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We review the niche for Lagrangian models on the micrometeorological scale in
the context of “inverse dispersion,” as applied to estimate the rate of gas transfer Q
from small surface sources to the atmosphere. The backward Lagrangian stochastic
(bLS) method for inverse dispersion is widely used to quantify local sources of
such gases as methane and ammonia, typically stemming from the agricultural
sector. Data for a particular case study are given, offering interested readers a
simple case illustrating the bLS method.
1. INTRODUCTION

Suppose a well-defined area of surface is steadily emitting
gas to the atmosphere at an unknown rateQ, causing the mean
concentration of that gas to rise above the background value
by the amount C (see Figure 1). The concentration rise is line-
arly proportional to the source strength, and an atmospheric
dispersion model might diagnose the mean concentration rise
at position x downwind of the source as (symbolically)

CðxÞ ¼ Qf ðxju*; β; L; z0Þ; ð1Þ

where the variables to the right of the “|” in the function f ()
represent the (given) state of the atmosphere, in this case
represented in terms of surface layer scaling variables, namely,
the friction velocity u* or equivalently a mean wind speed
U at some arbitrary height, the mean wind direction β,
the Obukhov length L, and the surface roughness length
z0 (strictly speaking, we should include the depth δ of the
atmospheric boundary layer, but in cases of interest here
this difficult-to-procure variable exerts only a small influence
on f ). For simplicity, we restrict attention to steady sources.
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It follows from equation (1) that if we were to measure C at
some point xP and provide to a suitable dispersion model an
adequate description of atmospheric state, we could deduce
the numeric value of Q, the source strength. This is an
“inverse dispersion” method, with equation (1) denoting the
“C-Q relationship” on the micrometeorological scale in an
undisturbed (i.e., horizontally homogeneous) atmospheric
surface layer. The sources are of limited streamwise extent,
so that a negligible fraction of the trajectories linking the
source to the detector make excursions above the surface
layer, and accordingly, the dispersion model (computing f )
needs to account only for the state of the surface layer, which
is described by the Monin-Obukhov similarity theory. As is
appropriate in a monograph concerned with Lagrangian
models of the atmosphere, we focus here on the case that
inverse dispersion is performed using a Lagrangian model of
transport and dispersion: more specifically, we cover the so-
called “backward Lagrangian stochastic (bLS)” method,
meaning that the needed atmospheric dispersion model is a
bLS trajectory model, computing an ensemble of random
paths backward in time from the detector(s) to the source(s).
Inverse dispersion may be viewed as a form of data assimi-

lation, in the sense that it entails the blending of measure-
ment and theory, and many variants exist: e.g., using a
Lagrangian stochastic (LS) model at the smallest scale,Hsieh
et al. [2003] inverted vertical profiles of carbon dioxide
concentration to infer the vertical profile of CO2 source
strength within a plant canopy, while Seibert and Frank
[2004] used a large-scale LS model driven by the European



Figure 1. A known patch of the landscape is emitting gas at a
steady, unknown rate Q, thereby causing a rise C in the downwind
concentration that (for any particular measurement point) must
depend on the state of motion of the atmospheric surface layer
(i.e., mean wind speed U and mean wind direction β, Obukhov
length L, and surface roughness length). The single (and schematic)
trajectory that is shown has made a single touchdown on the source
(close to its nearby perimeter) and several subsequent touchdowns
outside the source.
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Centre for Medium-Range Weather Forecasts analysis fields
to establish the source-receptor relationship linking mea-
sured 137Cs concentration in Stockholm with emission over
Ukraine, Belorus, and Russia. It is feasible both to locate a
source and to estimate its strength [e.g., Yee et al., 2008], but
here we address only the circumstance that one has prior (and
complete) knowledge as to source location and perimeter. In
terms of antecedents to the “bLS” method, Wilson et al.
[1982] used a forward LS model to prepare a nomogram for
inferring emission from small circular sources based on a
single concentration measurement at a particular height
(“ZINST”) above the center of the plot (the “ZINST” or
theoretical profile shape, “TPS” method). The bLS method
generalizes this to arbitrary geometry and arbitrary atmo-
spheric state. An earlier review of bLS is given by Flesch
and Wilson [2005], while Denmead [2008] covers bLS in
context with the range of other techniques for estimating gas
fluxes to the atmosphere.
In section 2, we outline the types of problems for which an

inverse dispersion approach is particularly suitable and the
reasons for preferring a backward Lagrangian treatment. We
will not document technical details of the model (which in
many instances can be chosen to be Thomson’s [1987] well-
mixed, 3-D model for Gaussian inhomogeneous turbulence),
but in section 3, we will convey the practicalities of imple-
menting bLS at typical sites at which the winds can reason-
ably be approximated as undisturbed (for clarity, we shall
often designate the procedure as “MO-bLS” because one
assumes the Monin-Obukhov similarity theory satisfactorily
describes the wind statistics) and give an example of the
application to measure the rate of volatilization of ammonia
after manure spreading (readers interested to learn the practi-
calities of bLS may wish to download WindTrax and analyze
this case as a simple learning exercise). Section 4 will briefly
summarize the advantages and disadvantages of accommo-
dating sites that entail flow disturbances by invoking a com-
puted 3-D field of velocity statistics to “drive” the trajectory
model, an approach we label “3D-bLS,” while section 5
touches on the range of applications of MO-bLS so far seen.

2. THE NICHE FOR INVERSE DISPERSION BY bLS

Figure 2 classifies a range of possible micrometeorologi-
cal approaches for estimating ground-air gas transfer (for
comparative perspectives on these various techniques see
Lapitan et al. [1999], Wilson et al. [2001], Pattey et al.
[2006], Denmead [2008], Loubet et al. [2010], and Harper
et al. [2011]). Eddy covariance is generally regarded as the
ground truth method and directly measures the covariance
w̄′c′ of fluctuations in vertical velocity and gas concentra-
tion at a (nominal) point xP (if w, c are the total vertical
velocity and total concentration, respectively, then the total
mean vertical convective flux density is w̄c ¼ WC þ w̄′c′ ,
where the component due to any apparent mean vertical
motion W is usually neglected in favor of the ideal value
given by Webb et al. [1980]). The eddy flux w̄′c′ is (by
definition) the turbulent component of the mean vertical
mass flux density at that point xP. What surface area the
measured point flux w̄′c′ represents is defined by (and can be
quantified by estimating) the “flux footprint” [Schmid, 2002;
Vesala et al., 2008], and suffice to say that the latter (for
practical instrument heights, say 2 m or higher) covers a
substantial distance of upwind surface (some 300 m or
more). Then, what if the source is quite small (characteristic
dimension of order, say, 1–10 m)? Eddy covariance cannot
be used. The same problem arises if a flux-gradient method
is contemplated.
One approach to handling small sources is the integrated

horizontal flux (IHF) method [see Denmead and Raupach,
1993; Denmead, 2008], which equates the emission rate to
the total horizontal flux across a reference plane downwind
of the source, an approach that has the appeal that it does not
necessitate adopting a transport model, but the disadvantage
that it requires multiple wind and concentration sensors (the
TPS method was conceived as a means to circumvent large
errors in the IHF method, which may arise if the vertical



Figure 2. Classification of methods to determine gas flux between ground and atmosphere. (Not all variants of main
methods are indicated. “MO” stands for a surface layer flow described by the Monin-Obukhov similarity theory.)
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profile of streamwise flux is subject to large measurement
errors; in effect, the profile of the horizontal flux at the
middle of the circular plot is constrained to conform with
theory). Inverse dispersion offers a considerably simpler
approach (than IHF) for quantifying emission from small
sources, and in a broader context (than “small” sources), it
is appealing from the perspective of its convenience. Tech-
nically, it is often easier (or less expensive) to measure a
mean absolute concentration C than the rapidly fluctuating
concentration c = c(t) needed for eddy covariance or the
mean vertical concentration difference ΔC needed for a
flux-gradient method.

2.1. Why a Lagrangian Model, and Why Backward?

The argument for using a Lagrangian stochastic model in
the context of inverse dispersion rests on convenience. Or-
dinarily, the concentration measurement will be in the far
field of the source(s) so that an Eulerian approach (e.g., eddy
diffusion or higher-order closure) [e.g., Wilson et al., 2001,
section 3] is acceptable in principle. However, the complex-
ity of surface layer wind statistics, even in the case of
uniform flow, more or less mandates a numerical approach,
i.e., analytic solutions of wide generality and flexibility as
regards wind and diffusivity profiles and source distribution
do not exist (McInnes et al. [1985] treated the special case of
circular source geometry by adopting an analytical disper-
sion model, i.e., a solution of the advection-diffusion equa-
tion based on power law profiles of wind and diffusivity, and
Loubet et al. [2010] took essentially the same approach,
albeit for a more complex geometry). Arranging to numeri-
cally solve an advection-diffusion equation whose boundary
conditions (and profiles U, K) are different for every averag-
ing period (e.g., every 15 min) is not impossible, but it is very
inconvenient. Conversely, the Lagrangian treatment, being
grid-free, is very convenient and very straightforward to
program. Furthermore, an LS model is superior in its ability
to directly incorporate all known velocity statistics, e.g., the
standard deviations of velocity (σu, σv, σw), which are sup-
plied by the sonic anemometer typically used to procure
wind (and temperature) statistics.
The argument for using a backward LS model is also one of

convenience and computational speed [Flesch et al., 1995]. In
a horizontally homogeneous surface layer, backward paths
from a point xP = (xP, yP, zP) are statistically identical to those
from any other point at the same height. This means, for
instance, that trajectories from a line-averaging gas detector,
such devices being particularly suitable, for reasons covered
below, need to be computed only once (for given atmospheric
state and surface roughness length, assuming the averaging is
along a horizontal line) and can be mapped to every other
element of that detector.

2.2. Trajectory Touchdowns

An ensemble of backward trajectories originating at the
concentration detector will feature a collection of “touch-
downs,” i.e., points of contact with the surface either within
or outside the source or sources (see Figure 1). Because the
surface is treated as a perfect reflector, each touchdown is a
point where the trajectory is reflected, so that any one trajec-
tory may touch down many times. Letting (xk, yk, wk) label
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the position and vertical velocity of the kth touchdown, the
C-Q relationship for a single source is given by

C

Q
¼ 1

NP
∑
k

2

jwk j ; ð2Þ

where the sum extends over all touchdowns within the pe-
rimeter of the source, and NP is the total number of trajecto-
ries computed (kmay exceed NP). The factor 2/|wk| originates
from the fact that the residence time of a reflected trajectory
within a thin ground-based layer of depth Δz is 2Δz/|wk|. For
inverse dispersion, the salient feature of the backward trajec-
tories, then, is the “touchdown cloud.”

2.3. Computational Aspects of bLS

The absence of a grid makes MO-bLS models uniquely
simple to implement in software. Concentration sensors and
emitting sources can be positioned and designed without
restriction (except that they must be close enough to meet
the constraints implied by basing the wind statistics on the
Monin-Obukhov theory, i.e., trajectories connecting detec-
tors and sources must remain within the surface layer) and
can be arbitrarily complex. Sources can be represented as a
discontinuous collection of small domains, which will record
the occurrence of all particle touchdowns within them, and
then be combined to determine the total footprint. Similarly,
sensors can be arbitrary collections of points at which backward
moving particles are “released” (though in practice, aligned sets
of evenly spaced points representing line-integrating sensors are
most commonly used).
This flexibility comes at a price: LS models are computa-

tionally inefficient and are generally slower to execute than
their Eulerian counterpart (though if the latter entails a higher-
order closure and is implemented on a high-resolution grid, the
difference may not be significant). In part, this is because
numerical particles may spend a significant amount of time
moving slowly through tiny distances near the surface at each
time step. Simulations with large tracking distance to source-
area ratios require that more particles be released (and there-
fore more calculations be performed) to generate meaningful
estimates because a given particle is less likely to touch down
within the source target. To improve their efficiency, it is
important to take advantage of numerical techniques in coding
LS models. For example, random number calculations gener-
ally use transcendental functions, which require far more clock
cycles than addition or multiplication; precalculating a set of
random numbers to be used in the motion calculations can
reduce computation time by nearly half.
Although it depends on factors such as the distance be-

tween source and sensor, the number of particles released,
atmospheric stability, the height of release, and the speed of
the computer, a set of touchdowns from a single release
location takes on the order of a few minutes to complete.
Once calculated, a set of touchdowns can be rapidly reused
for other release locations with the same release height.
There is, therefore, a significant future computational advan-
tage to placing line-averaging sensors as close to horizontal
as is practical in the field. Typically, assuming one had
already entered the experimental geometry into the diffusion
model and had streamlined data acquisition, it is possible to
have a first estimate of source strength Q within a few
minutes of having procured the needed signals (mean con-
centration C and wind data), i.e., if winds are suitable, Q can
be determined almost in real time.

3. MO-bLS IN UNDISTURBED FLOW

Thomson and Wilson [this volume] provide a history of
LS models, and we leave it to the reader to verify that a
well-mixed LS model that has been appropriately calibrated
provides simulations of dispersion that are in excellent
agreement with observations of vertical dispersion, over a
broad range of atmospheric stability. (Modern LS models
require that one specify a single dimensionless coefficient
C0 that is, in principle, universal; however, as discussed by
Thomson and Wilson [this volume], it may have different
optimal values for different regimes of turbulence.)
But note the qualification “vertical” dispersion. For rea-

sons covered by earlier papers [e.g., Wilson and Sawford,
1996; Wilson et al., 2009], the level of error in simulating
crosswind dispersion is typically much larger, essentially
because the variance spectrum of wind direction (or cross
wind velocity) is complicated by the idiosyncratic presence
of low-frequency energy, related to large quasi-horizontal
boundary layer eddies and even larger scales of motion
(e.g., mesoscale). Hence, in the context of inverse dispersion,
it can be advantageous to use a line-averaging gas detector to
integrate (quasi-) horizontally across the plume, because this
desensitizes the inferred value of Q to uncertainties in repre-
senting horizontal spread. The rapid adoption of bLS, and its
track record of useful accuracy, to some extent reflect the fact
that IR laser gas detectors with path lengths measured in
hundreds of meters have been available for some time. How-
ever, in this context we should not neglect a point raised by a
reviewer, that is, that the precision and accuracy of open-path
instruments (laser or broad spectrum) may be markedly
inferior to those of closed-path devices: depending on the
source(s) and the placement of detectors, this may compro-
mise accuracy in measuring the needed concentration differ-
ence between locations upwind and downwind from the
sources [Laubach, 2010]. Path integration can be achieved



Figure 3. Setup for test of backward Lagrangian stochastic (bLS) method for inverse dispersion [Flesch et al. 2004]: a
synthetic methane source (6 m � 6 m) on flat, open land at Ellerslie, Alberta.
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with point sensors, if wished, by setting up line-averaging
intakes [e.g., Loh et al., 2009].
How is a bLS measurement carried out? At some conve-

nient location one will erect a mast and run whatever instru-
ments have been elected to quantify the state of the
atmosphere. One will place a concentration detector at some
arbitrary location in the downwind plume off the source. If
background concentration is nonzero (as is the case, e.g., for
methane) and unknown, one will require, also, an upwind
Figure 4. Line-averaging laser concentration detector and synthetic
methane source at Ellerslie, Alberta [Flesch et al., 2004].
detector or one may choose to occasionally move a single
detector upwind of the source, or rely on changing wind
direction to effect that alteration. It is important to minimize
any systematic erroneous offset between upwind (back-
ground) and downwind measurements, to ensure a suitably
small fractional error in the concentration difference. The
downwind detector needs to be close enough to the source
so as to meaningfully measure concentration rise and prefer-
ably should lie well within, rather than toward the edges of
the envelope of the emitted gas plume. Finally, one will
record the perimeter of the source and the location of the
detector (in the case of a laser, the end points of the light
path), typically using a handheld GPS. One will gather the
measurements, organized into suitable averaging intervals
(typically 15 to 60 min). One will exploit the C-Q relation-
ship (equation (1), the function f being quantified by the
Lagrangian model) to obtain a time series of Q, perhaps
using purpose-designed software (e.g., the freely available
“WindTrax,” www.thunderbeachscientific.com).
The experiment described by Flesch et al. [2004], a trial of

MO-bLS by the controlled release of tracer methane at
known rate from a 6 m � 6 m area source on level terrain
(see Figures 3, 4), gives an indication of the expected level of
uncertainty in MO-bLS estimates of source strength in the
simplest circumstances. Others [e.g.,McBain and Desjardin,
2005] have performed similar tests, andHarper et al. [2010a,
Tables A1, A2] tabulate the performance of bLS (relative to
independently estimated emission rates) for some 20 experi-
ments [see also Harper et al., 2011]. As stressed by one of
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the reviewers of this present article, the early tracer-release
experiments were necessary proof of concept, undertaken
in near-ideal, obstacle-free flows, whereas for practical
application it is invaluable to have comparisons of bLS
with other, corroborating, methods. Such comparisons have
been done, in real-world farming situations, e.g., by Som-
mer et al. [2004, 2005] for manure pile emissions, by
Laubach et al. [2008] for grazing cattle and by Sintermann
et al. [2011] for manure slurry spreading.

3.1. Example: Ammonia Volatilization From Manure

As an exercise for readers who may wish to learn how a
bLS analysis is performed by working through a simple case,
we here document all needed information from an experi-
ment that determined the rate of loss of gaseous ammonia
(NH3) from manure spread as a springtime crop fertilizer
(Wetaskiwin, Alberta, May 1998). Ammonia volatilization
from manure is a process of interest to agronomists, for
nitrogen emitted to the atmosphere as NH3 represents a loss
of valuable plant nutrients (there is also the environmental
concern of adding reactive N to the atmosphere). Swine
manure was sprayed from a truck over a level field of bare,
cultivated soil, creating a rectangular NH3 source 50 m �
100 m in size (Figure 5). With that well-defined source
boundary, and in the absence of obstacles near enough to
disturb the wind, this experiment represents an ideal appli-
cation of MO-bLS methodology.
A single open path IR laser NH3 detector (Gas Finder,

Boreal Laser Inc., Edmonton, Canada) provided the line-
Figure 5. Manure spreading trial, Wetaskiwin, Alberta. Map of the
manure source and of detector location. The laser light path length
(one-way) was 161 m.
integrated concentration (CL) between the laser source and
a reflector (Figure 5), the light path running a distance of
161 m at a height of 1 m above ground along the western
boundary of the manure source; of course, in this configura-
tion, the bLS technique could be used to calculate emissions
only for broadly easterly winds. Five-level wind speed and
temperature profiles were measured on a 3 mmast in the field
near the manure source, and mean wind direction (β) was
measured by a wind vane (β is stated in the compass con-
vention, i.e., β = 90° for an easterly wind). Friction velocity
(u*) and the Obukhov length (L) were calculated from the
profiles by best-fitting Monin-Obukhov profiles [e.g., Argete
and Wilson, 1989], taking the roughness length (z0, deter-
mined from the average of a set of near-neutral wind profiles)
as being constant over the observation period. Manure
spreading began at 12:15 on 13 May (noon air temperature
being about 20°C), and was completed within 15 min. Mea-
surement of ammonia concentration began at 12:00 just
before manure application and continued for 31.5 h (until
the wind shifted to the west). For bLS calculations, the
background ammonia concentration (Cb) was assigned a
constant value (about 0.07 ppm) derived from the measured
CL signal prior to manure spreading, i.e., the value at 12:00
(in view of the large concentration rise observed, this ap-
proximation should be adequate). The meteorological and
concentration time series for the first 9 h of the study are
given in Table 1.
The ammonia emission rate was inferred from the observa-

tions using WindTrax (see Figure 6), whose user interface
greatly facilitates (and largely automates) MO-bLS. Wind-
Trax imports files allowing to define sources of arbitrary
perimeter (e.g., as derived from GPS data) and will (if
wished) overlay the source(s) and detector(s) on an aerial or
satellite image of the site. A built-in “ruler” can be calibrated
to the distance between known reference points (e.g., on a sat-
ellite photograph), and the coordinate origin can be located
wherever is convenient. Column-organized input and
output files are flexibly linked by the user within WindTrax,
which, once its own diagnostics are satisfied that all neces-
sary information has been provided, computes an ensemble
of trajectories and outputs Q. As indicated earlier, the C-Q
relationship involves a summation over all trajectory touch-
downs on the source (see Figure 6) of the reciprocal of the
vertical velocity upon contact with ground.
The ammonia emission rate Q behaved over the 2 days

generally as expected (Figure 7). Emissions began promptly
after manure application and, after 90 min, peaked at about
400 μg m�2 s�1. A high emission rate was sustained for
approximately 3 h, after which the rate began to rapidly
decline. During the evening following application, Q fell to
about 10% of its peak rate. On the day after spreading, the



Table 1. Observations From the Manure-Spreading Experimenta

Time u* (ms�1) L (m) z0 (m) β (°) Cb (μgm
�3) CL (μgm�3) Q (μgm�2s�1)

12:00 0.35 �20 0.003 121 43 43 0
12:30 0.37 �20 0.003 122 43 123 32
13:00 0.39 �25 0.003 127 43 748 275
13:30 0.37 �20 0.003 130 43 1083 393
14:00 0.35 �20 0.003 130 43 1226 423
14:30 0.34 �15 0.003 138 43 1262 384
15:00 0.33 �15 0.003 137 43 1340 399
15:30 0.34 �15 0.003 135 43 1299 404
16:00 0.32 �15 0.003 132 43 1184 353
16:30 0.30 �15 0.003 122 43 993 296
17:00 0.27 �10 0.003 153 43 826 196
17:30 0.24 �10 0.003 133 43 870 194
18:00 0.30 �25 0.003 137 43 745 194
18:30 0.30 �40 0.003 135 43 653 168
19:00 0.30 �80 0.003 122 43 517 147
19:30 0.31 �300 0.003 124 43 423 118
20:00 0.28 150 0.003 120 43 363 94
20:30 0.21 50 0.003 137 43 344 55
21:00 0.16 20 0.003 132 43 303 39

aThe 30 min averages end at the indicated local time. Manure spreading began at 12:15 and was completed by 12:30. The line-averaged
NH3 concentration (CL) was measured with the laser, with background concentration (Cb) given by measured CL prior to manure spreading
(i.e., the value at 12:00). The NH3 emission rate (Q) was calculated using backward Lagrangian stochastic method (bLS).
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emissions stayed low until about 2 h after sunrise and then
began to rise rapidly. The emissions peaked in the early
afternoon at about half the rate of the previous day and then
declined again into the evening. The total loss of ammonia in
31.5 h after spreading was 12.6 g m�2. The loss the first day
was 7.6 g NH3 m

�2 and, on the second, 5.0 g NH3 m
�2. This

2 day loss corresponds to 100 kg ha�1 of N, a large nitrogen
loss to the atmosphere.
It is important to recognize that not all field observations

provide good bLS emission estimates and that identifying
lesser-quality data is crucial (this is true for any micro-
meteorological method). Accurate MO-bLS calculations
hinge on the validity of the Monin-Obukhov similarity the-
ory (MOST) as description of the atmosphere. Periods of
rapid atmospheric change, or of extreme stability, typically
are not well described by MOST and render the calculations
suspect. Following Flesch et al. [2005b], in this present
study we ignored (removed) observation intervals when u*
< 0.15 ms�1 or |L| < 10 m. Those filtering criteria eliminated
30% of the measurements, almost exclusively nighttime ob-
servations (due to light winds). In order to estimate total N
losses, one must estimate emissions during these data gaps.
In this case, we can safely assume that nighttime emission
rates are small compared to daytime rates. One might assume
zero emissions during the missing nighttime gaps; however,
instead, we chose to accept the error-prone bLS calculations
during these periods, acknowledging that they may be asso-
ciated with large errors but knowing that any errors will be
irrelevant given the small emission rates that occur during
these periods. In general, there are many other applications
where this would not be an advisable option, and thus, the
issue of “gap-filling” is an important consideration for many
bLS applications.

3.2. Handling Multiple Sources

Sometimes one may wish to simultaneously determine the
emission rates from two or more sources, by making several
concentration measurements at suitable points. Suppose
there are M sources and one has made N measurements of
the concentration rise above a known background concen-
tration Cb. Let Qj ( j = 1. . .M) label the unknown source
strengths and Ci (i = 1. . .N) the measured concentrations. If
N < M, the problem is “underdetermined” and cannot be
solved. If N > M, the problem is “overdetermined” and can
be solved to obtain several independent estimates of the Qj;
for example, ifM = 1 but N = 2, one can obtain two estimates
of the Q, depending on which of the two Cj one has dropped
(ignored). From the two estimates, one could (for example)
take an average. Some subjectivity is entailed in choosing the
solution to an overdetermined problem (the most objective
approach adopts the Bayesian inference process, but this



Figure 6. Screenshot of WindTrax. The mean wind direction for this 15 min interval was southeasterly, carrying ammonia
from the source (rectangle, 50 m � 100 m) to the laser gas detector (line with endpoint stars denoting laser and reflector,
path length 161 m). Computed backward trajectories originate at a single segment of the laser line, and their points of
contact with the ground map out a “touchdown cloud.” Because of the prevailing horizontal symmetry, the computed
touchdown cloud from that one segment of the laser can be mapped to all (in this case, 29) other segments. The laser was
1 m above the ground; thus, the closest touchdowns occurred a short distance upwind of the light path. During this interval,
almost the entire source area contributed to the concentration signal detected by the laser.
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entails attributing quantitative uncertainties not only to the
measurements but also to the modeled Qs).
In the case that M = N, the inverse dispersion problem,

neither overdetermined nor underdetermined, can be stated
as the matrix problem

aijQj þ Cb ¼ Ci; ð3Þ

where summation over j is implied. The solution is

Qj ¼ a−1ij ðCi − CbÞ: ð4Þ
It would appear, then, that one can easily handle multiple
sources by including the same number of measurements of
concentration rise. In reality, there can be problems in that,
depending on the wind direction and the relative sizes,
strengths, and positions of these sources, the matrix aij,
whose inverse is (in effect) needed to procure the solution,
can be “ill conditioned,” meaning there is a large level of
uncertainty in the solution.
Simple numerical experiments support the intuitive result

that sensitivity to error is minimized when, as far as possible,
each of the measured concentrations responds uniquely to a
single one of the sources [Crenna et al., 2008]. Attempting to



Figure 7. Time series of ammonia emission rate from a manure
slurry application. Manure spreading began at 12:15 on 13 May.
The black line represents all the bLS emission data, and the circles
(“good data”) represent data meeting the meteorological threshold
requirements.
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estimate emission rates from multiple sources on the basis of
nearly colocated downstream concentration observations is
certain to fail; most likely to succeed are those situations (as
defined by their experimental geometry and the orientation of
the mean wind) that entail measurements made close to
individual sources and having minimal influence from any
other sources: ideally, each row of the aij matrix would have
only a single nonzero entry or one entry that is overwhelm-
ingly dominant. Similarly, where the background concentra-
tion is significant and unknown, it is best to measure the
concentration upstream and downstream of even a single
source, rather than attempting to infer both the unknown
background and emission rate from multiple downstream
measurements alone.

4. INVERSE DISPERSION IN STRONGLY DISTURBED
FLOWS: 3D-bLS

In many applications of bLS, one is faced with a site that
causes disturbance to the flow, e.g., the terrain may not be
perfectly level, there may be buildings or trees, the source,
itself (e.g., a lagoon surrounded by a berm) may disturb the
flow directly or indirectly (e.g., altered surface temperature).
Sometimes the impact of unwanted obstacles can be avoided
by limiting the bLS measurements to a suitably restricted
range of mean wind directions. Alternatively, it may be
possible to place the concentration detector(s) sufficiently
far from the location of flow disturbance as to plausibly
permit the neglect of such complications, at the expense of
a reduction in the magnitude of the concentration rise C – Cb

caused by the source, increasing the uncertainty of that
key measurement. Trace gas trials with an artificial source
surrounded by a windbreak [Flesch et al., 2005a] support
this approach. Wilson et al. [2001], comparing the several
methods one might contemplate using to deduce surface-
atmosphere gas fluxes from small surface sources in dis-
turbed flow, found inverse dispersion using MO-bLS second
in accuracy only to the integrated horizontal flux method
(which makes no direct assumptions regarding the flow).
However, subjectivity surrounds the qualifiers “suitably” and
“plausibly,” and disturbances to the flow field can result in
ambiguity. Here it is pertinent to recall that, typically, one
lacks the luxury of having an alternative and perfect mea-
surement technique.
Wilson et al. [2010, hereafter WFB] examined whether it

might be advantageous (in terms of accuracy of inferred Q)
to invoke multidimensional (computed) wind statistics and a
more complex LS model (“driven” by gridded 2- or 3-D
wind fields). If the concentration detector is located in a
region of very disturbed winds, then (as one would expect,
and as WFB demonstrated) 3D-bLS does indeed provide a
markedly better inference of Q than does MO-bLS. How-
ever, this approach to accommodating an imperfect site for
bLS very much complicates the inverse dispersion approach,
owing to the necessity to perform a flow calculation. Perhaps
the salient conclusion of WFB is that their bLS inferences,
whether by 3D-bLS or MO-bLS, were always within a factor
of two of the actual source strength, irrespective of the
location of the detector and irrespective of the strongly
disturbed wind field.

5. APPLICATIONS OF MO-bLS

Most applications of MO-bLS published to date have
addressed agricultural sources, most often of methane or
ammonia (for a compilation of examples, see Harper et al.
[2010a] or Harper et al. [2011]). Typically, one seeks to
estimate aggregate emissions across distinct types of sources,
e.g., animal housing (barns or stockyards), manure storage
areas, waste lagoons, and sometimes groups of unconfined
animals (sheep or cattle) whose locations might be tracked
(by GPS). Generally, it is desirable to resolve the annual
cycle in emission rates, and the daily cycle, too, can be quite
revealing (as it reflects the cycle in animal activity and farm
management). Distinct types of source at a given facility or
farm can be quantified individually by appropriately posi-
tioning sensors and/or exploiting variations in wind direc-
tion. It goes without saying that in these circumstances,
simplification and approximation are at the forefront of
things. For example, a single effective source with a single
effective (mean) emission rateQmay be taken in the analysis
to represent what is (in reality, and perhaps even visibly) a
patchy landscape and/or a landscape liable to be nonuniform
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in its emissions. This (with due caution) is justifiable because
numerical sensitivity studies [Flesch et al., 2009] have
shown that, provided the detector is sufficiently far distant
from a nonuniform source, bLS provides a useful estimate of
the aggregate (mean) emission rate.
We shall not attempt to convey in detail the literature on

applications of bLS (see www.thunderbeachscientific.com
for a comprehensive, if not exhaustive, list). Examples from
North America include emissions from dairy farms [e.g.,
Harper et al., 2009; Leytem et al., 2011; McGinn and Beau-
chemin, 2012; Gao et al., 2011], from cattle feedlots [Todd et
al., 2011], from hog farms [Flesch et al., 2005b; Harper et
al., 2010a], and from poultry barns [Harper et al., 2010b].
Examples from other countries include the works of Den-
mead et al. [2008] in Australia, Laubach and Kelliher [2005]
and Laubach et al. [2008, 2010, 2012] in New Zealand,
Sintermann et al. [2011] in Switzerland, and Sanz et al.
[2010] in Spain. Finally, as one example of bLS applied in
a very different context, Loh et al. [2009] examined the
capability of inverse dispersion for monitoring leakage from
sites of geosequestration of carbon dioxide and methane.

6. CONCLUSION

We would not want to represent inverse dispersion by
MO-bLS as universally the best approach to determining
gas emission from small sources, and we have indicated
that, where there are disturbances to the wind field, there is
inescapably an element of subjectivity in assessing whether
a site is suitable. In such circumstances other techniques,
such as a ratiometric method or the integrated horizontal
flux method, offer the advantage that they circumvent such
complications, albeit at the cost of being more complex to
implement. (A ratiometric method entails releasing artificial
tracer gas at a known rate Qtr, the tracer source distribution
being arranged, to the extent possible, to coincide with that
of the unknown source of interest; a measured concentra-
tion ratio C/Ctr determines the unknown source strength Q
because Q/Qtr = C/Ctr).
On the other hand, sufficient evidence has accumulated

(see references cited above) to justify the statement that bLS
on the micrometeorological scale is a robust technique, with
the following important provisos. First, like any other tech-
nique, bLS demands user judgment as to site suitability,
instrument placement, and quality control (e.g., data filtering
to eliminate periods of unsuitably oriented or very light
winds). Second, just as the man who wears three unsynchro-
nized watches will always be unsure of the exact time, the
user of bLS (or any other technique) who has an overdeter-
mined experimental regime must expect to be offered differ-
ing solutions forQ. This is arguably not a flaw of the method.
It is the simplicity and the parsimony of bLS that are its
foremost virtues, and if one can afford a method based on
more complete measurements, then the latter may indeed
(and in principle should) outperform bLS, or else the extra
information has not been effectively exploited (so there was
no point in providing it). Third, one must understand that
every atmospheric experiment provides (only) one realiza-
tion from an ensemble of possible outcomes, while an atmo-
spheric model approximates the ensemble mean outcome:
thus, there is a statistical fluctuation in the period-by-period
estimates of Q, which may be handled by aggregating esti-
mates (or using longer averaging intervals, within the con-
straints implied by the assumption of stationarity). Applied at
suitable sites by a trained and knowledgeable user, bLS
provides aggregate estimates whose level of uncertainty can
be conservatively characterized as 10% (as opposed to 1% or
100%).
What future developments may be expected, in terms

of refining bLS? Several experimenters have reported that
bLS-computed emission rates vary systematically with the
positioning of the concentration detector [McBain and Des-
jardins, 2005; Laubach, 2010; Sintermann et al., 2011].
Such an outcome might be expected wherever the experi-
mental regime deviates sufficiently from the ideals encapsu-
lated in the MO-bLS inverse dispersion methodology, but
should it occur at an ideal site (horizontally homogeneous
flow) in an ideal experimental regime (sources of known
location/perimeter and uniform strength), then it implies
either a bias in the underlying turbulent transport model (in
the case of WindTrax, Thomson’s [1987] multidimensional
LS model for Gaussian inhomogeneous turbulence) or the
provision to that model (either by WindTrax or by the user)
of an imperfect representation of one or more of the needed
turbulence statistics. It would be excessively bold to suggest
that MO-bLS in its present guise (and as implemented in
WindTrax) is not subject to either type of imperfection.
LS models for the atmosphere underwent rapid develop-

ment in the 1980s and (for the time being) appear to have
“plateaued” in terms of their demonstrable fidelity to the
“real” atmosphere. Let us take specifically the Thomson
[1987] model, and let us (hypothetically) adopt MOST
parameterizations and field inputs (e.g., u*,L,β,z0) that re-
sult in “true” (correct) profiles of all needed velocity sta-
tistics, namely, velocity means, variances, and covariances,
and the turbulent kinetic energy dissipation rate e. Even
given these hypothetical correct profiles, “hypothetical”
applies because it is difficult and perhaps even impossible
to establish what are truly the universal MOST profiles,
particularly since the MOST paradigm itself is presumably
only an approximation to a more complex truth [Wilson,
2008, and references therein]; an unbiased alignment of the
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model with field measurements still depends on one’s “cor-
rect” specification of the coefficient C0, which originates
from the Kolmogorov-Obukhov idealization regarding the
universal character across turbulent flows of the small
scales of motion. Yet the optimal value of C0 remains
somewhat mysterious (for more details, see Thomson and
Wilson [this volume] on the history of Lagrangian stochas-
tic models).
“Pure” atmospheric dispersion experiments that approach

the ideals envisaged in theoretical dispersion models are
expensive, thus rare: tuning of LS models (specification of
C0) hinges in most cases on a comparison of the model with
the Project Prairie Grass experiment of the 1950s. Further-
more, the tuning of one parameter (say, C0) may (unwittingly)
compensate some other weakness of a model (e.g., a poor
choice in the parameterization of e or the reality that surface
layer turbulence is not, in truth, Gaussian). Significant refine-
ment of MO-bLS (as opposed to a shuffling from one case to
another of the chosenMOST profiles) seems likely to require a
solidification of our knowledge of surface layer flow and of
atmospheric dispersion, including new experiments of the
utmost rigor that could permit to unambiguously test the
significance of what (for the present) are regarded as details
that one may ignore (in the spirit of approximation), for
instance, the reality that surface layer turbulence is not Gauss-
ian or (speculating) a possible height and/or stability variation
of the Kolmogorov coefficient C0, etc.
As a more modest goal than the “perfection” of bLS, one

could contemplate extending the addressable scale of appli-
cation by using a dispersion model that parameterizes wind
statistics above the surface layer; the difficulty here is the
nonuniversality of the profiles of mean wind direction and
speed in the bulk of the atmospheric boundary layer [Wilson
and Flesch, 2004]. In principle, it should be possible to use
additional statistics of the measured concentration signal
(e.g., its standard deviation) to refine the estimation of some
types of sources, namely, those whose output is fixed (i.e.,
unaffected by the state and content of the atmosphere over-
head), but modeling the standard deviation of a line-averaged
concentration is a burdensome computation. Perhaps the
most helpful and most practical short-term development
would be a “protocol” for bLS that would address the sub-
jective elements, i.e., site suitability and detector placement.
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