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This article briefly summarizes the historical evolution of the modern Lagrangian
stochastic (LS) class of models for the calculation of fluid element (or particle)
paths in turbulence. The fundamental advantages of a “first-order” LS model
relative to alternative descriptions of turbulent dispersion are (1) its ability to
correctly describe the concentration field even in the nondiffusive “near field” of
sources and (2) its ability to rationally incorporate all available statistical informa-
tion on the velocity field, even in the case that the latter is nonstationary and
inhomogeneous in all directions. There are also advantages of convenience: for
example, being grid free, LS models are easy to implement; and because particle
paths are computed independently, they are amenable to easy parallelization. LS
models are presently used to treat atmospheric transport and dispersion problems
on scales ranging from the intercontinental (for which case typically they are
“driven” by motion fields from numerical weather models) down to the scale of
the atmospheric surface layer (meters to hundreds of meters). Papers at the Chap-
man Conference on Langrangian modeling, from which this chapter was derived,
exhibited many interesting applications.
1. INTRODUCTION

The aim of a Lagrangian stochastic (LS) model is to com-
pute an ensemble of random paths of marked fluid elements
through a turbulent flow, based on knowledge of velocity
statistics. The simplest class of LS model is the random
displacement model (RDM, or zeroth-order LS model), which
represents a particle trajectory by a sequence of random incre-
ments in position. The more sophisticated “generalized Lan-
gevin approach” or first-order LS model (which draws ideas
from Langevin’s 1908 work on Brownian motion) creates the
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particle path by integrating a sequence of (damped) random
increments in velocity, such that the particle position X and
velocity U together constitute a Markovian state variable. To
be more specific, the general form of the first-order model is

dUi ¼ ai dt þ bij dξj; ð1Þ

dXi ¼ Ui dt ð2Þ
where t is time, ai = ai(X, U, t) is the systematic part of the
acceleration, and bij (normally diagonal) is another coefficient
scaling the random Gaussian forcing dξj. Equations (1) and (2)
can be integrated numerically by replacing the infinitesimal dt
with a finite time step Δt, whose magnitude may vary along
the trajectory in proportion to a local turbulence time scale.
Heuristic arguments for the validity of equation (1) as an
approximation to the Navier-Stokes equations can be made
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[e.g., van Dop et al., 1985], and specification of the coeffi-
cients ai, bij is the selection problem for LS models. Many
interesting and useful models are known, applying to diverse
regimes of turbulence spanning from the ideal (unbounded
homogeneous, isotropic turbulence) through the everyday
(stratified atmospheric surface layer in a horizontally homo-
geneous state; convective boundary layer (CBL)) to the exotic
(three-dimensionally inhomogeneous urban flow with build-
ings resolved).
However, this article is not intended as a thorough review

of the science of modern Lagrangian models, which may be
sought elsewhere [Sawford, 1985; Thomson, 1987; Wilson
and Sawford, 1996; Rodean, 1996]. Rather, its intent is to
capture some of the broad trends and developments that
have brought us to where we now are. We give some flavor
of the antecedent models and of the diverse disciplines,
backgrounds, motivations, and styles of early contributors;
we illustrate the range and impact of contributions driven
by intuition and by rigor; and we note a chronological
evolution in the specificity of the turbulence regime ad-
dressed and in the degree of connection with (or discon-
nection from) observations of dispersion. We restrict the
focus to LS models where the particles are (conceptually)
sampled independently from an ensemble of turbulent flows
and so move independently (so called one-particle models),
and to nonbuoyant and nonreactive (“passive”) particles, in
flows for which the turbulence prescription is limited to
single-point statistics. Meteorological applications are
emphasized.

2. EARLY DEVELOPMENT OF THE LAGRANGIAN
PERSPECTIVE ON TURBULENT DISPERSION

Taylor [1921] provided an exact Lagrangian solution for
the rate of spread of tracer in unbounded, stationary homo-
geneous turbulence. Let us take the case where particles are
independently released into such a flow at z = 0 (here, and
generally when we consider dispersion in one dimension
only, we take the direction to be the vertical axis). For each
realization, i.e., for each trajectory, the clock is reset (t = 0)
upon release. Taylor showed that the rate of increase in time
of the ensemble mean spread (as measured by the variance
z̄′2 ≡ σ2z of displacement along the z axis) is given exactly by
(Taylor’s equation 17)

dσ2z
dt

¼ 2∫
t

0

w̄ðt′Þwðt′ þ ξÞ dξ ≡ 2σ2w∫
t

0

RwwðξÞ dξ; ð3Þ

where Rww(ξ) is the Lagrangian velocity autocorrelation
function, first introduced by Taylor, and σw

2 the velocity
variance. (In terms of the eddy diffusion paradigm, the left-
hand side of equation (3) is twice the eddy diffusivity).
Integrating this result gives

z̄′2 ¼ 2σ2w∫
t

0
∫
t′

0

RwwðξÞ dξ dt′

¼ 2σ2w∫
t

0

ðt − ξÞ RwwðξÞ dξ:

ð4Þ

Let τ ¼ ∫
∞

0
RwwðξÞ dξ be the Lagrangian integral time scale.

Equation (4) has asymptotic “near-field” and “far-field”
limits

z̄′2 ¼ σ2w t2; t ≪ τ
2σ2w τt; t ≫ τ

�
ð5Þ

corresponding to a nondiffusive regime of “memory-dominated”
spread during which the release velocity is preserved (t ≪ τ),
and a long time regime in which the turbulent convection of
tracer may legitimately be represented as “diffusion,” with
effective far-field eddy diffusivity K∞ = σw

2τ. Taylor’s result
proves, then, that the classic “eddy diffusion” paradigm for
the evolution of the particle concentration p = p(z,t) in this
1-D (z-) space, namely,

∂p
∂t

¼ −
∂
∂z

−K
∂p
∂z

� �
¼ K

∂2p
∂z2

; ð6Þ

(constant eddy diffusivity K, Fickian diffusion equation) is
insufficiently general. Being equivalent to the eddy diffusion
treatment (not shown, but see Monin and Yaglom [1977,
section 10.3] and Boughton et al. [1987]), a zeroth-order LS
model (i.e., random displacement model or “random walk in
position”) cannot represent the near field. Conversely, the
first-order LS model gives the correct small and large time
behavior and, indeed, agrees exactly with Taylor’s result at
intermediate times in the case where Rww decays exponen-
tially. This represents the fundamental advantage of the (first-
order) LS models over simpler models, though in practice,
this capability is decisive only for a restricted range of pro-
blems involving the near field of sources (we expand on this
in section 5).
Ever since its derivation, Taylor’s result has served to

guide turbulent dispersion modeling, and with suitable re-
striction as to the domain occupied by a puff or plume of
dispersing tracer, it can be used in an approximate way for
sources in real flows. However, its adequate extension to
inhomogeneous and nonstationary turbulence, in the form of
today’s Lagrangian stochastic models, occurred only after
newfound access to computers spurred heuristic experiments
in the numerical simulation of particle trajectories and after
these experiments, in turn, stimulated the development
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during the 1980s of guidance in formulating the models for
general flows (see section 4). Of course, there were many
ingenious and illuminating developments, both theoretical
and experimental, in the period between Taylor’s work and
the advent of (accessible) computers: for example, Batche-
lor’s [1949] reexpression of Taylor’s result in terms of a
weighted integral

z̄′2 ¼ σ2w t2∫
∞

0

SðLÞw ð f Þ sin
2ðπftÞ

ðπftÞ2 df ð7Þ

of the Lagrangian velocity spectrum ( f representing fre-
quency). The transformation from equation (4) to equation
(7) is straightforward (the Lagrangian spectrum and the
Lagrangian autocorrelation function constituting a Fourier
transform pair). The low-pass spectral filter sin2(π ft)/(π ft)2

expresses the (intuitive) fact that for small travel times t, all
eddies contribute to spread, while, with increasing t, increas-
ingly only “slow” (small f ) eddies dominate.
As already noted, and as testified by its prominence in text-

books [e.g. Sutton, 1953; Pasquill and Smith, 1983], Taylor’s
Lagrangian paradigm proved preeminent, either explicitly or
indirectly, in subsequent efforts to deepen the theoretical frame-
work and provide useable real-world dispersion models, one
example of the latter being Sutton’s [1953, equation 8.31]
model for dispersion from a continuous ground-level point
source in the atmospheric surface layer [see also Monin and
Yaglom, 1977, section 10.5]. For several decades one of the
influences of Taylor’s work could be found in theoretical papers
that attempted to interrelate Eulerian and Lagrangian statistics
in idealized flow regimes, for “the relation between Lagrangian
and Eulerian correlation functions is basic to the understanding
of turbulent diffusion” [Weinstock, 1976]. Summing up a sym-
posium at Oxford University, Sutton [1959, p. 438] stated:

It is most appropriate that, with Sir Geoffrey Taylor in our midst, so
much of the work has been founded on his famous paper of 1921 on
the random walk. I have given up counting the number of times that
celebrated equation connecting the Lagrangian correlation coefficient
with the standard deviation of the particles has been written out on the
blackboard.

Many influential scientists (including S. Corrsin, J. L. Lum-
ley, R. H. Kraichnan, J. R. Philip, and P. G. Saffman) partic-
ipated in this prolonged effort to relate Lagrangian to
Eulerian statistical properties, and following a widely cited
contribution by Hay and Pasquill [1959] delivered at the
above-mentioned symposium, namely, a practicable method
for short-range air pollution calculations involving the ratio β
of Lagrangian to Eulerian integral time scales, a particular
focus was the provision of theoretical values for that ratio
[e.g., Corrsin, 1963; Philip, 1967; Smith, 1968]. It is inter-
esting to remark that a modern LS model, if it respects the
well-mixed condition [Thomson, 1987] for a given regime of
flow having a specific (postulated) Eulerian velocity pdf,
must “produce” the long sought for Lagrangian statistics,
though in numerical rather than analytic form, and with the
time scales determined using turbulence phenomenological
relations (e.g., a parameterization of the energy dissipation
rate) and hinging on the specified value of a dimensionless
constant “C0” (that we define and discuss later). Thus, the LS
model can be said to “solve” the problem of relating
Lagrangian to Eulerian statistics, albeit in a restricted sense:
for the LS approach achieves this outcome by virtue of
adopting the (plausible, but nonrigorous) Markovian frame-
work that (possibly) these scientists might have considered a
too sweeping simplification.
Taylor’s result may easily be obtained by an analysis of

Langevin’s [1908] equation, which had been developed to
describe Brownian motion and represents “the first example
of a stochastic differential equation” [Lemons, 2002; Gardi-
ner, 2004]; indeed, as a precursor to his main result, Taylor
himself gave an alternative analysis breaking a trajectory
into a sequence of discrete steps whose magnitudes were
correlated from one to the next. Representing Lagrangian
variables in upper case, and translating Langevin’s coeffi-
cients into a notation appropriate to our ends, Langevin’s
equation may be written

dW ¼ −
W

τ
dt þ

ffiffiffiffiffiffiffiffi
2σ2w
τ

r
dξ; ð8Þ

where dξ represents an uncorrelated sequence of Gaussian
random numbers having vanishing mean and variance dt.
Increments in velocity over intervals dt comprise a determin-
istic component (usually, as here, having the effect of damp-
ing the excursions in W on a time scale τ) and a purely
random component. In stationary homogeneous turbulence,
equation (8) reproduces Taylor’s result for the special case of
an exponential correlation function.
In modern parlance, a generalized Langevin equation is

taken as the framework for developing Lagrangian models
and typically is written

dUi ¼ aiðX;U; tÞ dt þ bijðX;U; tÞ dξj; ð9Þ

where the random forcing dξi is Gaussian, with d̄ξi ¼ 0 and
d̄ξidξj ¼ dt δij. The selection problem for first-order LS
models amounts to the prescription of the systematic part of
the acceleration ai and the scaling coefficient bij, and we
return to this later.
For the comprehensibility of what is to follow, this is an

appropriate point to introduce the Fokker-Planck (FP) equa-
tion corresponding to equation (9). Let p(x,u,t) represent the
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joint probability density (at time t) for the position and
velocity of “particles” of tracer in a flow, and let V represent
the domain of the position-velocity phase space. Because
(X,U) is Markovian, one may write

pðx2; u2; t2Þ ¼ ∬
V
pT ðx2; u2; t2jx1; u1; t1Þpðx1; u1; t1Þ dx1du1;

ð10Þ
where pT (x2,u2,t2|x1,u1,t1) is the transition probability den-
sity for going from state x1,u1 to (a region around) x2,u2 over
the time interval t2 � t1 and is related to the posited model of
motion, i.e., equation (9). The FP equation is derived from
this integral equation, and (adopting the transition density
implied by equation (9) for small t2 � t1) it reads

∂p
∂t

¼ −
∂
∂xi

ðuipÞ −
∂
∂ui

ðaipÞ þ 1

2

∂2

∂uj∂uj
ðb2pÞ ð11Þ

(where we have anticipated the restriction bij = bδij).
Returning to the chronological line of development, Obu-

khov [1959] realized the appropriateness to high Reynolds
number turbulence of models formulated in position-velocity
space. He noted “the conditional distribution function (for
velocity and position) is the principal characteristic of the
motion in Lagrangian variables” and assumed “the evolution
of the state of the selected particle in time forms a Markov
process and can be described by the Fokker-Planck equation
in the space (of position and velocity)” [Obukhov, 1959,
p. 113]. He then invoked the Kolmogorov-Obukhov inertial
subrange similarity theory [Kolmogorov, 1941a, 1941b;
Obukhov, 1941] to identify the coefficient b with the turbu-
lent kinetic energy dissipation rate e, namely,

b ¼
ffiffiffiffiffiffiffiffiffi
C0ε;

p
ð12Þ

where C0 is a dimensionless coefficient that the original
theory regarded as universal. It is common to express this
coefficient b in terms of a decorrelation time scale τ, e.g.,

b ¼
ffiffiffiffiffiffiffiffi
C0ε

p
¼

ffiffiffiffiffiffiffiffi
2σ2w
τ

r
ð13Þ

[Tennekes, 1979].
Obukhov’s paper spurred other efforts. Lin [1960a, 1960b]

aimed to provide a theoretical foundation for Richardson’s
law of relative dispersion, accounting for anisotropy (but not
inhomogeneity). He considered his work to be based on
less restrictive assumptions than Obukhov’s and envisaged
the possibility that C0 might vary with the turbulence Rey-
nolds number, as argued more recently by Sawford [1991]
and Poggi et al. [2008]. Lin recognized that the class
of models under consideration should be regarded as repre-
senting the motion only on time scales that are large
compared to the acceleration time scale of the turbulence.
Acknowledging guidance from Lin and others, Chadam
[1962, pp. iii and 3] noted

It appears that in the Lagrangian sense, the motion of a particle in a
turbulent fluid is governed by a Langevin equation... fluid elements are
moving almost freely and are subjected to small random accelerations.

Considering diffusion in homogeneous, isotropic turbulence,
Chadam extracted Taylor’s results from the Langevin equa-
tion and noted that if the process is Markovian in (the
position-velocity) phase space, the joint pdf for position and
velocity satisfies the Fokker-Planck equation. Krasnoff and
Peskin [1971] also studied Lin’s model, noting that it “nec-
essarily reproduces G.I. Taylor’s theory of diffusion,” and
focused on relating parameters of the Langevin model (for
stationary, homogeneous, and isotropic turbulence) in a rig-
orous way to observable properties of the turbulence; in
particular, they focused on evaluating (what in modern terms
would be) C0e and used their formulation to deduce some
Lagrangian statistics, such as “the Lagrangian time micro-
scale.” Several other contributions could be listed, some
bearing on relative (rather than absolute) diffusion, all
grounded in the theory of stochastic processes, but none of
them yielding a model applicable to even the simplest regime
of inhomogeneous atmospheric turbulence (except to the
extent that the inhomogeneity can be neglected). Many such
examples can be traced from a review by Yaglom [1973].

3. EARLY HEURISTIC COMPUTATIONAL LS MODELS

By the late 1960s, access to digital computers had pene-
trated to the level of meteorological offices and (many)
universities. An era ensued of what might be termed “play-
ful” attempts to numerically mimic atmospheric dispersion
along Lagrangian lines in realistic atmospheric turbulence.
Thompson [1971] suggested that in treating atmospheric dis-
persion problems, rather than adopt a “deterministic method”
(such as solving an advection-diffusion equation), “it may
often be more useful to simulate the original physical situation
directly” and that doing so “also turns out to be simpler.”
Thompson’s treatment falls into the first-order LS category,
for “each particle is tracked by integrating the forces on it,
such as wind and buoyancy, to get its velocity, and integrating
that to get its position.” The time constant τ, as in many of the
early papers, was independent of position. Interpolating from
the description given, independent stochastic variables “pi”
were computed by way of (three) Markov chains (each with
Gaussian forcing, and a memory term specified to achieve
the nominated autocorrelation time scale τ), and these p’s
were scaled to provide the Lagrangian velocity fluctuations.
Several idealized regimes of turbulence were studied,



Figure 1. Bullin and Dukler’s [1974] first-order LS simulation of
the vertical profile of concentration at a radial distance of (X1 =)
100 m from a continuous point source in the stratified atmospheric
surface layer (Project Prairie Grass run 45, for which, according to
van Ulden [1978], the friction velocity u* = 0.39 m s�1 and the
Obukhov length L = �87 m). The specification X2 = 0 presumably
indicates the data stem from that one of the six profile masts that
was best centered within the plume. The turbulent velocity standard
deviation was assigned a constant measured value, and a measured
Eulerian integral time scale was converted to an effective Lagrang-
ian time scale by assuming the ratio of Lagrangian to Eulerian time
scales was 4.0. That time scale was implemented by adjusting the
cutoff frequency of an electronic white noise generator. Tran-
scribed, with permission, from Bullin and Dukler [1974, Figure
15]. Copyright 1974 American Chemical Society.
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e.g., dispersion in a constant-K (Ekman) layer with a simple
formulation of the mean winds.
With the objective of studying “diffusion downwind of a

low-level source in a thermally neutral atmosphere,” Hall
[1975] adopted a Markov chain model

W ðt þ dtÞ ¼ αW ðtÞ þ βr; ð14Þ

α ¼ 1 − dt=τ ≈ expð−dt=τÞ; ð15Þ

β ¼ σw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2;

p
ð16Þ

for the vertical velocity (r is a standardized Gaussian random
variate, and the Markov chain formulation is equivalent to
the Langevin model with finite steps). Hall incorporated a
streamwise velocity fluctuation by randomly adding ±2.2u*
to the mean velocity upon each time step (u* being the
friction velocity and 2.2u* an approximate value for the
root-mean-square (r.m.s.) along wind velocity σu). This was,
in most respects, an adequate treatment of dispersion in an ideal
neutral surface layer, and adjustments to the unstably stratified
case were offered by way of diabatically corrected profiles (of
mean velocity ū and velocity standard deviations σu, σw);
however, Hall’s specification τ ∝ z/ū for the time scale did not
equip his model with the correct (effective) diffusivity. Hall’s
choice impliesK∞ ∝ σw2z/ū, whereas in a wall shear layer (where
the eddy viscosity νT = kvu*z, with kv = 0.4 the von Karman
constant) one should have K∞ ∝ σwz. These simulations were
compared only very schematically with observations.
In a pioneering paper, Bullin and Dukler [1974] imple-

mented a sophisticated first-order LS model on a hybrid
analog/digital computer. These authors, Chemical Engineers,
adopted “the generalized Langevin equation,” giving an
explicit rationalization for doing so, and painstakingly eval-
uated all needed free parameters in their model by relating
them to specific measurements: in their own words, “all
statistical terms in the equations are related to measurable
Eulerian meteorological or fluid mechanical conditions.”
Very good simulations of laboratory and field dispersion
experiments were reported; for example Figure 1 is their
comparison of their model with a vertical concentration
profile observed in Project Prairie Grass. As an aside,
these authors [see also Lee and Dukler, 1976] based their
simulation on a rescaled Lagrangian velocity (in their termi-
nology, M

^
L) that, upon multiplication by the local velocity

standard deviation, gave the true velocity; and they generated
the needed random forcing by filtering electrical white noise.
These techniques were carried over, or perhaps adopted
independently, by Thurtell and Kidd (see below).
Joynt and Blackman [1976] used a form of the random

displacement model to simulate atmospheric dispersion on
the mesoscale, specifically the dispersion of sulfur dioxide
near Melbourne, Australia. In each time step, a particle was
advected by the mean velocity and displaced “to a point
randomly chosen on the surface of an ellipsoid” whose axes
were matched to the velocity standard deviations so that the
variance of the vertical displacement was 2K∞Δt ≡ 2σw

2τΔt,
with τ specified as z/σw and the time step Δt constant (and
larger than τ). Particles were reflected off ground, and their
motion was damped at the height of the capping inversion.
This heuristic RDM did not compensate for vertical gradients
in K∞ = σw

2τ, nor was the specification for τ appropriately
tuned for the entire CBL (though it is of the correct order of
magnitude near ground), but for its time, this paper repre-
sented an ambitious application of a Lagrangian stochastic
methodology.
Perhaps the most comprehensive early Lagrangian simula-

tions of dispersion on the (smaller) scale of the atmospheric
surface layer were those initiated at the University of Guelph
by G.W. Thurtell. As a doctoral student at the University of
Wisconsin, which at that time had a major role in the U.S.
army’s micrometeorology program, Thurtell and other
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students had participated in discussions with H. Lettau of
what were (at the time) considered to be errors in measured
canopy wind and concentration profiles (the measurements,
sponsored by the U.S. Army Signal Corps out of Fort Hua-
chuca, had been made in Thailand). Thurtell later realized
that near-field effects around leaves might explain the appar-
ent anomalies and began work on numerical simulations. In
1976, while visiting CSIRO Division of Environmental Me-
chanics in Canberra (the “Pye Lab,” headed by J.R. Philip),
Thurtell participated in measurements by E.F. Bradley, O.T.
Denmead and others of fluxes of heat, water vapor, and
carbon dioxide in the Uriarra pine forest. These measure-
ments, eventually published by Denmead and Bradley
[1985], dramatically showed countergradient vertical fluxes
in the canopy (see Figure 2), and Thurtell, understanding the
cause, continued to develop a Lagrangian framework for
their interpretation. Intuition led him to take the step of
transforming a layer of sheared, vertically inhomogeneous
turbulence in (x, z, t) space into a layer of sheared but
homogeneous turbulence in (x, z*, tH) space, where the rate
at which tH advances along the particle trajectory depends on
the particle position (this idea is consistent with, but did not
derive from, Batchelor’s [1957, 1964] Lagrangian similarity
theory). The properties of the scaled turbulence were speci-
fied as those appropriate to the real world at an arbitrary
reference height H and were generated by passing a white
noise analog voltage signal through a low-pass RC filter.
(Another aside: the RC time constant of this filter had to be
chosen as a function not only of the wanted reference time
scale τH, but also as a function of the real-time iteration rate
Figure 2. Countergradient vertical eddy flux of heat (H, W m�2)
beneath the crown of a pine forest, and of carbon dioxide Fc within
the crown. An upward latent heat flux (λE, W m�2) occurs beneath
the crown where the associated mean vertical gradient of mixing
ratio vanishes. By virtue of providing a valid treatment of the near
field of nearby sources, a first-order LS model correctly reproduces
the flux-gradient relationship. Reproduced from Denmead and
Bradley [1985], with kind permission of Springer Science + Busi-
ness Media B.V.
of the algorithm, which was written in assembly language
and ran on a DEC PDP-11 with 16 K-bytes of 8 bit memory
in Thurtell’s field trailer. A digital-to-analog convertor pro-
vided signals x(tH), z*(tH), which were displayed on an os-
cilloscope. G. Kidd, an electrical engineer, played a key role
in this work.)
The Thurtell algorithm imposed whatever vertical profiles

of velocity variance, mean velocity ū(z), and time scale τ
were wanted and preserved the essential property that in
traveling a streamwise distance ū(z)t at height z, a particle
would (on average) experience the correct number of inde-
pendent vertical velocity “choices” (i.e., the proper ratio dt/
τ(z) was encoded; the real world time step dt equivalent to
dtH varied along the trajectory so as to keep dt/τ constant and
small). This scheme could be attuned to simulate dispersion
in interesting regimes of turbulence for which analytic solu-
tions existed and was shown to reproduce those solutions
[Wilson et al., 1981a] and (upon suitable tuning of the
autocorrelation time scale τ) to provide an excellent simula-
tion of the Project Prairie Grass dispersion trials [Wilson et
al., 1981c]. However, the most consequential aspect of the
work under Thurtell’s scheme was the realization [Wilson et
al., 1981b] that when the algorithm was applied to dispersion
in the sort of turbulence system characterized by plant can-
opy flow, i.e., in which the turbulent velocity scale σw varies
with height, particles would accumulate in the bottom of the
canopy where σw was small. A heuristic upward drift veloc-
ity w̄L ¼ σwτ∂σw=∂z had to be added to the scheme, and only
by virtue of that step could this phenomenon, loosely remi-
niscent of the high density of a gas where its temperature
(proportional to the kinetic energy of molecules) is low, be
circumvented (Faller and Mignerey [1982] passingly allude
to having experienced the same difficulty). By simulating the
case of an elevated area source extending far upstream, and
treating the surface as a perfect reflector, Wilson et al. fo-
cused on the mean concentration profile in the canopy layer
beneath the source, where the mean vertical flux was (effec-
tively) zero: a criterion for the adequacy of the bias velocity
was that it should ensure that, away from the immediate
region of the source, the mean concentration gradient should
vanish wherever the mean flux did.
Legg and Raupach [1982], in one of a series of contribu-

tions from the CSIRO Pye Lab. group relating to this history,
argued that since in steady state, horizontally homogeneous
flow, a vertical gradient ∂σw

2/∂z in vertical velocity variance
is accompanied by (i.e., balanced by) a vertical gradient in
the mean pressure departure from the hydrostatic reference
state, one must include in the Langevin equation a determin-
istic acceleration equal to the pressure force per unit mass,
namely, ∂σw

2 /∂z. Legg and Raupach adopted the Langevin
equation (here slightly rephrased)
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dW ¼ −
W

τ
þ ∂σ2w

∂z

� �
dt þ

ffiffiffiffiffiffiffiffi
2σ2w
τ

r
dξ; ð17Þ

which can be thought of as giving the particles a mean drift
velocity 2σwτ∂σw/∂z, i.e., twice the value used by Wilson et
al. [1981b]. The discrepancy was reconciled by Wilson et al.
[1983] who showed that it lay in the distinction between a
formulation of the Markov chain (or Langevin equation) in
terms of the velocity W [Legg and Raupach, 1982] or in
terms of the ratio p = W/σw [Wilson et al., 1981b]. However,
Wilson et al. [1983] demonstrated that neither formulation is
successful in a turbulence regime with rapidly changing
σwτ∂σw/∂z and gave yet a third formulation (labeled WTK″
and also arrived at by Durbin [1983], see his footnote
page 63) that subsequently was proven [Thomson, 1984,
1987] to correspond to the unique well-mixed, 1-D LS model
for Gaussian inhomogeneous turbulence.
Several other papers in the early 1980s continued to

develop the first-order LS model in one way or another. For
instance, Ley [1982] treated the neutral surface layer using a
Markov chain model with constant time step, incorporating
the ū′w′ covariance and comparing her simulations with
neutral Project Prairie Grass experiments (by now, LS mod-
els were being “tuned” to respect whatever reliable empirical
relationships had been established for the turbulent flow
under consideration, e.g., the needed time scale τ can be
related to the surface layer eddy viscosity/diffusivity, etc.).
As another example, Legg [1983] simulated dispersion ex-
periments performed in a boundary-layer wind tunnel, his
Markov chain model providing correlated vertical and
along-stream fluctuations, whose statistics could be con-
trived to be non-Gaussian (motivation for this being that
velocity distributions within and above a plant canopy are
highly skewed). Legg calculated not only mean concentra-
tions but also (and he was perhaps the first to have done so)
the turbulent mass fluxes, which could be compared with
measurements.
Thomson [1984] sought to formulate a Langevin model in

a way that would ensure “the correct steady state distribution
of particles in (position-velocity) phase space.” He presup-
posed a model framework of the form

ΔW ¼ −
W

τ
Δt þ μ ð18Þ

and deduced the necessary statistics of the random forcing μ.
The restricted model form, with the linear damping term, led
to a requirement (in general) for non-Gaussian forcing.
Thomson also analyzed models formulated in terms of re-
scaled velocity (W/σw), showing that such a model is satis-
factory even with Gaussian forcing, if the Eulerian velocity
pdf is Gaussian.
We close this section by considering the Markov chain
simulation by Baerentsen and Berkowicz [1984] of dispersion
in the convective boundary layer (CBL). The CBL represents
a particularly challenging regime of turbulence, and more
recent LS simulations of the CBL will feature below. Setting
a precedent for much subsequent work, Baerentsen and Ber-
kowicz approximated the pdf for vertical velocity in the CBL
as a linear combination of two Gaussians, one representing
the velocity within updrafts and the other within the (areally
more dominant) downdrafts, leading to an overall velocity
distribution that was skewed. They separated their Markov
chain simulation into “two parallel schemes with different
statistics, one for particles in updrafts and one for particles in
downdrafts,” the particles having an assigned probability of
jumping during any given step from updraft to downdraft or
vice versa. The random forcing was Gaussian, a term in their
Markov chains compensated (as was by now known to be
necessary) for the vertical inhomogeneity of the updraft (or
downdraft) velocity variance, and particle paths were re-
flected at the top and bottom of the CBL. Like Thomson
[1984], but in this case by performing random flight simula-
tions, Baerentsen and Berkowicz examined whether a cloud
of particles that were initially uniformly mixed on the vertical
axis would remain uniformly mixed, and whether their veloc-
ity pdf would remain consistent with the assumed (skew)
Eulerian pdf, an idea that was to be important for subsequent
developments. Shortly afterward, de Baas et al. [1986] also
performed an LS simulation of the CBL, but using “a single
Langevin equation to describe all particle velocities.” The
random forcing in their Langevin equation (which was of the
form of equation (18)) made use of the prescription of Thom-
son [1984], i.e., it was non-Gaussian. Similar simulations, but
using an improved description of the Lagrangian time scale,
were carried out by Sawford and Guest [1987].

4. NEW CRITERIA FOR LS MODELS AND THE
WELL-MIXED CONDITION

The previous section covered contributions whose basis
was, to differing degrees, heuristic. Overlapping with and
stemming from those contributions, there commenced
roughly in the early 1980s a search for more rigorous criteria
to guide the specification of trajectory models in arbitrarily
complex turbulent flows, for it had become evident that
inhomogeneities (most familiarly in the atmospheric context,
∂σw

2 /∂z) needed to be carefully handled. A spate of new
contributions exploited the existing theory of stochastic pro-
cesses and spurred the analysis of LS models in terms of
properties of the Fokker-Planck equation to which they were
equivalent, and in terms of their relationship to the Navier-
Stokes and/or Reynolds equations. At the risk of excessive
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abbreviation, the main points of attack were (1) acceptability
of a first-order model’s small time limit for spread from a
source [Durbin, 1980a; van Dop et al., 1985]; (2) accept-
ability of the zeroth-order model (i.e., “diffusion” model)
implied (asymptotically, in the limit t/τ→ ∞) by a first-order
LS model [e.g., Durbin, 1983, 1984]; (3) admissibility of
non-Gaussian random forcing of the generalized Langevin
equation [Thomson, 1984; van Dop et al., 1985; Novikov,
1986; Sawford, 1986; Thomson, 1987]; (4) justifiability of
the generalized Langevin equation on the basis of the Navier-
Stokes equations [e.g., van Dop et al., 1985; Haworth and
Pope, 1986]; (5) reconciliation of the Eulerian closure as-
sumptions implied by a generalized Langevin equation with
the Reynolds equations [e.g., van Dop et al., 1985; Haworth
and Pope, 1986; Pope, 1994]; (6) equivalence of forward and
reverse formulations of dispersion in the context of incom-
pressible flows [e.g., Egbert and Baker, 1984]; (7) proposed
requirement [Pope, 1987] that driving velocity statistics
should be “physical,” i.e., consistent with the Navier-Stokes
(and Reynolds) equations (from the subsequent perspective
of the well-mixed condition, one adopts whatever field of
flow statistics is plausible and convenient, and one infers a
consistent LS model); and (8) requirement that models pro-
duce the correct steady state distribution of particles in posi-
tion-velocity phase space [e.g., Janicke, 1983; Thomson,
1984; Novikov, 1986; Sawford, 1986; Thomson, 1987].
Space does not permit to do justice to this body of work,

which led to the realization that many of these criteria are
equivalent to or implied by the “well-mixed condition,” i.e.,
the condition that if the particles are well mixed in velocity-
position space, they should remain so [Thomson, 1987]. We
shall arbitrarily pick some few salient contributions.
Durbin [1980a] proposed to model dispersion by way of a

Markov chain for velocity, noting that in the limit Δt → 0
(infinitesimal time step), this reduces to a continuous Langevin
equation whose solution in homogeneous turbulence for t ≫ τ
is equivalent to the outcome of a random walk in position

dZ ¼
ffiffiffiffiffiffiffiffiffiffi
2σ2wτ

q
dξ ð19Þ

(where dξ is Gaussian with variance dt, and σw
2 τ is, of course,

Taylor’s far-field diffusivity). In extending this to inhomoge-
neous turbulence with τ = τ(z), Durbin envisaged that particles
would “tend to drift up gradients of τ” and proposed to account
for this in his random displacement model by adding to
equation (19) a term WLdt, where

WL ¼ σ2w
dτ

dz
: ð20Þ

This he proved to be consistent with Batchelor’s formula for
the drift of the center of mass of a tracer cloud in a neutral
surface layer (dhZi/dt = bu*). Although envisaging that the
Markov chain formulation must, in general, be solved numer-
ically, Durbin put an emphasis on the formal basis of the
model(s) and extracted analytic solutions (to the random dis-
placement model, i.e., “Markov limit” of the Langevin equa-
tion) for special cases. Later, Boughton et al. [1987] wrote the
RDM in a more general form as

dZ ¼ dK

dz
dt þ

ffiffiffiffiffiffiffiffi
2K

p
dξ ð21Þ

(dξ having variance dt), where the term in ∂K/∂z corrects for
vertical inhomogeneity [see also Monin and Yaglom, 1977,
section 10.3].
van Dop et al. [1985] set out to “develop a generalized

form of the Langevin equation, suitable for inhomogeneous
and unsteady turbulent flows, which has a simple physical
explanation” and suggested a model of the form

dW ¼ ð−W=τþ a1ðZ; tÞÞ dt þ a1=22 dωt; ð22Þ
where the forcing dωt was not restricted to be Gaussian (this
general approach was extended by Sawford [1986]). The
coefficients a1 and a2 were determined by considering the
small t behavior and by comparison with the Eulerian mo-
ment equations. Note that equation (22) excludes models in
which the systematic part of the acceleration is nonlinear in
the particle velocity, a feature also of the class of generalized
Langevin models prescribed by Haworth and Pope [1986].
Thomson [1987] took equation (9) as the most general

framework for a first-order LS model and using results from
the theory of stochastic processes established that the forcing
dξj necessarily must be Gaussian if the velocity is to evolve
continuously in time without jumps. Accordingly, the joint
density function p(x,u,t) is governed by the Fokker-Planck
equation (11). Thomson considered the implication of the
requirement that an LS model should provide the correct
steady state particle distribution in position-velocity phase
space. For simplicity, we suppose the flow is stationary and
of constant density ρ, and we let ga(u;x) be the probability
density function for the Eulerian velocity u at position x.
Suppose further that the model is applied to the motion of
particles whose distribution at time t = 0 is p(x,u,0) ∝ ρga(u;x).
As these particles are already well mixed, an acceptable
model must ensure p(x,u,t) ∝ ρga(u;x) for arbitrary t > 0. It
follows that ga(u;x) must be a steady state solution of equa-
tion (11), providing a single constraint on the model’s for-
mulation. For a 1-D model, and once b (or C0) has been
specified (see equation (12)), that single constraint suffices to
yield the unique well-mixed, first-order model; for a multi-
dimensional model, the well-mixed condition selects a
class of acceptable models. Thomson showed that, if the
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well-mixed condition is satisfied, then most of the other then
known selection criteria are also fulfilled.
Weil [1990] pointed out that the treatment of boundaries

could lead to violations of the well-mixed condition, even if
away from the boundaries the terms in the stochastic differ-
ential equation (9) were consistent with it. Treating homoge-
neous skew turbulence in the context of an examination of
the CBL, Weil reasoned that using perfect reflection would
be inconsistent with the assumed Eulerian velocity pdf, and
introduced a more complex reflection scheme. Hurley and
Physick [1993] also addressed the problem of modeling the
CBL using homogeneous skewed turbulence, with a view to
designing an efficient applied model. They proposed a num-
ber of reflection algorithms, including one which relates the
reflection velocity Wr to the incident velocity Wi using

∫
0

Wi

wgaðwÞ dwþ ∫
Wr

0

wgaðwÞ dw ¼ 0: ð23Þ

This was later shown by Thomson and Montgomery [1994]
to ensure the well-mixed condition is satisfied (in the limit of
small time step) and was extended by Thomson et al. [1997]
to the case where there is a discontinuity in turbulence levels
across an interface such as the boundary-layer top.
In the balance of this article, we shall attempt two tasks:

first, to give some flavor of the immediate impact of the ideas
of this section and of the range of subsequent applications;
and second, to indicate what progress has occurred subse-
quently to these ideas in terms of the ongoing attempt to
define a unique formulation of the first-order LS model in the
multidimensional case.

5. APPLICATIONS OF WELL-MIXED LS MODELS

In choosing a few examples to illustrate the span of
applications of the modern Lagrangian stochastic model,
we select those which seem best to indicate the unique
capabilities of the approach, namely, (1) ability to rationally
Figure 3. Schematic view of statistics of vertical motion in a c
are adapted from Sawford and Guest [1987]. Copyright Amer
utilize known velocity statistics, whether these be Gaus-
sian or otherwise; (2) correct treatment of the near field;
(3) applicability to arbitrarily complex, 3-D turbulence; and
(4) universality of the LS approach for treating unresolved
(or “turbulent”) scales of motion across the range of scales
of application, i.e., from micrometeorology to planetary
meteorology.
Dispersion in the CBL is difficult to model accurately

because of the strongly inhomogeneous and non-Gaussian
character of the flow (see Figure 3). As a result, the CBL
became the application that arguably best demonstrates the
advantages of the Lagrangian stochastic technique, namely,
its ability to accommodate non-Gaussian flow statistics (and
more broadly, whatever statistical information on the flow is
available). We have covered above the early LS treatments of
the CBL by Baerentsen and Berkowicz [1984], de Baas et al.
[1986], and Sawford and Guest [1987]. Soon after the devel-
opments summarized in section 4, Luhar and Britter [1989]
treated vertical dispersion in the CBL with the 1-D LS model
implied by the well-mixed constraint when the Eulerian
velocity pdf is a linear combination of two Gaussians.
Adopting plausible profiles of velocity variance and skew-
ness, Luhar and Britter produced simulations that nicely
matched the striking features of dispersion from near-ground
and elevated sources in the CBL (see Figure 4). Subsequent
LS models of the CBL differ in details concerning the pa-
rameterization of velocity statistics [e.g., Weil, 1990; Du
et al., 1994] but not in their fundamentals.
The validity of the first-order LS model in the near field of

sources is of key significance for modeling turbulent trans-
port in plant canopies. Vertical profiles of mean temperature,
humidity, and carbon dioxide concentration within a canopy
are strongly influenced by heat, water vapor, and carbon
dioxide fluxes to or from nearby leaves [Raupach, 1987,
1989], and a treatment of the interaction of a crop with its
environment must detail the mutual feedback on one another
of the canopy source distribution and the airstream proper-
ties. That is to say, models of crop productivity must, in some
onvective boundary layer. The plots of σw
2 /w*

2 and hw3i/w*
3

ican Meteorological Society, used with permission.



Figure 4. Dispersion in the CBL (mixed layer depth h) from a continuous source at (left) z/h = 0.07 or at (right) z/h = 0.5.
Vertical (height) axis ranges from ground to the top of the CBL. (top) The LS simulations of Luhar and Britter [1989],
reprinted from Luhar and Britter [1989] with permission from Elsevier. (bottom) The Willis and Deardorff [1976, 1981]
convection tank experiments. Adapted from Willis and Deardorff [1976] with permission from John Wiley and Sons and
from Willis and Deardorff [1981] with permission from Elsevier.
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manner, parameterize the canopy micrometeorology. Start-
ing at least as early as the 1950s, crop modelers parameter-
ized canopy transport by way of K theory (Legg and Long
[1975] performed an interesting experimental study that at-
tempted to determine the eddy diffusivity in a canopy by way
of tracer dispersion experiments) or, more typically, a trans-
fer resistance network (which is the spatially aggregated
equivalent of a K theory model). For some ends, this may
be satisfactory [e.g., Dolman and Wallace, 1991]. However,
Leuning et al. [2000], who used the Localized Near Field
theory of Raupach [1987] to estimate the source distributions
of heat, water vapor, carbon dioxide, and methane in a rice
canopy, reported that it was essential to account for the near-
field contributions of sources to the canopy concentration
profile. The most compelling sign that this is so is the
potential occurrence (depending in detail on the source dis-
tribution) of countergradient eddy fluxes [Denmead and
Bradley, 1985, see Figure 2]. Correct description of the
flux-gradient relationship within plant canopies is a unique
capability of the first (or higher)-order LS model or compu-
tational simplifications thereof [e.g., Raupach, 1989; War-
land and Thurtell, 2000; Siquiera et al., 2000; Hsieh et al.,
2003].
Irrespective of the connection with crop modeling (or more

generally, soil-vegetation-atmosphere coupling), the regime
of turbulence in a canopy is scientifically challenging in that
it is acutely (vertically) inhomogeneous, velocity statistics
are highly non-Gaussian, and the r.m.s. velocity fluctuations
exceed the mean velocity in much of the canopy (necessitat-
ing adoption of a multidimensional turbulence model).



THOMSON AND WILSON 29
Canopy flow is dominated by penetrating gusts (or sweeps)
of high-momentum air originating from above the canopy,
alternating (by no means regularly) with ejections of sluggish
(and by day, warm and humid) air from the canopy [Finni-
gan, 2000]. Throughout much of the canopy, the dominant
eddy size is of the order of the canopy depth h, and the
canopy and the ground beneath constitute a vertically dis-
tributed source (or sink) for heat, momentum, water vapor,
and carbon dioxide. As a corollary of the dominating role of
large eddies (e.g., quadrant analysis shows that a large stress
fraction is transported in a small time fraction by the
sweeps and ejections), turbulent transport terms in the
Reynolds equations are non-negligible, e.g., the turbulent
kinetic energy budget is far from being in local equilibrium.
This complexity would seem to suggest that a useful La-

grangian model for canopy dispersion must be comparably
intricate. In view of the known skewness of the pdf’s for
streamwise and vertical velocity, Flesch and Wilson [1992]
constructed a well-mixed 2-D LS model derived by using the
approximation that the (skewed) velocity fluctuation pdf ga(u′,
w′;z) within the canopy is a superposition of two joint Gaus-
sians and by introducing a hypothesis concerning the effect of
the probability current φ whose components appear in the
systematic part (ai) of the acceleration and whose divergence
is constrained by the well-mixed condition [Thomson, 1987,
equation 9b], namely, that φ acts to conserve the direction of
the Lagrangian velocity fluctuation vector. The unexpected
finding was that this model performed no better in regard to
simulations of the mean tracer distribution than did models
based on a simplification to Gaussian pdf’s (namely, the
model provided by Thomson [1987] or the alternative closure
of Flesch and Wilson). Most subsequent Lagrangian simula-
tions of canopy transport [e.g., Poggi et al., 2006; Cassiani et
al., 2007; Postma et al., 2011] have adopted the approxima-
tion of Gaussian pdf’s. In general, in such acutely inhomoge-
neous flows, it appears the effects of velocity skewness are
secondary, except very close to the source(s).
The so-called “urban canopy” shares all of the flow char-

acteristics of a natural canopy flow and is further complicated
by the fact that the excluded space (i.e., buildings) may
represent a substantial fraction of the urban canopy volume.
Along with population drift to urban centers and the growth
of megacities, comes an increasing interest from meteorolo-
gists and others in a capability to diagnose or even anticipate
the patterns of wind and wind transport in cities. Many
scientific approaches are possible, each being appropriate for
some subclass of urban dispersion problems. The extreme of
simplicity would be represented by merely assigning a city
an appropriately large roughness length and computing flow
and dispersion from sources in the same manner as else-
where. At the other extremity, the most rigorous approach is
to compute the flow itself, typically by solving the Reynolds
or large eddy simulation (LES) equations on a grid that
resolves buildings and perhaps with the exterior boundary
conditions supplied by a numerical weather prediction mod-
el; having thereby estimated the velocity statistics, one may
then compute wind transport from sources within the flow.
Naslund et al. [1994] and Lee and Naslund [1998] may have
been the first to implement this approach, computing urban
dispersion around resolved buildings using a first-order LS
model, driven by a computed 3-D field of wind statistics.
Taking the same approach, Wilson et al. [2009, 2010] found
that the first-order LS model yielded skillful predictions of
dispersion from a continuous near-ground point source in
downtown Oklahoma City to detectors kilometers away,
with over 50% of predicted concentrations being within a
factor of two of the corresponding observations. Of course,
in this context, model performance hinges not only on the
fidelity of the LS model itself, but also on the quality of the
computed flow statistics (computing the flow is the more
difficult part of the overall problem). Not surprisingly, the
same level of skill had been reported for an Eulerian simu-
lation of the same experiment (the k � e flow model that
computed the flow also solved the mass conservation equa-
tion, and the detectors were all in the far field of the source).
There are, nonetheless, some secondary advantages of the
Lagrangian approach. For instance, the simulations showed
explicitly that tracer particles emitted in the urban canyon in
close proximity to the wall of a building were entrained into a
recirculation eddy and ascended the wall.
Inverse (or backward) LS simulations have assumed an

important role for those interested in identifying and quanti-
fying sources or sinks of atmospheric trace gases, whether on
the micrometeorological, regional, continental, or planetary
scale. Flesch et al. [1995] introduced (and later tested
[Flesch et al., 2004]) a “backward Lagrangian stochastic”
method for inverse dispersion on the micrometeorological
scale, i.e., to infer the emission rate Q of a source from the
measured concentration rise it causes. This method, which is
covered in more detail by Wilson et al. [this volume], has
subsequently been widely applied, e.g., to deduce agricul-
ture-related emissions of methane or ammonia (as recent
examples, see Todd et al. [2011], Laubach et al. [2012], and
McGinn and Beauchemin [2012]). The inverse dispersion
approach based on LS models is commonly applied, too, on
much larger scales (see below).
Our final category of applications concerns Lagrangian

models (of first or zeroth, or even mixed order) capable of
tracking particle motion throughout and even above the
troposphere, from one continent to another, by virtue of their
being coupled to flow fields calculated by numerical weather
prediction models. Examples are NAME [Maryon et al.,
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1999; Jones et al., 2007], FLEXPART [Stohl et al., 2005],
STILT [Nehrkorn et al., 2010], MLDP0/MLDP1 [D’Amours
et al., 2010; Malo et al., 2011], and HYSPLIT [Draxler and
Hess, 1997, 1998]. An important motivation for the devel-
opment of these models was the Chernobyl reactor accident
in 1986, which highlighted the need to be able to estimate
long-range transport and dispersion in a timely and flexible
way. Lagrangian models of this type are now used to estimate
the dispersion of a wide variety of materials including radio-
nuclides, chemicals, volcanic ash, airborne diseases, and
mineral dust, and in inverse (backward) mode, they can be
used for “top-down” diagnosis of surface-atmosphere gas
exchange [e.g., Thompson et al., 2011; Manning et al.,
2011] with high spatial resolution. Such models may include
parametrizations of dry and wet deposition and, in some
cases, are coupled to full atmospheric chemistry calculations
to estimate the air quality resulting from many individual
sources. Vertical transport by (unresolved) deep convection
is an important element of such models. Approaches have
been developed for treating deep convection that are some-
what different in approach to the turbulent dispersion models
that are the main focus of this article [e.g., Collins et al.,
2002; Forster et al., 2007]. These schemes often make use of
estimates of the upward and downward mass fluxes in the
convective clouds and, in the case of Forster et al., make use
of the well-mixed condition, although in a different context
to that considered above.

6. OUTSTANDING PROBLEMS AND CRITERIA
SUPPLEMENTING THE WELL-MIXED CONDITION

As noted above, the criteria developed for designing
Lagrangian models do not lead to a unique multidimension-
al model. Sawford and Guest [1988] were the first to show
explicitly two distinct models, both satisfying the well-
mixed condition for the same flow and giving significantly
different dispersion predictions. Here the nonuniqueness
arose from different expressions for the terms that depend
on the gradients of flow statistics and which are required by
the well-mixed condition. Nonuniqueness can arise even in
homogeneous turbulence (although not if it is isotropic),
and Borgas et al. [1997] considered Lagrangian models
appropriate to homogeneous axisymmetric turbulence with-
out reflectional symmetry, in which case the systematic part
of the acceleration in equation (9) can contain a term of the
form eijkΩjUk where Ω points along the axis of symmetry.
They found that the extra term can lead to spiraling of the
velocity vector and, hence, of the trajectories, in the plane
perpendicular to Ω. This is associated with oscillations in
the Lagrangian velocity correlation function and a reduced
rate of dispersion.
Wilson and Flesch [1997] considered the mean rate of
rotation of the velocity vector in the context of a 2-D model.
For dispersion in a plant canopy, they showed that models
where the mean rate of rotation was zero gave best agreement
with wind tunnel measurements, and they speculated that this
might be a good criterion for selecting models more gener-
ally. However, this criterion does not lead to a unique model,
and Reynolds [1998] has shown that the remaining non-
uniqueness can mean that different “zero spin” models can
give significantly different dispersion predictions. Reynolds
also argued that for some flows, the zero spin models were
not optimal. Sawford [1999] introduced a more tractable and
general way to quantify the tendency of the velocity vector to
rotate, taking the average of the cross product of particle
velocity and acceleration (which is related to the rate at
which area is swept out by the velocity vector). Sawford
suggested that for the better-performing models, this quantity
is zero. Although these studies have shed useful light on the
nonuniqueness problem, a completely satisfactory solution
has yet to be found. It is not certain that a universally best
approach, valid for all flows, necessarily exists.
A second outstanding issue, and (operationally) a second

form of nonuniqueness, is the problem of determining the
correct (or optimal) value of the constant C0 in equation (12).
By virtue of the way C0 is introduced to the LS model, it
equates to the constant in the Kolmogorov-Obukhov model
for the second-order Lagrangian velocity structure function.
However, while being (in its origin) an attribute of the
inertial subrange of scales of motion in turbulence, in LS
models C0 modulates the (far more important) effective
integral time scale of the model (see equation (13); Wilson
et al. [2009] cover this in some detail). It follows that even if
C0 were universal, and even if its value were known, that
putative constant value might not necessarily give the best
estimate of dispersion, which is more sensitive to the integral
time scale than to the inertial subrange part of the velocity
correlation. To make matters worse, despite the appealing
simplicity of the original Kolmogorov hypotheses, evidence
suggests they may be a too drastic simplification [e.g., Sree-
nivasan and Antonia, 1997; Sreenivasan, 1999]; if so, then
C0 may not (in reality) be universal. Furthermore, Sawford
[1991] showed that in first-order LS models, the optimal
value of C0 should be expected to depend on the Reynolds
number of the flow of interest (Sawford introduced a second-
order LS model, i.e., a model for which the Markovian state
variable includes the particle acceleration A, which is mod-
eled by way of a Langevin equation), so that (for instance)
LS models of dispersion within an engineering wall shear
layer (with relatively low Reynolds number) might have a
different optimal C0 than LS models of the atmospheric
surface layer. Reported values for C0, arising from several
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possible approaches to its determination (e.g., velocity-dif-
ference statistics from direct numerical simulations or the
fitting of Lagrangian models to observations) cover the range
from about 2 to 10 [Du et al., 1995], presumably reflecting
the above complexities and the following further
complication.
In atmospheric turbulence, at least within the boundary

layer, it is reasonable to assume that the Reynolds number is
effectively infinite, eliminating one source of uncertainty.
Then one may hope simply to compare an LS model with
an authoritative experiment (such as Project Prairie Grass)
and infer the optimal value for C0 (for that class of flow). A
complicating factor here, however, is that the optimal value
for C0 will depend on the dimensionality of the LS model
one adopts (it will also depend, and in a sense more funda-
mentally, on one’s choice of a particular model from within
the well-mixed class; for instance, it is probably significant
whether or not the chosen model induces a mean rotation of
the velocity fluctuation vector). This was first shown by
Sawford and Guest [1988], who following the suggestion
of Durbin derived the diffusion limit of Thomson’s [1987]
multidimensional model for Gaussian inhomogeneous tur-
bulence and showed that the implied (effective) eddy diffu-
sivity (for vertical dispersion) is

K ¼ 2ðσ4w þ ū′w′
2Þ

C0ε
; ð24Þ

where ū′w′ð¼ −u2∗Þ is the velocity covariance. As an aside,
albeit one that hints at yet another nonuniqueness, note the
very large sensitivity of the effective eddy diffusivity (and
thus optimal C0) to one’s parametrization of σw: taking
specifically the neutral surface layer as an example, whether
one chooses σw/u* = 1.25 or 1.3 is consequential, and
indeed, observations of this rather primary observable (σw/u*,
in the neutral limit) are more scattered than a casual reading
of the textbooks might suggest. Be that as it may, the
implication of equation (24) is that optimal C0 will depend
on whether the LS model does or does not include the
Lagrangian alongwind velocity fluctuation U′, or more pre-
cisely, whether or not one includes its correlation with
the vertical velocity. Based on this result, Wilson et al.
[2009] deduced (by reference to Project Prairie Grass neu-
tral runs) that for a multidimensional model with the ū′w′
correlation included (and neutral σw/u* = 1.3), C0 ≃ 4.8,
while if the covariance is neglected (or alongwind fluctua-
tions entirely dropped), then C0 ≃ 3.6 [see also Sawford,
2001]. Wilson et al. found that the performance of simula-
tions of urban dispersion with/without covariance was con-
sistent with the above reasoning, but in view of the large
uncertainties surrounding the quality of (computed) velocity
statistics driving the LS models, this is not an entirely
convincing confirmation. In any case, to what extent should
these optimal values for C0 generalize, given that they stem
from tuning the LS model to the Project Prairie Grass
observations of surface-layer dispersion? In view of the
above discussion, it seems unlikely these results necessarily
should apply to (for instance) the CBL. In their pioneering
LS simulation of the CBL, Luhar and Britter [1989] chose
C0 ≃ 2 and showed that their simulation “reproduces the
experimental concentration contours qualitatively and quan-
titatively quite well.”

7. CONCLUSION

The science of what are now called Lagrangian stochastic
models of dispersion has matured, but there remains room for
fundamental progress, particularly as regards further selec-
tion criteria for the multidimensional case. LS models are
being used to good effect on scales from the individual
farmer’s field or the city block, to the intercontinental, and
indeed, they have assumed a vital social role, nicely exem-
plified by their application to predict the hazards of volcanic
ash clouds [e.g., Stohl et al., 2011;Webster et al., 2012] or to
locate or quantify sources of air pollutants or greenhouse
gases [e.g., Hirdman et al., 2010; Manning et al., 2011].
Our short history has excluded many variants of the LS

approach to turbulent dispersion, notably multiparticle mod-
els capable of predicting higher moments of concentration
[Durbin, 1980b; Thomson, 1990; Borgas and Sawford,
1994]; models of higher order, based on a generalized Lan-
gevin equation for acceleration [Sawford, 1991]; the class of
first-order models that add a further state variable, e.g.,
temperature may be added in order to model stably stratified
flows or buoyant plumes [Csanady, 1964; Pearson et al.,
1983; van Dop, 1992; Das and Durbin, 2005], while gas
concentration can be added as a state variable in an alterna-
tive approach to modeling concentration fluctuations (the so-
called micromixing models) [e.g. Pope, 1998; Cassiani et
al., 2005; Sawford, 2004; Luhar and Sawford, 2005]; models
for heavy particles [e.g., Reid and Crabbe, 1980; Wilson,
2000] or heavy gases [e.g., Anfossi et al., 2010]; models with
chemistry [e.g., Chock and Winkler, 1994a, 1994b; Steven-
son et al., 1998]; and models that compute the statistics of
the flow field [e.g., Pope, 1994; Bakosi et al., 2009]. As
meteorologists, we have preferred to focus on LS modeling
of the atmosphere. Of course parallel efforts exist in other
disciplines, e.g., engineering and oceanography, but on the
whole the field of research has remained reasonably well
integrated across scientific communities.
In documenting the history of ideas in any field there is the

certainty of making omissions. The authors were discomfited
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to uncover, in the course of preparing this summary, pertinent
papers of which they had been entirely unaware. No doubt
others have gone unmentioned, and we perhaps have simpli-
fied the lines of development in a way that largely reflects the
incidental factor of our own involvement in this field. We
apologize to anyone whose contributions we have over-
looked, and we thank the organizers of the Chapman Con-
ference on Lagrangian models for the opportunity to present
this retrospective on the subject, however uneven and incom-
plete it may be.
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