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Abstract A theoretical requirement of the Interaction by Exchange with the Conditional
Mean (IECM) micromixing model is that the mean concentration field produced by it must be
consistent with the mean concentration field produced by a traditional Lagrangian stochastic
(LS) marked particle model. We examine the violation of this requirement that occurs in a
coupled LS–IECM model when unrealistically high particle velocities occur. No successful
strategy was found to mitigate the effects of these rogue trajectories. It is our hope that this
work will provide renewed impetus for investigation into rogue trajectories and methods to
eliminate them from LS models.
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1 Introduction

Lagrangian stochastic (LS) trajectory models based on the “well-mixed condition” (WMC;
Thomson 1987) have been used to simulate dispersion for a variety of source and flow config-
urations with good accuracy. Advantages of LS models over their Eulerian counterparts are:
they are grid free and thus relatively simple mathematically and computationally; they can be
run forward and backward in time; and (in contrast to eddy-diffusion closures) they correctly
treat the near-field region of a source. Comprehensive reviews of LS trajectory models can
be found in Rodean (1996) and Wilson and Sawford (1996).
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LS trajectory models are “driven” by a statistical description of the background velocity
field. Improving the realism of the simulation by utilizing inhomogeneous (as opposed to
simplified horizontally-homogeneous) driving velocity statistics is a promising approach to
improve the predictions of LS trajectory models (e.g. Wilson et al. 2010). A complication
arising from the use of more complex three-dimensional (3-D) flows is that the WMC no
longer produces a unique LS model as it does in one dimension. Also, the larger gradients in
the Reynolds stresses may promote the generation of unrealistically high velocities or rogue
trajectories (e.g., Wilson and Yee 2000). However, rogue trajectories are also generated in
one-dimensional LS models (e.g., Luhar and Britter 1989).

Yee and Wilson (2007) discussed in detail the cause of rogue trajectories and proposed a
method for their prevention. In summary, rogue trajectories arise due to dynamical instabil-
ities within the generalized Langevin equations whose expression depends on the fields of
the mean velocities and Reynolds stresses. Furthermore, the simple forward Euler scheme
commonly employed in LS models is unable to keep numerical round-off errors under con-
trol when integrating the stiff generalized Langevin equations. These two causes are related,
with one exacerbating the other. They introduced a fractional-step semi-analytic integration
scheme for the velocity fluctuation increment dU ′

i that can, under certain conditions, prevent
rogue trajectories from occurring but incurs the penalty that the LS model no longer satisfies
the WMC. As this is undesirable, it is common to employ an ad hoc scheme to prevent or
correct rogue trajectories: suppression of the velocity covariances, constraining the magni-
tude of the Eulerian velocity probability density function (PDF) or reinitializing the rogue
trajectories based upon the local velocity statistics where they occur.

By coupling a LS trajectory model with the Interaction by Exchange with the Conditional
Mean (IECM) micromixing model (Fox 1996; Pope 1998), predictions of the higher-order
moments of the scalar concentration field can be made. A theoretical requirement of the
IECM micromixing model is that the mean concentration field produced by it must be con-
sistent with the mean concentration field produced by a LS trajectory model. Since the mean
concentration is the first-order moment of the concentration field, this is referred to as the
first-order consistency requirement. Recent applications of LS–IECM models to atmospheric
flows include the simulation of dispersion in wall shear-layer flow (Cassiani et al. 2005a;
Postma et al. 2011a), the convective boundary layer (Cassiani et al. 2005b; Luhar and Sawford
2005) and canopy flow (Cassiani et al. 2005c, 2007; Postma et al. 2011b). These studies all
utilized simplified (e.g., horizontally-homogeneous) flow fields to drive the simulations that,
for the studies by Postma et al, generated no rogue trajectories.

The simulations of dispersion into a canopy flow from line and localized sources (Cassiani
et al. 2007; Postma et al. 2011b) generally underpredicted the mean concentration within the
canopy, precisely where the assumption of horizontal homogeneity would be most tenuous.
With an aim of improving the model predictions by increasing the realism of the driving flow
field, a particular implementation of the LS–IECM modelling technique called Sequential
Particle MicroMixing Model (SPMMM; Postma et al. 2011a) was driven by a more general
inhomogeneous velocity field (i.e., the velocity statistics were allowed to vary in both the
horizontal and vertical directions). The results (which are not reported in this study) broke
the first-order consistency requirement of the IECM model. Closer examination showed that
the locations of the first-order inconsistencies were coincident with locations that had a
relatively large number of rogue trajectories. The process by which the first-order consis-
tency requirement is broken is investigated in this study by using a greatly simplified flow
field.
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2 Model Formulation and Numerical Implementation

Full details of the governing equations and their numerical implementation in SPMMM can
be found in Postma et al. (2011a). SPMMM couples a LS trajectory model,

dU ′
i = ai (X, U ′, t)dt + bi j (X, U ′, t)dξ j (t), (1)

dXi = (〈ui 〉 + U ′
i

)
dt, (2)

which governs the evolution of the Lagrangian velocity fluctuation relative to the Eulerian
mean, U ′

i = Ui − 〈ui 〉, and Lagrangian position Xi of a marked fluid parcel with the IECM
micromixing model,

dφ = − 1

tm
(φ − 〈φ|u〉)dt, (3)

which governs the evolution of the concentration φ of the marked fluid parcel. In the above
equations dt is a small timestep calculated as dt = μt min[TLu , TLv , TLw ], where μt � 1
is the timestep constant and TLu , TLv and TLw are respectively the Lagrangian integral time
scales associated with the streamwise, spanwise and vertical velocities. There are two terms
on the right-hand side of Eq. 1: the deterministic drift term ai dt , and the stochastic diffusion
term bi j dξ j . The deterministic drift coefficients ai are modelled in accordance with Thom-
son’s (1987) “simplest” (but not unique) solution for 3-D Gaussian turbulence (hereafter
referred to as “Thomson-3D-G”). In the stochastic diffusion term, dξ j (t) represents an incre-
mental Wiener process with zero mean and variance dt . Equation 3 has as a free parameter
the scalar micromixing time scale tm, and is modelled using inertial-subrange theory as orig-
inally proposed by Cassiani et al. (2005a). The mean scalar concentration conditioned on the
local velocity (i.e., the conditional mean concentration) is denoted by 〈φ|u〉. If the gradients
of the background velocity statistics (mean velocities, Reynolds stresses) are too large, the
Thomson-3D-G solution (and SPMMM) may produce a rogue trajectory. In this study, a tra-
jectory is considered unrealistic whenever a velocity fluctuation (in any direction) is greater
than six times the local standard deviation (U ′

i > 6σi ). When this condition is encountered,
the three components of the velocity fluctuation are randomly re-initialized according to the
local velocity statistics.

SPMMM uses a pre-calculated conditional mean concentration field determined by a pro-
gram called MEANS, which is a 3-D LS trajectory model based on the Thomson-3D-G
solution. A residence time technique was used to calculate the conditional mean concen-
trations. MEANS releases from the source region a constant number of particles (Nφ), one
at a time (i.e. independently), and records the total amount of time that particles spend
in each bin of the discretized position-velocity space. From these total accumulated resi-
dence times tvr = tvr (xI , yJ , zK , uL , vM , wN ), the conditional mean concentration for bin
(xI , yJ , zK , uL , vM , wN ) is calculated as

〈φ|u〉 = 〈φ|u〉(xI , yJ , zK , uL , vM , wN ) = Qtvr
V N v

φ

, (4)

where

N v
φ = N v

φ(xI , yJ , zK , uL , vM , wN ) = Nφ fu�u�v�w, (5)

is the number of particles during the simulation that visit bin (xI , yJ , zK , uL , vM , wN ), Q is
the source strength, fu is the PDF of the driving velocity statistics, and V = V (xI , yJ , zK )
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is the volume of a spatial bin. With these pre-calculated conditional mean concentrations,
SPMMM can simulate micromixing.

In SPMMM, particles are released (one at a time) from the upstream face of the spa-
tial domain and allowed to propagate downstream. The initial positions of the particles
are drawn from a uniform distribution. If a particle is initialized within the source region,
then it is assigned a non-zero initial concentration, otherwise the initial concentration is
zero. At each timestep, the concentration of the particle is compared to the conditional
mean concentration calculated by MEANS and mixing occurs according to Eq. 3. At user-
specified extraction locations, the concentration of the particle is saved to file for post-pro-
cessing. When the particle leaves the simulation domain, the next particle is initialized and
released. Once all the particle trajectories have been computed, the saved concentrations from
the individual particles are averaged to produce mean concentrations at the data extraction
locations.

Two simulations were performed for this study. The first, labelled as WSL (for wall-shear
layer), used driving velocity statistics from wind-tunnel experiments for dispersion into a
neutral wall-shear layer flow (Fackrell and Robins 1982). These were identical to those used
by Postma et al. (2011a). As provided, these velocity statistics did not result in the gener-
ation of many rogue trajectories. The driving velocity statistics for the second simulation,
labelled as ROG (for rogue), were identical to those of the WSL simulation except for the
inclusion of a rogue cell in the volume bounded by 2.38 ≤ x/δ < 2.50, 0.25 ≤ y/δ < 0.31,
and 0.50 ≤ z/δ < 0.53 (δ = 1.2 m is the boundary-layer depth). Within this volume, the
variance of vertical velocity was artificially boosted by a factor of ten while ensuring that
σ 2

w remained differentiable in the discretized simulation domain. This resulted in large (but
finite) streamwise, spanwise, and vertical gradients of σ 2

w at this location that successfully
produced rogue trajectories and in turn broke the first-order consistency requirement. This
location was selected as it is on the edge of the plume where the mean concentration is lower
and therefore is an ideal location to view the first-order inconsistency.

The details and the free parameters of the simulations were essentially identical to those
used in Postma et al. (2011a). Only the source height (hs = 0.6 m) differed. This was to
ensure that the particle reflection algorithm was not employed before the particles encoun-
tered the rogue cell, thus eliminating the reflection algorithm as a cause of the first-order
inconsistency. Note, however, that the results presented herein do not depend on the values
of the free parameters.

3 Results

3.1 Location of Rogue Trajectories and a First-Order Inconsistency

The particle step count for both the SPMMM-WSL and SPMMM-ROG simulations was
approximately 1.2 × 109. Of these, the SPMMM-WSL simulation produced 27 rogue trajec-
tories whereas the SPMMM-ROG simulation produced 16,582. Of these, 16,550 occurred
within the rogue cell and the remaining 32 were scattered throughout the simulation domain.
The effects of the recurring rogue trajectories on the first-order consistency between MEANS
and SPMMM are shown in Fig. 1, which shows the spanwise transects of the mean concentra-
tion centred on the rogue cell. First-order consistency between MEANS-WSL and SPMMM-
WSL is demonstrated in Fig. 1a. The small discrepancies between the two models are due to
statistical noise. Within the rogue cell in Fig. 1b (between the dotted lines), the inconsistency
in predicted mean concentration between MEANS-ROG and SPMMM-ROG is apparent.
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(a) WSL; simulation without the rogue cell

(b) ROG; simulation with the rogue cell

Fig. 1 Spanwise transects of the mean concentration centred on the location (x/δ, z/δ) = (0.25, 0.50), cor-
responding to the upstream boundary of the rogue cell. The top panel displays the WSL simulation results
and the bottom panel displays the ROG simulation results. The MEANS simulation results are represented by
a solid line, while the SPMMM simulation results are represented by a dashed line. The dotted lines in the
bottom panel demarcate the spanwise range of the rogue cell

Well outside this region, the discrepancies between MEANS-ROG and SPMMM-ROG are
similar in magnitude to the discrepancies seen in the WSL simulation results. The strong cor-
relation of the first-order inconsistency with a region of recurring rogue trajectories suggests
that there is a causal relationship between the two.

3.2 Cause of the First-Order Inconsistency

The first-order inconsistency is a result of an incorrect accumulation of the conditional resi-
dence times by MEANS due to rogue trajectories. The end result was abnormally large condi-
tional mean concentrations in areas with recurring rogue particles (i.e., near the rogue cell).
The maximum conditional mean concentration experienced by particles in the SPMMM-
ROG simulation was 〈φ|u, v, w〉/φs ≈ 0.61, which was found within the rogue cell (φs ≈
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4,900 kg m−3 is the source concentration). For comparison, regions outside the rogue cell in
the SPMMM-ROG simulation had 〈φ|u, v, w〉/φs � 6.1×10−4 which is 1,000 times smaller
than the concentration within the rogue cell. Excluding the conditional mean concentrations
found in the rogue cell, particles in the SPMMM-WSL and SPMMM-ROG simulations inter-
acted with very similar fields of conditional mean concentration. When a particle from the
SPMMM-ROG simulation mixes with the abnormally large 〈φ|u, v, w〉 according to Eq. 3,
its concentration increases dramatically. For example, a particle from the SPMMM-ROG
simulation had its concentration increase from φ/φs ≈ 6.1 × 10−5 to φ/φs ≈ 9.7 × 10−3

in one timestep upon entering the rogue cell. For comparison, the maximum one-timestep
concentration increase in the SPMMM-WSL simulation was �φ/φs ≈ 4.1 × 10−5. Abnor-
mally large particle concentrations are why the first-order inconsistency extends outside of
the rogue cell in Fig. 1b; it takes time for the particle concentration to mix towards normal
(i.e., those not affected by rogue trajectories) conditional mean concentrations.

The SPMMM-ROG simulation had 16,550 rogue trajectories occur within the rogue cell.
The location in position-velocity space with maximum 〈φ|u, v, w〉/φs ≈ 6.1 × 10−1 cor-
responds to the single location that produced the most rogue trajectories (and, in particular,
this single location generated 310 rogue trajectories). For convenience, this will be called
the maximal generating location. Equation 5 predicts that, on average, two particles should
have visited the maximal generating location for both simulations. In the SPMMM-WSL
simulation, no particle visited this location, so the conditional residence time was tvr = 0 and
the conditional mean concentration was zero as a consequence. In contrast, in the SPMMM-
ROG simulation, 310 particles (all of them rogue) visited the maximal generating location,
the conditional residence time was tvr ≈ 0.96 s and the conditional mean concentration was
〈φ|u, v, w〉/φs ≈ 6.1 × 10−1. This large conditional mean concentration is a result of a
discrepancy between the normalization constant (which should be 2 as predicted by Eq. 5)
and the number of particles accumulating conditional residence time (which in this case is
310, each of which corresponded to a rogue trajectory). Since the normalization constant
is calculated using the PDF of the driving velocity statistics, and because this PDF cannot
predict occurrences of rogue trajectories, there is a great mismatch between the accumu-
lated residence time and the normalization constant. This results in Eq. 4 producing an
abnormally large conditional mean concentration and ultimately resulting in the first-order
inconsistency.

4 Discussion

The results shown in this work demonstrate that for flows with strong inhomogeneities, there
are problems with rogue trajectories in the Thomson-3D-G solution, which forms the back-
ground in which the micromixing model operates. Reinitialization of the rogue trajectories
did not significantly affect the predicted mean concentration of the LS model (MEANS
results in Fig. 1b) but did significantly affect them for the LS–IECM model (SPMMM
results in Fig. 1b). The cause of the first-order inconsistency discussed herein is specific to
the SPMMM implementation that pre-calculates the conditional mean concentration field.
However, it is conceivable that rogue trajectories could also affect other LS–IECM imple-
mentations. As atmospheric numerical models begin to make predictions of the higher-order
concentration fluctuations, more attention will have to be paid to the effects of rogue trajec-
tories. As was shown for SPMMM, re-initializing of rogue trajectories is not an acceptable
solution.
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4.1 Mitigation of Rogue Trajectories

An attempt to mitigate the effects of the rogue trajectories by an accurate accounting of the
location of rogue trajectories in position-velocity space reduced the first-order inconsistency,
but did not eliminate it. Since the rogue trajectories affect the accumulation of the condi-
tional residence time and thus result in abnormally large conditional mean concentrations,
the mitigation scheme is applied in MEANS by adding to Eq. 5 the total number of rogue
trajectory occurrences for each bin in position-velocity space. Considering the results given
above for the maximal generating location, the conditional residence time of tvr ≈ 0.96 s
would be normalized by 312 (=2 predicted by Eq. 5 + 310 rogue) particles as opposed to two
particles under this mitigation scheme. The “corrected” conditional mean concentration was
〈φ|u, v, w〉 ≈ 4.3 × 10−3 which, given that a first-order inconsistency still occurred within
the rogue cell, was still too large. This mitigation scheme suffered from the finding that par-
ticles may not attain a rogue trajectory in one timestep, and may take two or three steps for a
particle to become rogue (as defined by SPMMM). During these steps, which are not consis-
tent with the velocity PDF and thus contaminate the predictions of Eq. 5, the velocity of the
particle satisfied Ui < 6σi . Therefore the velocity of the particle is not re-initialized and no
accounting of the location of these steps for use in the mitigation scheme is performed. Thus
the first-order inconsistency persists. From a practical point of view, recording the location
of rogue trajectories increased the computational requirements of SPMMM.

The first-order inconsistency is a result of rogue trajectories. Eliminate the rogue trajecto-
ries and the first-order inconsistency will be eliminated too. Additional SPMMM simulations
performed with varying timesteps showed that the number of rogue trajectories decreased
with decreasing timestep until μt = 0.02, after which, further reductions in dt resulted in
a slight increase in the number of rogue trajectories. For example, there were 70,913 rogue
trajectories in the μt = 0.2 simulation, 16,582 in the μt = 0.02 simulation and 27,023 in the
μt = 0.002 simulation. Decreasing the timestep constant from μt = 0.2 to 0.02 allows for a
more accurate integration of the Langevin equations and therefore fewer rogue trajectories.
However, simulations with smaller timesteps are more affected by round-off errors since dt
itself is smaller (affecting all calculations involving it) and the increased number of particle
steps that may result in the increased accumulation of round-off errors. These are believed
to be the reasons that the μt = 0.002 simulation produced more rogue trajectories than the
μt = 0.02 simulation.

Are rogue trajectories the result of intrinsic dynamical instabilities in the model, or, per-
haps, the model dynamics are stable and the rogue trajectories are the result of using a poor
integration routine to “follow” the model dynamics? If the former, then all implementations
of LS–IECM models will be affected to some degree by rogue trajectories. If the latter, then
perhaps improved integration procedures will give first-order consistency. The fractional-
step semi-analytic integration scheme for the velocity fluctuation increment dU ′

i introduced
by Yee and Wilson (2007) splits the timestep into three steps. The first step integrates the
constant, linear and stochastic contributions to dU ′

i ; the second step integrates the diagonal
terms of the non-linear contributions to dU ′

i ; and the third step integrates the off-diagonal
terms of the non-linear contributions to dU ′

i . If the third step of this integration scheme is
omitted, then no rogue trajectories result through the integration of the generalized Langevin
equations but at the cost that the model no longer (formally) satisfies the WMC. Given this,
would it be useful to apply this integration scheme (omitting Step 3) in conjunction with
MEANS and SPMMM, which guarantees the removal of rogue trajectories but at the cost
that the model no longer (formally) satisfies the WMC?

123



438 J. V. Postma et al.

Alternatively, Thomson-3D-G is not a unique solution. The WMC does not provide suf-
ficient constraints on the model structure to produce a unique solution in three dimensions.
Therefore, for a given velocity PDF, there are many different model structures that satisfy
the WMC. Some of these model structures may exhibit dynamical instabilities and others
may be dynamically stable. The former will probably give rise to rogue trajectories, as they
are physically unreasonable. Given this, it should be possible to design a dynamically stable
model that also verifies the WMC.

5 Summary

The generation of rogue trajectories by a discrete implementation of the Thomson-3D-G
solution and their subsequent re-initialization breaks the theoretically required first-order
consistency of the LS–IECM micromixing model SPMMM. This failure is specific to the
pre-calculation algorithm employed by SPMMM, but it is conceivable that other numerical
implementations of LS–IECM models, and perhaps other micromixing models that utilize
LS models as the underlying basis for simulating the position and velocity of a marked fluid
element may be affected by rogue trajectories. Of course, only further investigations with
other models can address these questions.

The first-order inconsistency is a symptom of an underlying problem—the generation of
rogue trajectories by the Thomson-3D-G solution. More research into the exact cause and
prevention of rogue trajectories is needed. It is our hope that the results presented herein will
provide renewed impetus for investigation into rogue trajectories and methods to eliminate
them either through numerical means or alternative solutions that satisfy the WMC.
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