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Abstract. A means of numerical simulation of particle trajectories in inhomogeneous turbulence is 
described. The method employs a simple coordinate transformation which allows a trajectory in in- 
homogeneous turbulence to be converted to a corresponding trajectory in homogeneous turbulence. 
Concentration distributions predicted by the trajectory-simulation method agree precisely with 
analytical solutions in the special cases of homogeneous turbulence, turbulence with power-law wind 
and eddy diffusivity profiles, and the neutral atmospheric surface layer. 

1. Introduction 

The Lagrangian approach to turbulent diffusion was introduced by Taylor (1921). 
However, extension to atmospheric diffusion problems has been difficult because 
of the inhomogeneity of atmospheric turbulence. As a fluid element moves farther 
from the ground, it encounters motions of increasing persistence (time-scale) and, 
in non-neutral stratification, of changing intensity (velocity scale). Because of this 
difficulty, Eulerian methods prevail in the literature concerning turbulent diffusion, 
and in the majority of the work the K-theory closure method is employed to relate 
the turbulent flux to the mean concentration. The weak physical basis for K-theory 
and consequent limitations on its usage are well known; it is unrealistic to apply 
K-theory in a system (such as a forest) whose turbulent length scale is large with 
respect to the distance over which the mean concentration gradient changes 
significantly (Tennekes and Lumley, 1972; Corrsin, 1974). 

In addition to this problem, in order to solve the system of differential equations 
arising from an Eulerian description, it is usually necessary to employ unrealistic 
simplifications, for example of the spatial variation of wind speed and eddy diffusiv- 
ity. Complications such as an elevated source, tracer buoyancy, or non-neutral 
stratification are very difficult to deal with, and solutions, if obtainable, are quite 
complex. Numerical solutions, employing realistic higher-order closure methods, 
are very valuable for some problems, particularly those in which the source strength 
interacts with the admixture it produces (e.g., evaporation from a reservoir in a 
desert). 

For many problems, a Lagrangian approach is most appropriate. Batchelor 
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(1957) introduced the hypothesis of Lagrangian similarity, in a paper concerning 
diffusion in decaying turbulence in jets and wakes. The hypothesis concerns the 
relationship between the length, time and velocity scales of the Lagrangian velocity, 
(fL TL, gL) and those of the Eulerian velocity (A, z, o,,,) in inhomogeneous flows. 
[These scales are precisely defined in Section 2, and the unfamiliar reader is referred 
to these definitions. Throughout this paper a subscript L implies a Lagrangian 
property.] Consider a turbulent system in which the Eulerian velocity, w, along the 
z-axis has root-mean-square value a,(z) and time-scale z(z). Let the Eulerian 
statistical properties change with z only through g,,,(z), r(z), A = r~,z [‘self-similarity’ 
along the z-axis; for example, if the probability distribution of w is Gaussian at all 
heights with variance G;(Z), the w-distribution is self-similar]. Then if z(t) is the fluid 
element position and wL the fluid element velocity along z (whose variance and 
timescale are o;(t), rL(t)) it is hypothesised that 

and that although wL(t) is a non-stationary function of time, [w,(t)]/[aJr)] is a 
stationary random function of v], defined by dy = dt/[rL(t)]. 

The hypothesis has been widely employed for atmospheric diffusion problems 
to deduce restrictions on the form of the concentration profile and behaviour of 
its moments (see, for example, Cermak 1962). Examination of experimental data 
has shown this to be a useful procedure, and has therefore validated the Lagrangian 
similarity hypothesis. 

The Lagrangian similarity hypothesis also provides the basis for a relatively new 
and very promising alternative approach to turbulent diffusion in inhomogeneous 
systems, that of numerical simulation of fluid element trajectories. The hypothesis 
allows one to relate the time-dependent Lagrangian scales to the time-independent 
Eulerian scales. An ensemble of fluid element trajectories may thereby be construct- 
ed and the concentration distribution resulting from a given source determined. 

Numerical simulation of turbulent diffusion by mimicking particle trajectories 
was first proposed and performed by Thompson (1971), who considered systems 
in which the Eulerian timescale is independent of position, and formed a record of 
Lagrangian velocity from a Markov chain. Half (1974) simulated trajectories in the 
atmospheric surface layer, assuming that in neutral conditions 

where z is height, U(Z) is the horizontal velocity, and the overbar denotes a time 
average. The Lagrangian velocity series was again a Markov chain 

wL(t + At) = wL(t) exp ( - Ar/rL(z)) + [I - (exp ( - LW&N)~] “2a,4t) 

where r is drawn at random from a Gaussian distribution with variance 1 and 
mean 0, and cr,,, is the standard deviation of the Eulerian vertical velocity. The 
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timestep At was varied with height: 

At = &Q(Z). 

This method is in effect an application of Batchelor’s Lagrangian similarity 
hypothesis. Hall obtained good agreement between predicted and observed cloud 
heights in the Porton experiments (Pasquill, 1961). It is also demonstrated that if 
the velocities are chosen completely at random, 

‘wL(t) = cr,r 

and allowed to persist throughout a large timestep 

At = 22,(z), 

the resulting spread is not realistic. 
Reid (1979) described a simulation method equivalent to that of Hall except that 

the timescale was chosen 

Use of CY,,, rather than C(Z) is preferable in forming a timescale which relates to 
dispersion along the vertical axis. Using Reid’s choice for the Lagrangian timescale, 
the eddy diffusivity in the neutral surface layer becomes 

in agreement with the height dependence of the eddy viscosity. 
Reid used his simulation model to investigate the accuracy of the Gaussian 

plume model and of predictions on the form of the concentration profile derived 
from the Lagrangian similarity hypothesis. 

This paper describes a simulation procedure similar to that of Hall and Reid, 
but with a significant conceptual development which allows particle trajectories in 
inhomogeneous turbulence to be converted to trajectories in homogeneous tur- 
bulence in transformed coordinates. This has practical advantages with respect to 
the speed and simplicity of the calculation procedure, and provides insight as to the 
common features of many diffusion problems; all systems with c,,, height-indepen- 
dent become equivalent in the transformed coordinates, except for differences in 
the shear of the (transformed) horizontal velocity, and the length scale in the 
transformed system. The simulation method described herein applies to diffusion 
in two-dimensional flow (wind field (u, 0, w)), but extension to three-dimensional 
flow is in principle straightforward. The method applies with equal simplicity to 
diffusion from crosswind line sources and plane sources. This is advantageous for 
many applications involving diffusion from natural sources, which are often of large 
areal extent (for example, a barley crop emitting disease spores). Previous methods 
dealt only with point sources (Thompson) or crosswind line sources (Hall, Reid). 

In this paper the trajectory-simulation procedure will be described in detail and 
its predictions shown to be identical with analytical solutions in special systems. 
A later paper (II) will consider extension of the method to systems in which c,,, is 
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height-dependent, and a further paper (III) will present comparisons of predictions 
of the trajectory-simulation method with experimental data from the atmospheric 
surface layer. It is hoped that this work will demonstrate the value of the trajectory- 
simulation method, as a research tool, and as a means of solving practical problems. 
The method is simple, accurate, and capable of solving a wide variety of problems. 

2. A Particle Trajectory in the Neutral Surface Layer 

Attention will be confined to calculating trajectories in the neutral surface layer, 
but the principles are directly applicable to any other situation in which the 
Eulerian timescale is variable but the Eulerian velocity scale constant. The terms 
‘particle’ and ‘fluid element’ will be considered equivalent only if the ‘particle’ is a 
passive tracer. This is not the case if the particle is heavier than the volume of air 
it displaces (and in such cases we have given the particle a steady gravitational 
settling velocity WJ or if the particle is a molecule of foreign gas which the surface 
may absorb. 

It is assumed that the particle is travelling in a region of the surface layer where 
the turbulence is stationary and horizontally uniform with the height dependence 
of the Eulerian scales of the turbulence given by 

o‘w = (2)“2 = a,& 
m 

z(z) = 
s 

R(z, 4) d{ = a,z/o, 
0 

A(z) = o,z(z) = a,z 

where R(z, <) is the Eulerian autocorrelation function 

W, 5) = w(z, t) w(z, t + W;. 

The position of a particle released at x = xs, z = zs, t = 0 and travelling in a two- 
dimensional wind field is thereafter given by f z=zs+ s WI,@) dt 

0 

x=x+ uL(t) dt. 

If wg # 0, we must add a term 
J 

wg dt to z. 
0 

In order that simulated trajectories should accurately resemble real ones, it is 
necessary to decide which of the statistical properties of the fluctuating Lagrangian 
particle velocity (uL, w,,) must be reproduced, and which can be regarded as un- 
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important. Let the instantaneous Eulerian velocities be 

u=U+U 

w=W+w’=d (W = 0). 

In the neutral atmospheric surface layer it is found that 

ii = (a/k) In (z/zJ 

where U, is the friction velocity (u’ - 7 , - -u w’), z0 the roughness length, and k is 
von Karman’s constant, Measurements of cU = (?x)“2 have usually shown that 
ou I 3u, (Haugen, 1973). It follows that when z P z,,, 0” + ii. Furthermore, since 
2 = 0, as long as the travel time for a particle moving from x = 0 to x = X is large 
with respect to r,., the timescale of u’, the effect of u’ averages to zero. Now as z + 0, 
r,. -+ 0. Therefore for long fetch X from source to collector, 1/ has little effect on 
the travel time, and consequently little effect on the vertical dispersion (which is of 
predominant interest for a continuous source in the two-dimensional flow under 
consideration). Accordingly we have made the approximation U’ = 0, so that 

uL(t) = u(z(t)) = (u,/k) In (z/zJ. 

The most serious difficulty arising from this approximation is that in the real surface 
-. 

layer, the correlation ulv’ implies that an upward-moving fluid element systematic- 
ally has u’ < 0 (u < ii), and vice versa for downward motion. Our neglect of this 
systematic behaviour probably leads to some error. However, Hall, who implement- 
ed a simple approximation of the correlation between 11 and w’, states that it is not 
of major importance. 

The fluctuating Lagrangian vertical velocity wL(t) is not a stationary function of 
time. As a particle moves farther from the surface, it experiences motions with 
increasing timescale. Experiments to determine the Lagrangian scales are in concept 
possible but in practice extremely difficult, and it is therefore necessary to assume 
relationships between the Lagrangian scales and the (readily measured) Eulerian 
scales. We could perform an ensemble of experiments in each of which at t = 0 we 
release a particle and measure its velocity wL at a particular time t, from which we 
may form an ensemble (E) averaged variance 

2” (t, zs). 

When the Eulerian velocity scale is height-independent, it seems reasonable to 
assume 

3” (t, zs) = 0;. 

This has been proven to be true for the special case of stationary homogeneous 
turbulence (Tennekes and Lumley, 1972). 

The Lagrangian autocorrelation function may be defined by considering an 
ensemble of releases of individual marked fluid elements at a given height z at time 
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t = 0. Each fluid element is followed after its release, and 

RL(Z, 0 = w,(tlz) M + +,“/G” 

where wL(tIz) is the velocity at t of a fluid element which was at z when released. 
The Lagrangian timescale is defined by 

03 

~A4 = 
s 

Mz, t, d5. 
0 

We assume zL(z) cc z(z). In the neutral surface layer the eddy viscosity is given by 

K, = O.~U,Z. 

We therefore expect zL(z) CC z (because the diffusivity is the product of length scale 
times velocity scale, and the velocity scale is constant). In (III) the constant of 
proportionality is determined by comparison of predictions with experimental data. 

In summary, we know that as we follow a particle, the persistence of its velocity, 
which must be considered if the motion is to be simulated, is variable in time. It is 
not formally possible to translate time-dependence to height-dependence, but we 
have assumed 

If a particle travels a horizontal distance 6X without departing greatly from z, the 
number of timescales elapsed during the process is 

This ratio of travel time to timescale, which is a measure of the number of inde- 
pendent velocity ‘choices’, will be preserved if we simulate the particle trajectory 
by a series of steps in which 

AZ = wL(t) At = wL(tH)---- ‘L(‘) At 
~LW) H 

Ax = U(Z) At = U(Z) ~ ‘L(‘) At 
~LW) If 

where wL(tH) is a stationary random function of tH having r.m.s. value o,,, and time- 
scale zL(H) and tH is related to real time t by 

dt, dt 
TLW) AL' 

Steps in tH time differ from steps in real time except if the particle is at the ‘reference 
height’, H. wL(tH) must be a record of velocity with time and velocity scales appro- 
priate to particle motion at H (to be discussed later). The choice of reference height 
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H is completely arbitrary; one may choose any height within the domain in which 
the turbulence scales are specified (i.e., any height within the domain in which the 
particles are confined). 

It is advantageous to define 

dz, = w&J dt, 

and to perform the calculation of trajectories in the transformed coordinate system 
(x, .z*, tH) in which the vertical motions have equal timescale at all heights, corre- 
sponding to homogeneous turbulence (but with wind shear). This avoids bias 
resulting from the need to multiply the displacement wL(tH)AtH by a function which 
changes during the displacement. At any time tH the real height of the particle may 
be obtained by integrating 

TL(Z) dz =--- 
r,(H) 

dz,. 

For the neutral surface layer, integration gives 

z = z2 exp (z,/H). 

Here z, is the constant of integration. z* is logarithmically related to real height. 
The choice of z, is related to the lower boundary condition. First consider a totally 
reflecting boundary (appropriate for diffusion of marked fluid elements). Reflection 
occurs at z = z2 (z, = 0) rather than at z = 0. Now z2 can be chosen arbitrarily 
close to ground, so let us consider a2 = u(zZ) to be small. Then when a particle 
travels down to zz, there is no need to calculate that part of its trajectory below z2 
because we know that when it reappears at zz after a real time interval 6t, its hori- 
zontal position will have changed by 6x < a,&, which is small as long as 6t is small. 
If we estimate 

and are prepared to accept any 6x < X where X is the total horizontal distance 
travelled then reflection at z2 is adequate if 

6x = u2z2/uw 4 x 

i.e. 

Most often we have used z2 = z,, so that according to the logarithmic wind profile, 
uz = 0 and the above constraint is satisfied. Because the logarithmic wind profile 
is in reality only valid for z 9 zO, this is still a simplification of the process of 
reflection off the surface, but the above reasoning suggests that the simplification 
will introduce negligible error into the calculated trajectory z(x). 

The case where the lower boundary may absorb particles is more complex. If the 
particles under consideration have a settling velocity, then total absorption of each 
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particle striking z2 is appropriate, provided that z2 is carefully chosen. If we are 
considering, for example, glass beads with terminal velocity 10 cm s-l in flow over 
a short grass surface, choice of z2 = z0 is reasonable. Even though o,(z,,) is probably 
greater than the terminal velocity, we expect the particle to be absorbed because 
rL(zO) is small. 

A more difficult absorption boundary condition arises when the admixture may 
react chemically with the surface (e.g., ozone diffusing to a bare soil). Such situations 
have not been considered herein. 

Consideration will now be given to the choice of wL(tH), the Lagrangian vertical 
velocity for. a particle at the reference height H. Except at the ground, we have 
chosen that there be no preference towards upward or downward movement for 
an individual fluid element, so that 

z&J = 0. 

It would therefore be possible to form wL(tH) from a record of w(H, t) which has had 
its time axis scaled to account for the ratio r(H)/z,(H), (perhaps by replaying a 
magnetic tape at a particular speed). We would hope that the spectral density and 
autocorrelation function for wL(tH) thereby obtained would approximate those 
observed by actually following a particle. 

In homogeneous turbulence, however, the rate of diffusion is not very sensitive 
to the exact form of the autocorrelation function (Pasquill, 1974), maximum 
sensitivity being for a diffusion time about equal to rk We have therefore formed 
wL(tH) by applying an RC filter (RC = zJH)) to the signal from a random voltage 
generator+. The spectral density of the unfiltered signal is independent of frequency 
out to a very high frequency F, which is chosen such that 

1 
FG % ___ = fo 27cRC 

where& is the half-power frequency of the filter. It may be shown that the auto- 
correlation function of wL(tH) is 

and that 

w,(t, + AtJ = wL(tH) exp (-AL&~(H)) + random variable 

so that the velocity series is similar to that used by Hall and Reid. The frequency 
distribution of the random voltage generator is approximately Gaussian, with zero 
mean; however, the distribution is truncated at + 10 V, corresponding to a maxi- 
mum turbulent velocity. 

In order to minimise the computer time required to calculate a trajectory, in 
practice RC is reduced in relation to rL(H) by 

t Hewlett-Packard Model 3722A; Hewlett-Packard, Palo Alto, California 94304, U.S.A. 
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RC At, 
T#z) = ig 

where At, is the time taken by the computer to perform all the calculations for each 
timestep A&. 

In order to calculate a particle trajectory, the procedure is as follows: 
Divide the z* axis into layers of equal thickness AZ, centered at z,(Z) = (I - l/2)82,. 

For each z,(Z) calculate the corresponding z(Z), and store the values 

Ax(Z) = u(z(Z))p ‘d’(‘)) At 
~LW) H. 

Then release the particle, and in each timestep AtH calculate 

AZ, = w,(t,)At, 

Ax = Ax(Z) 

where Z is obtained from the instantaneous value of zt. Should z* reach 0 (z =,z,), 
the particle is absorbed (sink) or allowed to continue its motion in an image system 
with z* < 0 (reflection). 

In choosing a value for the timestep AtH, there are two considerations. The ratio 
(At&J need not be infinitely small, as it may be shown (Batchelor, 1949) that the 
higher the frequency of the motion, the smaller the contribution (in relation to lower 
frequencies) to the rate of turbulent dispersion. The larger we choose AtH, the 
smaller the computing time required to follow a particle a distance X. But unless 
AtH < TV, the timescale of the digitized time series is effectively increased over 
that of the analog time series. This is because the minimum time of correlation is 
AtH whereas in the analog series, samples persisting for times less than A&, occur. 

We have generally used AL&~(H) N 0.1. No obvious differences occurred when 
a much smaller ratio was chosen. We did not systematically study the effect of 
reducing the timestep/timescale ratio. 

Finally, it is worth noting that the use of Equations (2) to calculate particle 
trajectories is consistent with the hypothesis that particle motions exhibit Lagran- 
gian similarity along the z axis; 

WL(Q = 2 
H 

is a stationary random function of tH. 

3. Ensemble Experiments 

The following discussion applies to calculation of the concentration distribution 
arising from a continuous source, but the trajectory-simulation method is readily 
able to deal with instantaneous-source problems. 

Consider a continuous line source of strength 1 particle per unit crosswind length 
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per second at x = 0, and a detector downstream at x = X. Given the ability to 
calculate a trajectory z,(x), one may perform an ensemble of NP experiments in each 
of which a particle is followed from x = 0 to x = X. Each time a particle passes X 
in layer I 

(I - l)Az, < z.(X) < ZAz, 

the count N(I) in that layer is increased by 1. Then after all NP particles have been 
released 

N(I) ~ = time average count per second 
NP 

= P,(X, z)Az(Z) 

where F,(X, z) is the time average horizontal flux density, and AZ(~) is the depth of 
the Ith layer, 

Since F,(X, z) = u(z)@X, z), the time average concentration is obtained. 
We may also write 

N(I) - = F,,(X, z*)Az* 
N 

= u*(z*)F*(X, z*) 

where &(X, z,), ut, and F,, are the concentration, horizontal velocity, and horizontal 
flux density in the (x, z*, tH) system It follows that 

iT*(X, z*) = qx, z). 

The concentration field due to a plane source of spatially uniform strength may be 
considered as a superposition of the fields of elementary line sources. We regard a 
plane source of length XM cm as consisting of XM line sources each 1 cm in down- 
wind width and emitting 1 particle per trial. The trajectory of the entire plane z,(x) 
is then calculated as if it were a single particle, and each time 1 cm of the plane 
passes the collection point X, a count of 1 particle is recorded in the layer (I) in 
which z,(X) lies. When the farthest upstream 1 cm has passed X, a new plane is 
released. We are therefore simultaneously performing an ensemble experiment for 
each of the XM line sources. The spatial correlation arising by treating the whole 
plane as one particle is unimportant. After the release of NP planes, we have NP 
independent trial trajectories from each line source. 

It is worthwhile to point out that in the case of a passive tracer diffusing in the 
neutral surface layer, the count N(Z)/NP (i.e., the distribution of the values of 
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particle height at given x) is independent of u*, because 

(T, cc u* 

u cc u* 

The vertical and horizontal steps AZ, Ax are affected equally by a change in the 
choice of u. (and are independent of U+ if the timestep is kept in fixed proportion to 
the timescale). The number of timescales elapsed in travelling a distance 6x at a 
height near z, (~x/u(z))/z,(z) is independent of u*. Therefore, for a continuous source 
of strength Q the normalised horizontal flux density ii(z)~(z)/Q is independent of u* 
(but not independent of the source geometry, roughness and displacement heights). 
If U, doubles, G(z) is doubled and C(z) is halved. 

Experimental values of r~,Ju., in neutral stratification show variability in time 
and between locations, some of which may be ascribed to the difficulty of the 
measurements or to lack of suitable experimental conditions. To the extent that 
G,,,/u+ truly varies, one cannot expect the normalisation 

tr c/Q (or equivalently L Z/Q) 

to lead to a universal concentration profile, but it remains a very useful technique. 
In the case where the source is continuous, conservation of mass requires 

g F,(x, z) = - A FZ(X, z) 

so that F,(X, z) may be determined given F,(X, z2) and the divergence of the 
horizontal flux at all heights. As a consequence of our approximation that U(Z) is 
time independent, the following symmetry occurs if the plane source extends without 
break to X and the surface (zJ is a reflector. Consider the divergence of the hori- 
zontal flux between X and X + 1; refer to Figure 1. On average, for every particle 
which originates from the first line source upwind and passes X + 1 between z 
and z + AZ, another parallel trajectory originates from the 2nd line source upwind 
and crosses X between z and z + AZ. Therefore these two particles make no contri- 
bution to the flux divergence. By extension of this reasoning it may be shown that 
the divergence of the horizontal flux is entirely due to the departure past X + 1 of 
particles from the farthest upstream 1 cm which are not ‘balanced’ by a correspond- 
ing arrival at X (whence if the plane is infinitely long there can be no divergence 
of horizontal or vertical fluxes). 

We therefore keep a special counter NJ’(Z) which is incremented each time the 
last 1 cm of the plane arrives in the corresponding layer. Then given F,(X, ZJ 
(1 cm-’ s -’ for source at z = z2, 0 otherwise) it is straightforward to calculate 
F(X, z). For a source at ground 

c a” J NF(J) - c; = 1 NF(J) F,(X, z(I)) = ___ c a’1 J NF(J) 
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Fig. 1. Geometry illustrating the symmetry employed in calculating the vertical flux. The source 
extends upstream from x = X to x = 0, and emits 1 particle per cm of its length. Consider particles 
entering and leaving the box defined by X, X + 1, z, z + 1 through the faces at X, X + 1. On average, 
for every particle emitted by the first upwind line source which passes through the box and leaves 
through the X + 1 face, another emitted by the second line source upwind enters through the front face 
at X. The two trajectories shown balance each other and contribute nothing to the divergence of the 

horizontal and vertical fluxes. 

from which it may be deduced that the upward flux density at z(Z) is equal to the 
fraction of the particles released from the farthest upstream 1 cm of the plane which 
pass X above z(Z). Thus F,(X, z) may be interpreted as a measure of the height to 
which material is being transported. 

4. Tests of the Trajectory-Simulation Method in Special Cases where Analytical 

Solutions are Available 

4.1. HOMOGENEOUS TURBULENCE 

A major advantage of the trajectory-simulation method is that the relationship of 
flux to mean gradient is automatically correct to the degree that the time and 
velocity scales of individual fluid element velocities are correctly simulated. This 
will be demonstrated for the case of diffusion in homogeneous turbulence. The 
concentration at the downwind edge of a long plane source of marked fluid elements 
in the absence of any barrier will be considered. 

The concentration distribution downwind of a line source in homogeneous 
turbulence has been observed to be very close to Gaussian in form for ratios of 
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travel time to timescale t/z, ranging from near zero to much greater than 1 (Bat- 
chelor, 1949). Taylor (1921) gave an exact expression for the second moment of the 
concentration distribution (without assumptions as to the actual distribution). If the 
marked fluid elements are released at t = 0, x = z = 0 into a flow with Eulerian 
velocity held (u, w(t)), then the mean-square departure from z = 0 at a later time t is 

t(t) = 2a; (t - ()&(() d[. 
s 
0 

(3) 

The concentration at the downwind edge of a plane source may be obtained by 
adding together the Gaussian profiles for a large number of elementary line sources. 
For the contribution from the line source of width Ax a distance x from the source, 
the diffusion time is 

t = x/u 
and 

where 2(t) is obtained from Equation (3) using 

h(5) = exp t-&J 

corresponding to the autocorrelation function for RC-filtered Gaussian noise. 
The contribution of each line source to the total vertical flux may be obtained 

by differentiating the expression for AZ(Z) with respect to z and multiplying by the 
diffusivity (which is a function of the diffusion time x/u as will be discussed later). 

In homogeneous turbulence Equations (1) reduce to 

AZ = AZ, = w,(t)At 

Ax = uAt. 

Figure 2 compares the solution of the trajectory method and the summation of the 
line-source analytical solutions, for a 100 m fetch and: 

24 = 100 cm s-i 

gw = 25cms-’ 

z L = 1 s. 

The agreement is excellent, both for concentration and vertical flux. Also plotted 
is the concentration profile obtained using a constant-K solution to the diffusion 
equation for each line source, 

AZ(Z) = a fxmt exp [ - z2/4Kt] 
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Fig. 2. Homogeneous turbulence. Prediction of the trajectory-simulation method for concentration 
and vertical flux at the downwind edge of a 100 m long plane source at z = 0 in homogeneous turbulence 
with length scale 25 cm, time scale 1 s, longitudinal velocity 100 cm s-r. Source strength 1 cmm2 s-l. 
The points labelled ‘Taylor were obtained by a superposition of the Gaussian solutions for each of a 
large number of elementary line sources placed side by side to construct the 100 m plane source: for 
each line source Taylor’s expression for the second moment was used in the Gaussian solution If a 
Gaussian solution with constant eddy diffusivity is used for each line source, the curve labelled 

‘constant-K’ results. 

where 

Taylor’s result, Equation (3), may be shown to imply that in fact 

f 

K = d h(t) d5 
s 
0 

< CT& for small t. 

It is therefore no surprise that the constant-K solution underestimates the concen- 
tration gradient near the source, where the total concentration has a large contri- 
bution from the elementary line sources immediately upwind. For the material 
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from nearby line sources, the closure relation 

is not correct. 

4.2. TURBULENCE WITH POWER LAW WIND AND DIFFUSIVITY PROFILES 

It is also possible to compare the trajectory-simulation method with solutions to 
the diffusion equation for inhomogeneous turbulence. Philip (1959) gave a solution 
to the diffusion equation 

with 

u=u1 5 
0 

m ” 

Zl 
K=K,L 

0 Zl 

and surface boundary condition 

=l for x>O 

i.e., a ground-level source extending downstream from x = 0. Because the timescale 
at the source height is small, most of the material seen at the observation point will 
have been travelling for a time which is long compared to rL(zs)*. Also, for a long 
fetch of source (large x), one would expect the concentration gradient to change only 
slowly along the vertical axis. We therefore expect Philip’s K-theory solution to 
give correctly the concentration profile resulting from a long plane source at ground 
in a system with 

ow = constant 

zL(z) cc K(z) cc z". 

Diffusion in this artificial system may be simulated by writing 
R 

and employing Equations (1). Figure 3 compares the solution thereby obtained 

with the analytical solution, for a 320 m long plane source and: 

H = 300 cm 
u(H) = 500 cm s-l 

K(H)= 3000 cm’si 
ON = 31 cm s-l 
m = 117 
n = 617. 

* where zs = source height. 

(TL(H) = 3.12 s) 
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Fig. 3. Turbulence with power-law profiles of windspeed and eddy diffusivity. Prediction of the 
trajectory-simulation method and Philip’s analytical solution for concentration and vertical flux at the 
downwind edge of a 320 m long plane source at ground in turbulence with u cc 2”’ and K cc z6” 

(5, a z6”). The source strength is 1 cm-’ s-l. 

There is excellent agreement between the two solutions. It is possible to obtain the 
same profile of K(z) by a different choice of q+, and rL(H), (e.g., cW = 100 cm s-i, 
rL(H) = 0.30 s). Such an alternative choice, in which the particle trajectories are very 
different, leads to insignificant alteration in the concentration profile predicted by 
the simulation method. Our solutions are insensitive to modest changes in g,,, and 
zL which preserve K = CT~T, (CT, + /bw, rL + rL/l/B where /3 < 10). No study of 
the limit to this insensitivity has been undertaken. 

4.3. THE NEUTRAL SURFACE LAYER 

For a plane source of infinite upwind extent at ground level, the vertical flux is 
independent of height, and one may integrate the closure relation 
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by assuming 

K = ao,z 

in the neutral surface layer. The resulting expression for the concentration is 
- 

i&z) = F(x,zJ -sin;. (4) 
w 

Figure 4 shows the concentration and vertical flux-profiles predicted by Equations 
(1) for the downwind edge of a 320 m plane source of strength 1 cm-’ s-l at ground 
in the neutral surface layer, with 

u. = 25cms-’ 
zo = 0.1 cm 
a =0.5 . 

aw = 31 cm s-l 
=2 = zs = zo. 

l0000 

1000 

E 

P4 

S 
.M 
I” 

100 

10 

2.1 

1.5 

1 
0 0.25 

Concentration, E (cm+] 
0.50 

Fig. 4. Neutral surface layer. Prediction of the trajectory-simulation method for concentration and 
vertical flux at the downwind edge of a 320 m long plane source at ground in the neutral surface layer, 

withu.=25cms-’ , z0 = 0.1 cm, source strength 1 crn-‘s-l. 
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The straight-line portion of the concentration profile has slope 

AC 
__ = --&, in agreement with Equation (4). 
Alnz w 

In consequence of the finite fetch, Equation (4) is not valid above the ‘constant flux’ 
region near the ground as is indicated by the trajectory-simulation technique. The 
dashed line is the solution when the source and reflection heights are chosen 

2s = z2 = 10cm. 

It can be seen that except very close to the source, the solution is insensitive to the 
choice of zs, z2. 

5. Conclusion 

A particle trajectory in inhomogeneous turbulence may be viewed as a motion in 
homogeneous turbulence in transformed coordinates. The motion in the transform- 
ed system may be numerically simulated using distance steps 

AZ, = w,(t,)At, 

TL(Z) Ax = U(Z) ___ AtH 
TAH) 

where z* is the transformed height, related to real height z by the integral form of 

zL.(z) dz = - dz, ; 
z,(H) 

tH is transformed time, and wL(tH) is a record of vertical velocity with the correct 
velocity scale ((T,) and timescale (zJH)) for particle motion at height H. 

Concentration profiles derived by calculating a large number of particle traject- 
ories using this method have proven to be identical with analytical solutions for 
dispersion in homogeneous turbulence (in which case AZ = AZ,), in turbulence with 
power-law profiles of windspeed and diffusivity, and in the neutral atmospheric 
surface layer. It may be concluded that this trajectory-simulation method is appli- 
cable to a wide variety of important diffusion problems. A comparison of predictions 
with experimental data for the atmospheric surface layer will be presented in 
another paper. 
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