, P., Giostra, U., 2005b. A PDF micromixing model of dispersion
for  atmospheric flow. Part II. Application to convective boundary layer. Atmos.
Environ. 39, 1471–1479.

assiani, M.,  Radicchi, A., Albertson, J.D., 2007. Modelling of concentration fluctua-
tions in canopy turbulence. Boundary-Layer Meteorol. 122, 655–681.

assiani, M.,  Radicchi, A., Giostra, U., 2005c. Probability density function modelling of
concentration in and above a canopy layer. Agric. Forest Meteorol. 133, 153–165.

hang, J.C., Hanna, S.R., 2004. Air quality performance evaluation. Meteorol. Atmos.
Phys. 87, 167–196.

oppin, P.A., Raupach, M.R., Legg, B.J., 1986. Experiments on scalar dispersion within
a  model plant canopy. Part 2. An elevated plane source. Boundary-Layer Mete-
orol. 35, 167–191.

lesch, T.K., Wilson, J.D., 1992. A two-dimensional trajectory-simulation model for
non-Gaussian, inhomogeneous turbulence within plant canopies. Boundary-
Layer Meteorol. 61, 349–374.

ox, R.O., 1996. On velocity-conditioned scalar mixing in homogeneous turbulence.
Phys. Fluids 8, 2678–2691.

ranzese, P., 2003. Lagrangian stochastic modelling of a fluctuating plume in the
convective boundary layer. Atmos. Environ. 37, 1691–1701.

ailis, R.M., Hill, A., Yee, E., Hilderman, T., 2007. Extension of a fluctuating plume
model of tracer dispersion to a sheared boundary layer and to a large array of
obstacles. Boundary-Layer Meteorol. 122, 577–602.

ifford, F.A., 1959. Statistical properties of a fluctuating plume dispersion model.
Adv. Geophys. 6, 117–137.

illette, N., Erbilgin, N., Webster, J., Pederson, L., Mori, S., Stein, J., Owen, D., Bischel, K.,
Wood, D., 2009. Aerially applied verbenone-releasing laminated flakes protect
Pinus contorta stands from attack by Dendroctonus ponderosae in California and

Idaho. Forest Ecol. Manage. 257, 1405–1412.

raves, A.D., Holsten, E.H., Ascerno, M.E., Zogas, K.P., Hard, J.S., Huber, D.P.,
Blanchette, R.A., Seybold, S.J., 2008. Protection of spruce from colonization
by the bark beetle, Ips perturbatus, in Alaska. Forest Ecol. Manage. 256,
1825–1839.
orology 166– 167 (2012) 127– 136

Hilderman, T., Chong, R., 2007. A laboratory study of momentum and passive scalar
transport and diffusion within and above a model urban canopy – final report.
DRDC Suffield CR 2008-025. Technical Report. Defence R&D Canada - Suffield,
Ralston, Alberta, 78 pp.

Hsieh, K.J., Lien, F.S., Yee, E., 2007. Numerical modeling of passive scalar dispersion
in an urban canopy layer. J. Wind Eng. Ind. Aerodyn. 95, 1611–1636.

Legg, B.J., Raupach, M.R., Coppin, P.A., 1986. Experiments on scalar dispersion within
a  model plant canopy. Part 3. An elevated line source. Boundary-Layer Meteorol.
35,  277–302.

Luhar, A.K., Hibberd, M.F., Borgas, M.S., 2000. A skewed meandering plume model
for concentration statistics in the convective boundary layer. Atmos. Environ.
34,  3599–3616.

Luhar, A.K., Sawford, B.L., 2005. Micromixing modelling of concentration fluc-
tuations in inhomogeneous turbulence in the convective boundary layer.
Boundary-Layer Meteorol. 114, 1–30.

Murlis, J., 1997. Odor plumes and the signals they provide. In: Cardé, R.T., Minks, A.K.
(Eds.), Pheromone Research: New Directions. Chapman and Hall, New York, pp.
221–231.

Murlis, J., Elkinton, J.S., Cardé, T., 1992. Odor plumes and how insects use them. Annu.
Rev. Entomol. 37, 505–532.

Poggi, D., Katul, G.G., Albertson, J., 2006. Scalar dispersion within a model canopy:
measurements and three-dimensional Lagrangian models. Adv. Water Resour.
29,  326–335.

Pope, S.B., 1998. The vanishing effect of molecular diffusivity on turbulent disper-
sion: implications for turbulent mixing and the scalar flux. J. Fluid Mech. 359,
299–312.

Postma, J.V., Wilson, J.D., Yee, E., 2011a. Comparing two implementations of a
micromixing model. Part I. Wall shear-layer flow. Boundary-Layer Meteorol.
140, 207–224.

Postma, J.V., Wilson, J.D., Yee, E., 2011b. Comparing two implementations of
a  micromixing model. Part II. Canopy flow. Boundary-Layer Meteorol. 140,
225–241.

Postma, J.V., Yee, E., Wilson, J.D., 2012. First-order inconsistencies caused by rogue
trajectories. Boundary-Layer Meteorol, http://dx.doi.org/10.1007/s10546-012-
9732-7.

Raupach, M.R., Coppin, P.A., Legg, B.J., 1986. Experiments on scalar dispersion within
a  model plant canopy. Part 1. The turbulence structure. Boundary-Layer Meteo-
rol. 35, 21–52.

Rodean, H.C., 1996. Stochastic Lagrangian Models of Turbulent Diffusion. American
Meteorological Society, 84 pp.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified
least squares procedures. Anal. Chem. 36, 1627–1639.

Sawford, B.L., 2004a. Conditional scalar mixing statistics in homogeneous isotropic
turbulence. New J. Phys. 6, 1–30.

Sawford, B.L., 2004b. Micro-mixing modelling of scalar fluctuations for plumes in
homogeneous turbulence. Flow Turbul. Combust. 72, 133–160.

Steinier, J., Termonia, Y., Deltour, J., 1972. Comments on smoothing and differentia-
tion of data by simplified least square procedure. Anal. Chem. 44, 1906–1909.

Thomson, D.J., 1987. Criteria for the selection of stochastic models of particle trajec-
tories in turbulent flows. J. Fluid Mech. 180, 529–556.

Thomson, D.J., 1996. The second-order moment structure of dispersing plumes and
puffs. J. Fluid Mech. 320, 305–329.

Vickers, N.J., 2000. Mechanisms of animal navigation in odour plumes. Biol. Bull.
198, 203–212.

Wang, B.-C., Yee, E., Lien, F.-S., 2009. Numerical study of dispersing pollutant clouds
in  a built-up environment. Int. J. Heat Fluid Flow 30, 3–19.

Yee, E., 2009. Probability law of concentration in plumes dispersing in an urban area.
Environ. Fluid Mech. 9, 389–407.

Yee, E., Chan, R., Kosteniuk, P.R., Chandler, G.M., Biltoft, C.A., Bowers, J.F., 1994. Incor-
poration of internal fluctuations in a meandering plume model of concentration
fluctuations. Boundary-Layer Meteorol. 67, 11–39.

Yee, E., Wang, B.-C., Lien, F.-S., 2009. Probabilistic model for concentration fluc-

tuations in compact-source plumes in an urban environment. Boundary-Layer
Meteorol. 130, 169–208.

Yee, E., Wilson, D.J., 2000. A comparison of the detailed structure in dispersing
tracer plumes measured in grid-generated turbulence with a meandering plume
incorporating internal fluctuations. Boundary-Layer Meteorol. 94, 253–296.

dx.doi.org/10.1007/s10546-012-9732-7

	Predictive model for scalar concentration fluctuations in and above a model plant canopy
	1 Introduction
	2 Setup
	2.1 SPMMM
	2.2 Model plant canopy
	2.3 Interpolation techniques
	2.4 Driving velocity statistics
	2.5 Free parameters and discretization

	3 Results and discussion
	3.1 Concentration moments
	3.2 Sensitivity to the underlying Eulerian fields

	4 Conclusions
	Acknowledgements
	References


