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Abstract. It is shown that for the purpose of trajectory simulation, the vertical velocity wL(t) of a fluid 
element, which is moving in a system (such as a forest canopy, or the unstably stratified atmospheric 
surface layer) whose turbulent velocity scale crw is height-dependent, must be chosen from a frequency- 
distribution which is asymmetric about w L = 0. If the gradient &r,/& varies only slowly with height, 
correct trajectories may be obtained by adding a bias WL = A, &r,,,/~Yz (where A, is the length scale) to 
a fluctuating velocity chosen from a symmetric distribution with variance u;(z). 

1. Introduction 

Atmospheric turbulence close to the ground is always inhomogeneous. Even when 
there is horizontal homogeneity, the Eulerian scales of the turbulence still exhibit 
height dependence. This paper is concerned with simulation of particle trajectories 
in systems in which the Eulerian turbulent velocity scale Q (root-mean-square 
vertical velocity) is height-dependent. Particular examples of such systems are the 
unstably stratified atmospheric surface layer, and the turbulent motion within an 
extensive plant or forest canopy. 

While the results of this work are applicable to particle motion within the 
unstable surface layer, the aim was to develop a means of trajectory-simulation 
within a canopy, with such applications as disease-spore, pollen, and vapor trans- 
port in mind. The complex distribution of sources and sinks within a canopy may 
lead to concentration gradients which change significantly over a distance of the 
order of the turbulent length scale (AL), invalidating the use of K-theory to relate 
the turbulent fluxes to average concentration gradients (Tennekes and Lumley, 
1972; Corrsin, 1974). Furthermore, it follows from the work of Taylor (1921) that 
close to a source the effective eddy diffusivity K is a property not only of the tur- 
bulence, but also of the distance from the source. Therefore although one may 
always define an eddy diffusivity by dividing a measured flux by a measured con- 
centration gradient, in a canopy it may be impossible to relate the number thus 
obtained to properties of the turbulence. A trajectory-simulation approach to 
dispersion in such systems eliminates the necessity of an a-priori a’ssumption of the 
relationship between fluxes and gradients. 
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In an earlier paper, Wilson et al. (1981) described a means of simulation of 
trajectories in systems in which gw is constant. This model will be briefly reviewed 
and modified to incorporate the effect of height-dependence of CJ,,,. It is then shown 
that in order to obtain physically reasonable concentration profiles in a system 
with variable velocity scale, one must choose the fluctuating Lagrangian vertical 
velocity from an asymmetric frequency distribution. This may be achieved by 
adding a bias to a velocity chosen from a symmetric distribution. It is shown that 
incorporation of a bias velocity 

leads to concentration distributions in agreement with analytical solutions in 
systems in which at each z the gradient &r,,,/az is approximately constant over a 
distance of several length scales. This restriction on the gradient of o,,, is not satisfied 
in all systems. In particular, it is not satisfied within a corn canopy, and it is shown 
that application of the above bias does not lead to correct particle trajectories 
within a corn canopy. 

2. The Trajectory-Simulation Model 

Consider a two-dimensional system in which the Eulerian horizontal (x) velocity u 
is steady and depends only on the height (z), and the Eulerian vertical velocity w 
is unsteady (turbulent) with a time average value of zero. The Eulerian velocity 
scale ow is constant. The Eulerian time scale is defined by 

co 

z(z) = w(z, t) w(z, t + 5) d5/a; 

where the overbar denotes a time average. z(z) is height-dependent, as is the 
Eulerian length scale A = o~z(z). 

Wilson et al. (1981) showed that each step in a fluid element trajectory in such 
a system may be calculated using 

AZ = w,(t,) - At, 
7dH) 

AL Az 
=ZL(H) * 

AZ, = w&)AtH 

Ax = u(z)- AL At 
~LW) H’ 

Here r, is the Lagrangian timescale, a measure of the persistence of the vertical 
velocity of a marked fluid element, and is assumed to be closely related to the 
Eulerian timescale, z=(z) cc r(z). tH is a transformed time, related to real time t by 
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and z* is a transformed height axis. To each z* there corresponds a unique value of z. 
The fluid element trajectories are calculated in the (x, zt, tH) system in which the 
scale of the turbulent motion is independent of position. wL(tH) is a record of vertical 
velocity appropriate to a fluid element moving at the reference height z = H, having 
time scale rJH). This was obtained by applying a single-stage low-pass RC filter to 
the output from a Hewlett-Packard* random noise generator. The probability 
density function for wL(tH) was approximately Gaussian, with zero mean. 

In the case where gW is height-dependent, it was expected that satisfactory 
trajectories would be obtained by writing 

adz = I, 

and 

(3) 

AZ, = w,(t,)At, 

AL. Ax = u(z)- At,. 
TLW) 

wi(tJ has time scale rL(hl) and velocity scale a,(H), and is again obtained by 
applying a low-pass filter to the output of a random noise generator (frequency 
distribution approximately Gaussian with zero mean). This method would satisfy 
the constraints : 

(i) That if a particle travelled a distance 6X without moving far from height z, 
the ratio of travel time to time scale 

which is a measure of the number of independent velocity ‘choices’, is preserved in 
the simulation. 

(ii) The typical magnitude of AZ is 

AZ N a,(H) %(‘) ---At = o,(z)At. 
o,(H) 

These were believed to be the most important factors. Equations (3) are compatible 
with Batchelor’s (1957) hypothesis of Lagrangian similarity: wL(tH) is a stationary 
random function of transformed time tH. 

* Hewlett-Packard, Palo Alto, California, 94304, U.S.A. 



426 .I. D. WILSON ET AL. 

With this method of calculating fluid element trajectories, it is possible to 
perform ensemble experiments as described in I. The z* axis is divided into 200 layers 
of depth AZ, with midpoints z,(Z) = (I-0.5)Az,. Prior to calculation of a set of 
trajectories, the z(Z) corresponding to each z,(Z) are calculated by integrating the 
relationship 

dz = AL(z) dz 
YqF) ** 

In all systems herein, the assumed functional dependence of AL on z led to a simple 
explicit relationship between z and zt. For each I, the values of Ax(z(Z)) are tabul- 
ated and each step in a trajectory is given by 

AZ, = wL(tH)AtH 

Ax = Ax(Z) 

where I is obtained from the instantaneous value of z*. 

3. Demonstration of the Need for a Bias in the Lagrangian Vertical Velocity 

Consider a continuous plane source of strength 1 [marked fluid element per cm of 
length per cm of crosswind extent per second] at a height zs above a reflecting sur- 
face. The source has very long upwind extent, XM. Let G,,, be constant for all z 2 zs, 
and reference height H = zs. This will be abbreviated the LFEPS (long-fetch 
elevated plane source) situation. 

The ensemble experiment consists of releasing NP planes to obtain a count of 
N(Z) particles passing the collector (X) in the layer 

(I - l)Az, I z* < ZAz,. 

The quantity [N(Z)/NP] is then the average number of particles collected in the 
Zth layer in 1 second, whence 

N(z) __ = F,(X, z)Az = F,,(X, z,)Az*. 
NP 

Here AZ = [hL(z)]/[AL(H)] A zt and F, and F,, are the horizontal flux densities in 
the z and z* systems, 

F, = c(X, z)u(z) 

F,, = c,(X, z,)v,(z,) 

where a,(~,) = u(z) rL(z)/rL(H). 
It follows that concentrations in the two systems, c and c*, are related by 

%vM c,(X, z*) = c(X, z(z*)) -. 
o,(H) 
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What does this imply with respect to the outcome of the LFEPS experiment? The 
turbulent motions in the z* system have scales independent of height - we therefore 
have homogeneous turbulence, with wind shear. Figure 1 shows (schematically) 

Fig. 1. Schematic diagram of development of the concentration profile with increasing distance from 
the leading edge of an elevated continuous plane source. 

(i) Very near the leading edge. (ii) Farther from the leading edge, presence of surface not yet influential. 
(iii) Reflection (folding) begins. (iv) Very far from the leading edge. Very small vertical flux and concen- 

tration gradient below the source. 

the development of the profile of c* at increasing distances from the leading edge 
of the source. As the distance from the leading edge becomes very large, the vertical 
flux below the source becomes small and the concentration gradient below the 
source becomes small and positive. 

ac, 
-20 for z*<z*s. ah 

It follows that 

ac aa, 
dz-dz 

for z < zs. 

The concentration gradient below the source in the z system is negative (for 
&r,/az > 0). This argument predicts that if we calculate particle trajectories in 
a system with G,,, height-dependent using Equations (3), then where the vertical flux 
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is zero, the simulation will give rise to a non-zero concentration gradient such that 

c(z)o,(z) = constant. 

In fact, this was found to be the case. The curve labelled Wr. = 0 in Figure 7 gives 
concentration predicted by Equations (3) for diffusion from a plane source 320 m 
in upwind extent at the top of a horizontally homogeneous canopy of corn, with 
surface reflection (LFEPS case). 

Ward (1977) found 0,~ = 0.1 z in and above a corn canopy, calculating z from 
a measured autocorrelation function. For the simulation we chose the Lagrangian 
length scale to be A, = 0.5 z (but the conclusions reached from the following work 
do not depend on the accuracy of this choice). The profiles of g,,, and windspeed 
used were 

gu’ = 72(0.21 + 0.79 exp(-(z - 210)‘/7200)) z < 210 
= 72 z 2 210 

u = 220 (0.1 + 0.81~/230) exp (3.1(2/230 - 1)) z < 230 
= 199 + 2861n(z/230) 230 I z I 300 
= 67/.4 In (z - 145)/30 z > 300 

These profiles were obtained from measurements of a,(z), u(z) by Wilson (1980). 
The source height was chosen as zs = 230 cm and the source strength was 1 cmw2 
s-l. The trajectories were calculated without interaction with the vegetation, and 
are thus applicable to a region with the given turbulence and wind profile, but no 
vegetation. 

As expected from the argument above, below the source the trajectory simulation 
predicts a physically unreasonable concentration gradient (ac/az < 0) and the 
concentration obeys c(z)a,(z) = constant. The same prediction for this LFEPS case 
is obtained if the vertical steps are calculated using 

AZ =gAzs 
L 

Azt = 3) w,(t,)At,, 
w 

i.e., if the ratio a,(z)/a,(H) is not included in the relationship between z and zt. 
Now consider the air within the canopy. Continuity requires zero net flux of air 

out of the canopy; according to Equations (3) we therefore must have 

pa,(z) = constant 

(where p is the density of the air) because the (unmarked) fluid elements are all 
participating in turbulent motion. The density, p, at the bottom of the canopy is 
predicted to be about five times greater than at the top of the canopy. This violates 
the ideal gas law, which constrains the density of the air to be height-independent 
(ignoring hydrostatic lapse of pressure, and assuming isothermal conditions). It is 
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therefore concluded that it is not correct to incorporate the effect of height-depen- 
dence of G,,, simply by changing the magnitudes of randomly chosen unbiased 
velocities in accordance with position. What are the implications of a gradient in o,? 

(i) In the neutral surface layer a, is independent of height except very close to 
the surface, and fluid element trajectories can be successfully calculated by assuming 
a discontinuity in (T, at z = 0 at which total reflection occurs, a bias in the velocity 
choice of each individual fluid element at the discontinuity. If a discontinuity in CJ,,, 
at z causes a bias in each individual particle velocity choice at z, perhaps a gradient 
(&,,,/a~) between z2 and z1 implies a bias in the velocity record of a fluid element 
between z2 and zl. 

(ii) The possibility that the Eulerian velocity distribution is skewed should be 
considered. In a region where aa,/& > 0, would we expect that fluid elements 
crossing z in the downward direction, having some memory of their height of origin, 
would travel faster than those travelling upward across z and having a memory of 
being at lower heights? If this were the case, then we could say that a large area A 
at z consists of two parts, 

Af + Ai = A 

and that continuity is satisfied by saying 

Atwt + AJwJ = 0 

with ) wJ 1 > wt. This corresponds to a large proportion of the area at z moving up 
slowly, and a small proportion moving down quickly. If we now placed one marked 
fluid element per unit area on A, a small number would move down quickly, a 
larger number up slowly. This implies a preference for upward movement even for 
a single marked fluid element. 

(iii) Finally it is worthwhile to question whether the constraint of constant 
pressure has some special implication for turbulent motion in a system with 
variable ow The absence or presence of a pressure constraint is of importance in 
the problem of molecular diffusion in the presence of a temperature gradient. If two 
chambers (A, B) held at temperatures TA, TB are separated by a porous plug whose 
pores are of a characteristic size much smaller than the mean free path in the gas, 
it is observed (Reynolds, 1879) that for gas at sufficiently low density the equilibrium 
density distribution is 

i.e., 

where oA, crB, the root-mean-square molecular velocities, depend on TA, TB ( TA oc a:). 
This density distribution arises because the small pore size in relation to mean free 
path causes a very high resistance to hydrodynamic flow, and exchange between 
the two chambers occurs by ‘effusion’; for low density in B, the escape of molecules 
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from A through a small pore is equivalent to escape into a vacuum, and the mass 
per unit area per unit time escaping is therefore proportional to pa (Jeans, 1959). 
However as the density of the gas is increased, the occurrence of collisions reduces 
the rate of efflux. Alternatively, if the density remains very low but the pore size is 
increased, hydrodynamic flow of the gas occurs, causing the equilibrium distribution 
to become 

PA = PB 

i.e., 

When the constant-pressure constraint becomes effective, it alters the equilibrium 
concentration distribution. 

It is hoped that this discussion has demonstrated the difficulties which a gradient 
in a, presents. Our understanding of the implication of the changing velocity scale 
for fluid element trajectories is incomplete, but it seems certain that trajectories 
must be biased towards the direction of larger values of (T,. 

4. Biasing Trajectories by Adding a Mean Velocity 

The addition of a bias velocity suggests itself on consideration of the relationship 
between the vertical fluxes in the (zr, x, tH) and (z, x, t) systems. In the z* system the 
turbulence is homogeneous and we may form a position-independent eddy 
diffusivity 

K* = c@@,(H). 

Whence 

F,, = -Kg 
* 

where 

WL = AL% and K = oi(z)r,(z). 

This implies that when F,, = 0, we will have non-zero concentration gradient in 
the real world. If we add to both sides the term 

c*cr,(H)z,(z) 2 = co,(z)z,(z) 2, 
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then 

Therefore if we add a velocity 

w*, = a,(H)z,(z) % 

to the turbulent component wL(tH) in the z* system then when the resulting flux 
F:, is zero, we have 

g>O (for%>O) 

and 

ac 0 
az=. 

How can we rationalize the idea of adding a bias wL = AL aa,/az to fluid element 
trajectories? Taking the example of a forest canopy, perhaps the random motion 
is acting to build up the density at the bottom of the canopy but the pressure 
constraint opposes the effect of the random motion and ensures that p = constant. 

It is hypothesized that for a system in purely random turbulent motion, without 
a pressure constraint, we may relate the flux to the mean gradient by 

wh) F, = -A,--- aZ 

as long as (&a,)/az changes only slowly over a length scale. 
(a) if oW = constant, we recover the flux-mean gradient expression. 
(b) if CJ~ = gW(z), we obtain (&/az) # 0 for F, = 0, the solution appropriate in 

the absence of a pressure constraint. 
(c) in a system with B, = C,(Z) and in which there is a constant-pressure con- 

straint, there exists a bias wL = &(aa,/az) in the fluid element trajectories, and 

ae,) F,= -ALP aZ 
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This is the solution appropriate in a forest or corn canopy. 
Following this hypothesis, if we want to simulate particle trajectories where 

(&,,,/a~) # 0 and there is a pressure constraint, we must bias the trajectories with 
a temporally constant velocity 

(whose equivalent in the zI system is 

iv*, = Uw(H)TL(Z)$. 

The appearance of only the first derivative of o, suggests that this approach may 
only work for systems in which (&r,,,/az) changes very little over a distance of several 
length scales centred at the height (zl) at which we are estimating We. This restraint 
may be written 

for z1 - 3A,(z,) I z I z1 + 3h,(z,). 
This is certainly not satisfied if, for any z, 

A, # aow/a2 
I I a%,laz2 = S(z). 

The equations governing the trajectories now become 

AZ = [w&) + WtL] $+ g A&, 
w 

AL(Z) AZ 
=1Z,(H) * 

AZ, = [w&) + i-L,] AtH 
(4) 

Ax = u(z)- %.(‘) At 
~LW) IJo 

The results of ensemble experiments performed using Equations (4) will now be 
presented. Firstly, a set of artificial systems in which analytical solutions are 
available will be considered. Secondly, predictions of diffusion from a source within 
a corn canopy will be presented and discussed. 

4.1. COMPARISON WITH ANALYTICAL SOLUTIONS 

Philip (1959) gave an analytical solution to the diffusion equation 
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when 

u = u(H) ; m 0 K = K(H) ; n 0 
with the flux boundary condition 

( > -Kg =l for z=O,x>O 

= 0 for z = 0, x I 0. 

This solution has been compared with the concentration profiles predicted by 
Equations (4) for a continuous plane source at z = 0, 320 m in upwind extent. 
Profiles of r&), a,(z) 

are taken to imply that 

z 2nz+n1 
K(z) = K(H) z 

0 

Comparison with a K-theory method is felt to be justified in this case because: 
(i) The source is at z = 0, where the length and time scales become vanishingly 

smalL Therefore the vast majority of material seen at the observation point has had 
a long diffusion time with respect to the time scale at the source. 

(ii) Particularly for a long distance from the leading edge, one would expect the 
concentration gradient to change only slowly along the vertical axis. 

In all the following comparisons 

H = 200 cm 
u(H) = a,(H) = lOOcms-’ 
z~(H) = 1s. 

TABLE I 

Parameters for each comparison of the trajectory-simulation method with Philip’s 
analytical solution. (WI, n,, n3) are the exponents in the power-law (wind, velocity scale, 

time scale) profiles 

Figure m n, n1 WI. 
(cm s-l for 
z in cm) 

AL < s 

1 112 112 0.5 z 22 1.77 z1’2 for all 2 
1 1 0 0.5 2 

73 z 
0.25 z for all z 

1 l/4 0 27 z1’4 177 z-l’2 z > 55 cm 
1 - l/10 112 12 z4”0 0.91 z -204 z-7/1O z174cm 
1 112 - l/10 12z4”0 22 42 z-l/lO z>20cm 
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Table I presents the chosen profiles for each comparison, and the corresponding 

Figures 2-6, show that in those systems in which 

AL(z) < S(z) for all z 

the concentration profiles calculated by the trajectory method using Equations (4) 
agree precisely with solutions to the diffusion equation. In cases where the inequality 
above is not satisfied, there is a small difference between the results, In Figure 3 the 

Concentration, c [cm-‘] 

Fig. 2. Prediction of the trajectory-simulation method, and Philip’s solution for the concentration 
profile at the downwind edge of a 320 m long continuous plane source at ground in turbulence with 

0, cc 9’2, r cc 9, ” a z. 
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I 

0 0.1 0.2 

Concentration, c (cm-‘] 

Fig. 3. Prediction of the trajectory-simulation method and Philip’s solution for the concentration 
profile at the downwind edge of a 320 m long plane source at ground in turbulence with gW cz z, 5 = 
constant, u SC z. The dashed curve is the prediction without incorporation of the bias velocity to 

compensate for the gradient in 6,. 

prediction with ii)L = 0 is plotted (dashed curve) in order to show the dramatic 
alteration the bias introduces. The dashed curve in Figure 2 shows the concentration 
predicted by the trajectory-simulation method for an elevated plane source, with 
all parameters (except source height) unchanged. No analytical solution is available. 
However the prediction agrees with the intuitive expectation of the effect of in- 
creasing the source height. It should be remembered in comparing this solution 
with the result for the ground-level source that the quantity 

03 
c(z)u(z) dz 
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Concentration, c [cm-‘] 

Fig. 4. Prediction of the trajectory-simulation method and Philip’s solution for the concentration 
profile at the downwind edge of a 320 m long plane source at ground in turbulence with cW oc zl“‘, 

T = constant. u oc z. 

is a constant depending only on the length of the source, but there is no such 
restriction on Co s c(z) dz. 

0 

4.2. PREDICTIONS OF DIFFUSION WITHIN A CORN CANOPY 

Equations (4) have also been used to calculate fluid elem-ent trajectories within a 
corn canopy. The windspeed, length scale, and velocity scale profiles used were 
given in Section 3. The offset velocity tiL was derived from the chosen length and 
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8 

2 

0 
0 0.06 0.12 

Concentration, c [cm-21 

Fig. 5. Prediction of the trajectory-simulation method and Philip’s solution for the concentration 
profile at the downwind edge of a 320 m long plane source at ground in turbulence with 6, cs zC”.‘, 

t a P, II K z. 

velocity scales. The gradient in cr,,, changes very rapidly near the top of the canopy, 
and it may be shown that the restriction AL < S is not everywhere satisfied. 

Figure 7 shows the predicted concentration profile for a plane source of strength 
1 cmp2 s-l extending 320 m upstream of the observation point, with source height 
zs = 230 cm and with surface reflection (LFEPS case). The concentration gradient 
below the source is incorrect, and this was found not to be a consequence of in- 
sufficient fetch. Also included in Figure 7 is the profile predicted using Equations 
(4) with WL = 0, (i.e., in effect using Equations (3)). 

If 7;. is defined by 

o:(zs)z; = o;(z)z,(z), 
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6 

2 

0 
II 0.05 0.10 

Concentration, c [cm-?) 

Fig. 6. Prediction of the trajectory-simulation method and Philip’s solution for the concentration 
profile at the downwind edge of a 320 m long plane source at ground in turbulence with g,, CC zl”, 

T cc z-0.1, I4 cc z. 

one may calculate trajectories in the system 

0, = constant = ~~~(2s) 

u(z) = observed profile 

using the equations appropriate to constant-g, systems, Equations (2). In this latter 
system the ‘artificial canopy’, the eddy diffusivity is everywhere equal to that in 
the real canopy, but the length, time, and velocity scales are individually correct 
only at the source height: we therefore would expect quite different trajectories in 
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4 

3 

2s 
-z - 

r-2 =‘ 2 

.M 
S 

1 

0 

CANOPY DIFFUSION 

0 0.25 0.50 

Concentration, c [cm-‘] 

Fig. 7. Predictions of the trajectory-simulation method for the concentration profile at the downwind 
edge of a 320 m long continuous plane source above a corn canopy. Solid line obtained by biasing the 
vertical velocity with a mean velocity WL = AL &r,/dz; dot-dashed line with WL = 0; dashed line 

obtained using correct &,tL at all heights, but with c,,, = a,(zs) for all z and rl = r,ai/u;(zs). 

the artificial and real canopies. If the only important parameter for the diffusion 
was K = OCR,, then this method should give the correct solution. In view of 
the elevated source height (tL(zs) # 0), there is no sound reason to believe it is the 
correct solution in this case, but it is included in Figure 7 for comparison. 

Figure 8 shows predicted concentration in the canopy at the downwind edge of 
a ground level plane source, 320 m in length, and of source strength 1 cm-’ s-r, 
using Equations (4). The dashed curve was generated by integrating the relationship 

AC F,(z) 

cz=- &4~,(4 
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CANOPY DIFFUSION 

0.25 

Concentration, c [cm-‘) 

Fig. 8. Prediction of the trajectory-simulation method for the concentration profile at the downwind 
edge of a 320 m long plane source at ground in a corn canopy. The dashed line is a K-theory solution. 

with a starting point on the profile predicted by the trajectory method, and using 
F,(z) = 1 (according to the trajectory method, F, > 0.99 for z < 200 cm). There is 
some basis for expecting this relationship to be correct because the source is at 
ground (am N 0) and the fetch is very long. 

Biasing trajectories by adding an offset 

w, = A,ao,laz 

does not lead to correct predictions of diffusion within the corn canopy. It seems 
reasonable to attribute this to the fact that the restriction A, -C S is not obeyed by 
the turbulence scales within the canopy. 

An alternative means of biasing particle trajectories is to reflect some proportion 
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of downward-moving particles at each of a number of elevated planes. This approach 
is currently under investigation. 

5. Conclusion 

In a horizontally homogeneous system with c,,, = constant, the vertical velocity 
wL(t) of a marked fluid element may be chosen at random from a frequency distribu- 
tion which has zero mean, When (T, is height-dependent, the same approach leads 
to concentration distributions which are physically unreasonable, and it is suggested 
that in this case wL(t) is biased, and cannot be chosen from a distribution with zero 
mean. 

In those systems investigated in which at each z the gradient &r,/az is approx- 
imately constant over several length scales (slowly varying gradient in o,), the 
addition of a bias velocity 

a0 WL = A,' aZ 

to wL(t) gave trajectories which lead to concentration distributions in agreement 
with analytical solutions. However, within a corn canopy the gradient in o,,, changes 
rapidly over a distance of one length scale, and application of the bias velocity did 
not lead to correct trajectories. 

In a later paper predictions of the trajectory-simulation method are compared 
with experimental data for the atmospheric surface layer. The bias velocity given 
above has been incorporated in‘the case of highly unstable stratification. 
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