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A B S T R A C T

The steady-state, Reynolds-averaged momentum equations, with a simple eddy viscosity closure, are solved
numerically to compute the spatial variation in surface-layer mean windspeed over irregular, gently rolling
terrain. Simulations, with both this non-linear model “ASL3D” and (for comparison) with the pre-existing linear
“Mixed Spectral Finite-Difference” or MSFD model, are compared with observed winds from anemometers
aligned on a 140 m transect in a rolling field near Lacombe, Alberta. Recorded wind speeds, normalized and
aggregated by wind direction sector, characterize local wind variation over terrain whose elevation varied by
roughly± 10 m over a radius of about half a kilometer from the instrumented transect.

For northeast and southwest winds particularly, both models agree well with the observations. In southeast
winds, observed spatial variation of the wind was weak, except that an anemometer close to fences and gates
recorded distinctly lower speeds: provided those obstructions are represented by adding a localized sink in the
momentum equations, the ASL3D model transect is (again) in quite good agreement with the observations. For
northwest winds, however, agreement of modelled and measured transects is poor, presumably because a steep,
wooded slope lay upwind from the anemometer array. Overall the linear correlation coefficient between
modelled and observed fractional deviations of wind speed from the reference value is 0.72.

Other than as regards the flexibility to represent such complications as fences, plant canopies (etc.), computed
wind fields over for the present terrain do not suggest any compelling advantage of the more laborious non-
linear model (ASL3D) over the semi-analytical MSFD treatment. It is concluded that, when applied over gentle
terrain, the skill intrinsic to even such a simple paradigm as ASL3D (and MSFD) represents a meaningful and
potentially useful alternative to the neglect of lateral inhomogeneity.

1. Introduction

The supposition that velocity (and other) statistics are invariant on
horizontal planes underlies many or even most practical applications of
surface layer meteorological theory, but most experimentalists will
have faced the conundrum of an imperfect field site at which one is
obliged – or in the interests of simplicity, one chooses – to overlook
lateral inhomogeneity, and take wind and turbulence measurements at
a single point as being sufficient, courtesy of Monin–Obukhov similarity
theory (MOST), to characterise overall site conditions. An example re-
levant to this paper is the trace gas experiment of Hu et al. (2016),
performed on hilly land: though it was known (and acknowledged) to
be untrue, their Lagrangian stochastic inverse dispersion calculations
treated wind statistics as if they had been laterally uniform, when
“seen” in a terrain-following coordinate.

The approximation invoked by Hu et al. proved adequate and their
“bLS” (backward Lagrangian stochastic) inversion method robust, but
there are liable to be circumstances where accounting for the impact on
wind statistics of varying topography and/or cover is worthwhile —

even if doing so mandates that one resort to an onerous wind calcula-
tion. Taking inverse dispersion as case in point, wherever concentration
measurements are made very close to a source a Lagrangian (i.e. tra-
jectory simulation) treatment to determine emission rate is preferred,
because the Eulerian description misrepresents the non-diffusive near
field of a source (e.g. Raupach, 1989). In this context the role, poten-
tially, of a wind model, would be to provide three-dimensional fields of
mean velocity, Reynolds stress and turbulent kinetic energy (TKE)
dissipation rate to a suitable LS trajectory model (e.g. Thomson, 1987;
Wilson et al., 2010).

It is broadly in the above context then — the micrometeorology of
mildly non-uniform sites — that this paper will explore the utility of
numerical fluid mechanics in almost its simplest form: the steady-state,
Reynolds-averaged momentum equations, with eddy viscosity closure,
are solved for the situation where irregular terrain undulations cause
wind variations that could be said to occur on the surface layer scale.
The approach taken (Fig. 1) is to adopt a laterally periodic computa-
tional flow domain. This obviates the need to provide a known upwind
profile of flow statistics; and if those lateral boundaries are placed
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sufficiently far from the area over which it is of interest to evaluate the
wind statistics, the influence of the distant terrain ought to be weak.
The calculation is driven by an imposed shear stress (or an imposed
horizontal velocity) far overhead, and computed velocity statistics are
re-scaled so that they match experimental input at a single point in the
flow.

A brief overview on boundary layer wind models is in order (for
detailed reviews see, e.g., Hunt, 1980; Taylor et al., 1987; Finnigan,
1988; Carruthers and Hunt, 1990; Wood, 2000). By carrying out a
perturbation analysis (linearising the governing equations by an ex-
pansion in powers of small parameters) Jackson and Hunt (1975
showed that variation of the wind blowing over a smooth ridge could be
regarded as being “driven” by a streamwise pressure gradient that could
be obtained by solving for the velocity field in an irrotational (non-
turbulent) “outer layer”, the Fourier transform of the perturbation
pressure field being determined by the Fourier transform of the hill
profile. Below the outer layer a turbulent inner layer is perturbed by
this imposed pressure field, and its response is modulated by a shear
stress field that, for the geometry considered, is adequately treated in
terms of a Prandtl eddy viscosity with an undisturbed turbulence length
scale (, where kv is the von Karman constant and η the distance from
ground). Furthermore although the validity of the JH75 analysis hinged
on stringent restriction of the geometry (i.e. hill slope and other di-
mensionless factors) the solution, generalised to three dimensional
terrain by Mason and Sykes (1979, has been found useful to predict the
changes in mean windspeed above topography that in fact violates
those restrictions. Wind models — including the JH75/MS79 model, a
family of less restrictive linear models (notably the “Mixed Spectral
Finite-Difference” model MSFD originated by Beljaars et al., 1987a, and
briefly described in Appendix A), and numeric, non-linear simulations
(e.g. Taylor, 1977a, Taylor, 1977b; Zeman and Jensen, 1987; Raithby
et al., 1987) — have been tested against wind tunnel (e.g. Britter et al.,
1981) or field measurements of winds over a number of more or less
isolated hills, the early studies including Kettles Hill (Taylor et al.,
1983b), Ailsa Craig (Jenkins et al., 1981), Askervein (Castro et al.,
2003; Golaz et al., 2009) and Brent Knoll (Mason and Sykes, 1979).
Experience suggests that eddy viscosity closure is adequate for predic-
tion of the mean wind field over gently sloping terrain (e.g. Ayotte
et al., 1994; Ying et al., 1994), but that a more sophisticated turbulence
closure is demanded to realistically model spatial variation of turbu-
lence statistics.

Returning to the goal (here) of modelling wind over terrain whose
elevation changes are relatively insignificant — at least compared to
the above named test sites, and the sort of topography of interest in
regard to wind energy resources — there is no reason to suppose that an
approach well proven for terrain the amplitude of whose elevation is of
order 100–1000 m should not be equally (or even more) satisfactory for
much lower terrain. However the above studies generally focused on
one relatively isolated and dominant terrain feature (hill or ridge),
whereas this study addresses the case where there is no dominant to-
pographic feature. As a consequence it is less clear what should

constitute an adequate domain size, and whether available topographic
data will offer adequate resolution.

Section 2 outlines the numerical wind model whose performance is
tested here (for convenience of reference, “ASL3D”), while Appendix A
briefly describes the linearized MSFD model to which (apart from the
linearization) it is closely matched. Section 3 tests the performance of
ASL3D in idealized, previously studied flows; and Section 4 compares
simulations (ASL3D & MSFD) with near-ground wind measurements
over irregular, rolling pasture.

2. Numerical model: ASL3D

The objective here is to model variation of the surface layer wind
over horizontal distances spanning of the order of a few hundred
metres, in response to disturbance by smooth and gentle terrain whose
height h= h(x, y) varies by an amount of the order of 10 m. Tacitly
excluding application to any case of very light winds — such cases
anyway having been excluded from the data used here to test the model
— it seemed not unreasonable to treat the (model) atmosphere as being
unstratified (i.e. uniform in its mean potential temperature), and to
consider the topographic disturbance to the wind as taking place within
a “host” (i.e. background) flow that could be approximated as being a
constant stress layer.1 Support for the latter simplification can be found
in Taylor (1977a, Table II), where his comparison of “surface layer”
versus “PBL” model results for the pressure and shear stress deviations
over a Gaussian hill indicates them to be consistent, to within about
10%.

The mean momentum equations and the turbulent kinetic energy
(TKE) equation were transformed into a terrain following coordinate

= −
−

η H z h
H h (1)

where H is the computational domain depth: on ground the absolute
elevation is z = h(x, y), whereas η = 0. The resulting equations were
closed using an eddy viscosity =K λ c Ee , where E is the turbulent
kinetic energy and λ a prescribed turbulence length scale, and after
elimination of terms considered unimportant they were solved nu-
merically using periodic lateral boundary conditions. The widely used
control volume method “SIMPLEC” (van Doormaal and Raithby, 1984;
Patankar, 1980) was adopted, along the lines explored earlier (Wilson,
1985, 2004b) for windbreak flows. Details follow.

2.1. Governing equations

Let u v w( , , ) be the local, instantaneous, Cartesian velocity compo-
nents, U (etc.) the mean velocities and u′ (etc.) the velocity fluctuations
defined by the Reynolds decomposition u= U+ u′. Upon transforma-
tion of the Navier–Stokes equations into the non-orthogonal (x, y, η)-
coordinate system it is convenient to introduce an effective vertical
velocity

≡ + +w uη vη wη* x y z (2)

such that u v w( , , *) is non-divergent in x− y− η space, i.e.

∂
∂

+ ∂
∂

+ ∂
∂

=u
x

v
y

w
η
* 0 ,

(3)

and with the result that vertical advection terms take the form ∂ ∂w η* /
(e.g. Richards and Taylor, 1981; Doyle et al., 2013). After Reynolds
averaging, adoption of an eddy viscosity closure, and the simplification
or neglect of certain minor terms, the following approximate mean
momentum equations result:

Fig. 1. A complicated field site where wind statistics are horizontally (as well as verti-
cally) inhomogeneous, such that it is nowhere plausible that Monin–Obukhov similarity
theory correctly describes wind statistics in the atmospheric surface layer (ASL). The
approach used here to describe the wind field is to compute its structure within a laterally
periodic domain centered over the region of interest, and rescale modelled wind statistics
to match the measurements made at a single point. It is assumed that the wind is prac-
tically uniform, at the top of the atmospheric surface layer (“ASL”).

1 The generalization to provide a full boundary layer (with Coriolis forces) as host flow
is straightforward.
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Though this framework is by no means new, a brief interpretation
may be warranted. The principle here has been to retain what are
presumably the dominant terms, viz., advection, shear stress gradients,
and (kinematic) pressure gradients (note: Eqs. 3–6 hinge on adopting
the Boussinesq approximation, and P is the mean deviation of the ki-
nematic pressure from a hydrostatic reference state, i.e. the pressure
disturbance induced by the topography). Coriolis terms have been dis-
carded, as the time scale for advection across the domain is on the order
of minutes; so, too, have been all the “cross” diffusion terms that would
arise from the mechanical imposition of an eddy viscosity closure
having the proper tensor symmetry. Because the diagonal elements of
the Reynolds stress tensor cannot be realistically modelled under eddy
viscosity closure and (anyway) their gradients are usually judged less
important than those of the shear stresses, a distinction has been made
here between the “real” eddy viscosity K, and an artificial eddy visc-
osity Ka that, though required to be small with respect to K, is never-
theless retained as potentially useful in terms of numerical stability, and
wherever Ka should appear multiplied by ηz (which, note, is independent
of η) that factor has been eliminated as inessential. Conversely, it is easy
to show that the ηz

2 factor must be retained if the important shear stress
gradients ∂ ′ ′ ′ ′ ∂u w v w z( , )/ are to be correctly treated. (Distinct values
K K,a

h
a
v for the artificial viscosity as applied to horizontal and vertical

diffusion were applied, with = −K 0.001 m sa
v 2 1 and =K 0.1a

h m2 s−1, but
for clarity of notation the distinction is suppressed above.)

Completing the above dynamical model, the eddy viscosity
=K λ c Ee has been constructed from an algebraic length scale whose

inverse is

= +
λ k η λ
1 1 1 ,

v 0 (7)

(λ0 being an imposed upper limit to the lengthscale) and a simplified
turbulent kinetic energy (TKE) equation
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Again, in Eq. (8) a plethora of minor terms have been dropped in favour
of simplicity.

2.2. Grid and discretization

Nodes of the computational grid (Fig. 2) are indexed (i, j, k) along
respectively the (x, y, η) axes, the horizontal coordinate x increasing
towards the east, and y towards north. Mean velocity nodes were offset
relative to the pressure nodes, with turbulent kinetic energy nodes
chosen to coincide with the latter; in terms of their vertical location,
nodes for U, V, P were placed midway between the W nodes. Vertical
velocity nodes were placed on ground (i.e. at η= z0, the surface
roughness length) and on the bounding upper plane (η = H) of the
computational domain.

The western boundary of the domain ran through U nodes (indexed
U(ilo, j, k)) and the southern boundary through V nodes (indexed V(i,
jlo, k)); eastern and northern boundary planes ran through P (and
therefore W) nodes. Implementing periodicity was a simple matter of
care with the indexing of “neighbour” nodes. The net (convective plus
diffusive) flux across each control volume face was approximated (as a
function of the Peclet number) in terms of the bracketing gridpoint
values of velocity (and the transported entity), using Patankar's (1980)
power law scheme.

2.3. Boundary conditions on the ground and at the upper surface

The upper boundary of the computational domain at η = H is a flat
surface both in (x, y, η)-space and in real space. By assumption, the
turbulent shear stresses driving the flow are constant on that plane, and
(in view of the positioning of the horizontal velocity nodes) serve as the
needed upper boundary conditions for the uppermost (U, V) control
volumes. On η= H, it is assumed that vertical velocity W = 0 (from
which it follows also that W* = 0); simulations that instead imposed
∂W*/∂η = 0 on η = H proved indistinguishable on all domains for
which the alternatives were both tested.

Now as regards the lower boundary conditions, whereas W nodes
fall on ground (thus W= 0) it is necessary to prescribe the exiting
momentum fluxes to ground from the lowest plane of U- and V-nodes.
Let (UP, VP) designate the velocity components at those nodes (height ηP

Fig. 2. Upper: staggered grid points centred around a P node. Lower: domain and mesh,
seen from above (W-nodes, which are above and therefore project onto P nodes, are not
shown). The outer rectangle embraces all active nodes used with periodic lateral
boundary conditions.
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above terrain). Assuming an equilibrium layer extends to this height,
the surface drag was evaluated as (e.g. taking the x-component)

′ ′ = − +u w C U U V ,D P P P
(0) 2 2 (9)

where the drag coefficient

⎜ ⎟= ⎛
⎝

⎞
⎠

C k
η zln( / )D

v

P 0

2

(10)

is that implied by a rearrangement of an (assumed) shallow semi-
logarithmic wind profile extending over z0 ≤ η ≤ ηP. To ensure that the
drag will oppose whatever may prove to be the next, i.e. (m+ 1)th,
guess for the component +UP

m 1 it is necessary to linearise this expres-
sion, based on the known U V( , )P

m
P
m of the completed prior (mth)

iteration. An adequate factorization, used for most simulations, is

′ ′ = − ++u w C U U V( ) ( )D P
m

P
m

P
m(0) 1 2 2 (11)

(in terms of speed of convergence, no advantage followed from a rigorous
linearization using the tangent ∂ ′ ′ ∂u w U/ P

(0) ). Finally, the condition ∂E/
∂η=0 was imposed on TKE at both lower and upper boundaries.

2.4. Closure constants

The closure constant ce (appearing in the eddy viscosity =K λ c Ee
and in the TKE dissipation term of Eq. (8)) is chosen in reference to an
ideal neutral constant stress layer in local equilibrium, in order to en-
sure that the product ceE equates to the magnitude (u*

2) of the vertical
momentum flux. This ensures that (for the reference flow) TKE pro-
duction − ′ ′ ∂ ∂ ≡u w U z u λ/ */3 exactly balances TKE dissipation (ce E)3/2/
λ, where (for the purposes of the calibration) =λ k zv . For the calcu-
lations below it was assumed that ≡ =−c E u/ * 4.8e

1 2 (corresponding to
the supposition that in undisturbed, neutrally stratified surface layer
flow the normalized velocity standard deviations = =σ u σ u/ * / * 2u v ,

=σ u/ * 1.3w ).
Simulations were not very sensitive to the value of the limiting

length scale λ0 in Eq. (7), and for the results shown λ0 = 200 m.

2.5. Matrix inversions

When integrated over their control volumes, the mean momentum
equations give rise to linear algebraic “neighbour equations” that inter-
relate (say) Um+1, the sought-for next guess (labelled guess “m+ 1″)
for the velocity component U at some arbitrary node, to its (up to) six
nearest neighbours on the grid; taking UU as an example of a non-linear
term, linearization is accomplished (without loss of accuracy) by re-
presenting this as the product UmUm+1 of successive estimates labelled
m, m+ 1 (after many iterations, the two estimates converge).

For any one (sought for) field, say Um+1, and with all others for the
moment fixed, one solves by iterating a “line-by-line solver”. Because of
the lateral periodicity of the domain, in general the matrix of neighbour
coefficients requiring to be inverted is not tridiagonal, due to there
being non-zero coefficients at upper right and lower left (“cyclic tri-
diagonal system”). The Numerical Recipes subroutine “cyclic” was
exploited. Interested readers may refer to Patankar (1980), Versteeg
and Malalasekera (1995), and Ferziger and Perić (1997) for related
details of numerical procedure.

2.6. Criterion for cessation of iterations

In view of the periodic lateral boundary conditions, there can be no
net flow of momentum across the side boundaries of the domain.
Therefore if the integral (whole domain) momentum budget is to be
satisfactory, the area-integrated U-momentum flux

∬≡ − ′ ′I H u w x y H( ) ( , , ) dx dyU
A (12)

imposed at the upper boundary η = H must match the sum of (i) the
corresponding area-integrated momentum flux IU(0) to ground, plus (ii)
the area-integral Dx of form drag on terrain. The criterion for cessation
of iterations was that the (fractional) imbalance

≡
− −

δ
I η I D

I η
( ) (0)

( )U
xU mx U

U mx (13)

in the whole domain U momentum budget be small (for solutions
shown below, 3% or smaller).

3. Testing ASL3D for simple flows

ASL3D was coded in Fortran-90 and compiled on Linux machines
(including a laptop) using standard gcc-fortran. This section documents
cautionary steps taken to establish that the new code correctly solves
the coupled equations constituting the wind model.

The first such step was to ascertain that the subroutines that solve
the (discretized) partial differential equations would perform as re-
quired: confirmation is provided by Appendix B. Next in terms of pri-
macy was to check that in the absence of any mechanism (such as to-
pography) that might disturb the surface layer flow, the model should
alight upon (or preserve) a realistic equilibrium solution across the en-
tire lateral span of its domain.

The equilibrium (i.e. no terrain) solution was computed from the re-
duced governing equations (in which all horizontal derivatives vanish). As
necessitated by the form of the equations in the limit ∂/∂x= ∂/∂y=0,
the shear stress was height independent and the mean wind profile (cor-
rectly) logarithmic near ground, but not quite so aloft due to the imposed
limitation on the growth of the length scale. The TKE profile, too, was
close to height-independent. Similar equilibrium solutions (similar closure,
similar numerical methodology) have been quantitatively compared with
field and wind tunnel observations by Wilson et al. (1998). In short, the
equilibrium solution gives a realistic representation of the mean wind,
shear stress and TKE fields of the ideal, undisturbed ASL.

The equilibrium solution provides a convenient initial guess for the
3D fields2 (of U, V, E). With the terrain suppressed and the program
forced to iterate, those initial fields (“U0(η)”, etc.) ideally should be
perfectly preserved across the domain. When that test was performed
on a 1 km × 1 km domain (with Δx = Δy= 10 m), after more than
1000 ‘outer’ iterations (m→ m+ 1) the initial fields had been pre-
served to within 1 part in 104. Such small degradation of the solution as
did occur can be attributed to the immensely more numerous calcula-
tions underpinning the 3D calculation than the equilibrium calculation,
and the attendant roundoff errors.

3.1. Sinusoidal lower boundary

Because it is a case investigated by earlier authors (e.g. Taylor et al.,
1983a; Taylor, 1998; Weng et al., 2000), the model flow's response
when perturbed by an infinite sequence of sinusoidal ridges provided a
useful test. The kinematic shear stress vector at the top boundary was
prescribed so as to direct the flow along the x-axis, and surface topo-
graphy was specified as = +h x y h k x( , ) [1 cos( )]/20 , where h0 is the
trough-to-peak height difference and k = 2π/λ the terrain wave-
number. Solutions were computed with one full topographic wave
along the computational domain, the latter covering
−352.5 ≤ x ≤ 352.5 m along the x-axis (specifically, xw(ihi)+Δx/2−
xu(ilo) = λ = 705 m),± 50 m along the transverse (y) axis, and having
a depth of 500 m. The roughness length was specified z0 = 0.0705 m

2 This is in some sense an illusory role: lateral periodicity of the domain obviates any
need for inflow profiles, so that apart from questions of numerical stability, any set of
initial 3D fields could be chosen. The 3D solution, as noted above, is driven purely by the
specified shear stresses ′ ′ ′ ′u w v w, at the top of the flow domain, whose relative values
determine the wind direction aloft.
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such that λ/z0 = 104, and the “hill height” h0 was adjusted to control
the maximum slope α≡ k h0/2 of the topographic wave, for compar-
ability with earlier studies. Horizontal resolution was Δx= Δy= 5 m;
vertical resolution was a constant Δη= 0.05 m below η = 1 m, but was
progressively stretched above η = 1 m (by 20% in each successive
layer) to a maximum value of Δη = 30 m.

For wind models both linear and non-linear, and as a function of the
(maximum) terrain slope, Taylor's (1998, Fig. 6a) gives the computed
fractional increase in mean wind speed at the crest of the sinusoidal
ridge “relative to the flow over a flat surface”, viz.

=
−

S
U x η U η

U η
Δ

( , ) ( )
( )

,c
max

0

0

where xc (=0) denotes the position of the ridge crest, η (≈100 z0 here)
the height above ground, and U0(η) the wind speed over a flat surface
(for the same applied shear stress at the upper boundary). When the
maximum slope was specified as α = 0.2 the present model ASL3D
yielded ΔSmax = 0.31, which is exactly consistent with the value cited
by Taylor for a variant (“NLMSFD”) of MSFD that retains the non-linear
advection terms (whereas for the linear MSFD, ΔSmax ≈ 0.46).

3.2. Windbreak flow

A second preliminary test of the code placed an infinitely long
porous windbreak fence (height hf = 2 m, resistance coefficient kr = 2)
along the y-axis at x= 0, with the mean flow directed along the x-axis.
The terrain was flat, with roughness length z0 = 0.01 m. To para-
meterize the windbreak, a momentum sink

= − + − −S k U U V δ x s η h( 0) ( )u r f
2 2 (14)

was inserted on the right hand side of Eq. (4), where δ(·) is the “delta-
function” (unit: m−1) and s(·) is a dimensionless step function (the δ × s
factor localizes drag to occur only “at” the fences; only control volumes
whose upper boundary is at or below η= hf and that span the fence
“experience” the drag force).

A simulation was performed over a domain spanning± 100 m in
the streamwise direction and±10 m laterally, with horizontal grid-
lengths Δx= Δy= 0.5 m. The domain depth was H= 50 m; vertical
resolution was a uniform Δη = 2z0 below η = 0.5 m, and was stretched
progressively (by 20% for each successive layer) to a maximum value of
5 m. The computed transect of relative windspeed along z/hf = 1/2
exhibited a minimum value of U/U0 = 0.44 downwind of the wind-
break at x/hf = 1.5, an outcome that concurs well with the expected
minimum value

= −
+

=U
U

k
k

1
(1 2 )

0.45r

r0
0.8 (15)

(Wilson et al., 1990) for an isolated windbreak with the same specifi-
cations; the location of the computed velocity minimum was consistent
with Wilson's (1985, Fig. 7) results for eddy viscosity closures.

4. Comparison of simulations with measured winds over
undulating terrain

During August 2013 mean wind speeds were measured (at height
z = 1.12 m) over gently rolling pasture in central Alberta, sampling an
area of roughly 20 m × 140 m within “plot 22” at the Lacombe
Research Centre of Agriculture and Agri-Food Canada (52.457393 N,
113.765297 W). The topography and instrument layout at the site are
indicated by Figs. 3 and 4 (see also Hu et al., 2016). The mean wind
direction β from a wind vane was assumed to characterize the overall
orientation of the flow, and that signal was very consistent with the
mean wind direction from a (temporarily) nearby 3-dimensional sonic
anemometer (Campbell Scientific CSAT3).

Repeated experience (in the wind tunnel and in the field) has

proven the cup anemometers that were used (Climet, Inc., 011-4) to be
highly inter-consistent, provided mean windspeeds are higher than
about 1 m s−1 (e.g. Wilson, 2004a, Table II). All signals were recorded
on Campbell Scientific dataloggers, and organised into 15-min aver-
aging intervals. The individual fifteen minute mean speeds (S) were
normalized relative to the value (Sref) at one location, the reference
anemometer (see Fig. 4), and – excluding intervals for which the re-
ference anemometer reported a mean wind speed below a chosen
threshold – these normalized mean speeds were binned (averaged)
within sectors (β= β0 ± 22.5°) of mean wind direction centred on the
8 cardinal directions β0 = 0, 45, 90, …, 315°. Hu et al. (2016, Fig. 3)
presented the mean wind rose for several of the anemometers, the range
in relative mean wind speed spanning 0.85 ≤ S/Sref ≤ 1.05.

Unless otherwise stated, for the measured wind transects to be
shown below, the threshold wind speed has been set at

Fig. 3. “Plot 22” at Lacombe, looking towards the north from the southern boundary
fence. The origin of the coordinate system lies at the junction of the two visible fences,
just out of sight at the lower left of the photograph. The distance along the western fence
from the origin to the gate on the skyline is 290 m. Note the cup anemometers, and a
single sonic anemometer at the right of the photo.

Fig. 4. Terrain contours (interval 2 m) and positions of cup anemometers (stars).
Coordinates of the southernmost anemometer are (x, y) = (12.4, 18.7) m. Note the steep
descent to a small lake south of the anemometers, and a steep slope seen at the upper left
(northwest of the anemometers). The reference anemometer is the third from the south
end of the transect along x= 12.4 m, its coordinates being (x, y) = (12.3, 59) m.
Anemometer no. 9 is at the north end of the transect, in a narrow gulley.
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=S 2.5ref
min m s−1. However the measured speed transects proved little

different in character with a stricter criterion =S 4.0ref
min m s−1, as de-

monstrated below (Fig. 10). The roughness length for simulations, de-
duced from the sonic anemometer data, was fixed as z0 = 0.08 m.

4.1. Representation of the terrain in the wind model

According to repeated measurements with a handheld GPS, the
UTM (Universal Transverse Mercator) coordinates (easting, northing) of
the southwest corner of plot 22 are (12 U 0312082 ± 1,
5815335 ± 1), consistent with coordinates from Google Earth with the
cursor placed over the image of that spot. Digital elevation files cov-
ering the township (TWP 40, ranges 27 and 26 west of the 4th mer-
idian) were purchased from AltaLIS (“LiDAR15 DEM”), in the form of a
file organized such that each row gave (x, y, z), with (x, y) being UTM
coordinates and z the elevation in metres above sea level given to two
decimal places (“Bare Earth XYZ ASCII coordinates”). The horizontal
“post” spacing for these data is 15 m (with accuracy 0.5 m), while the
cited vertical accuracy is 0.3 m with (an implicit) resolution of the
order of 0.01 m. The DEM post closest to the SW corner of plot 22 had
coordinates (312082.5, 5815327.5), where each unit increase in the
UTM (x or y) coordinate corresponds to a 1 m displacement towards
(respectively) the east or the north. A fortran program shifted the co-
ordinate origin such that x, y for each “post” was expressed relative to
the SW corner (taken as 312081.5, 5815334.5), and selected an areally
square subset of the DEM file centred on the SW corner of plot 22, e.g.
−Dx/2≤ x≤ Dx/2, −Dy/2≤ y≤ Dy/2 where Dx = Dy ∼ 2000 m.

The DEM terrain field was interpolated bi-linearly to all horizon-
tally-distinct nodes of ASL3D's computational grid (i.e. U, V and P/W/
k), by identifying the four DEM posts surrounding any given node.
Linear interpolation has the desirable property that it cannot result in
exaggerated terrain slopes when the gridlength is refined to be smaller
than the DEM post interval of 15 m.

4.1.1. Terrain filtering
A terrain perturbation height was defined by subtracting the do-

main-averaged mean elevation from each node's local elevation.
Furthermore although only derivatives of terrain height appear in the
model equations, it was found to be necessary to “taper” the terrain
perturbation so as to smoothly vanish at the domain boundaries. This is
presumably because lateral periodicity of all model fields had been
imposed, and the tapering of (perturbation) elevation has the effect,
also, of tapering terrain slope. The terrain perturbation height was at-
tenuated as a function of “excess radius” r − R, where = +r x y2 2 is
the distance from the SW corner of plot 22. Symbolically the damping
factor, referred to below as a “Gaussian” filter, was

= ⎧
⎨⎩

≤
− − >

f r R
r R

r R r R
( ; , ℓ )

1,
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d
2 2
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where R, ℓ d control the radius of onset and the rapidity of the terrain
damping. Typically R, ℓ d were chosen so that R+ 3 ℓ d would define a
circle fitting neatly within the chosen flow domain, ensuring that ter-
rain height and slope would more or less vanish on the domain
boundaries.

The above filtering was motivated by the necessity to avoid in-
curring steep topography near the (periodic) domain boundaries. It was
of interest to judge the effect of local terrain smoothing on modelled
wind fields, and to that end, for some exploratory runs a further filter
was applied: if h represents the “pre-smoothed” terrain height, a
weighted mean (i.e. smoothed) height for each gridpoint (i, j) was
formed as

= + + + +− + − +h h h h h h2
6

1
6

[ ]͠ i j i j i j i j i j i j, , 1, 1, , 1 , 1 (17)

(i.e. a 1–2–1 filter along each axis).

4.1.2. Model details specific to the Lacombe wind simulations
For the results to be shown, model domain depth was either

H= 960 m or H= 480 m. In either case, below η = 1 m the height
interval between adjacent W nodes (i.e. the vertical gridlength) was
uniform and small (Δη = 2z0), while above 1 m the grid interval was
stretched by 20% for each successive cell, to a maximum value (limit).
For simulations with domain depth H= 960 m, Δηmax = 50 m; where
H= 480 m, Δηmax = 30 m.

4.2. Results

Controlling the orientation of the shear stress vector imposed at the
top of the domain proved sufficient to ensure that surface wind direc-
tion at the model gridpoint closest to the wind vane lay close to the
target value, i.e. wind direction varied only very modestly over the
entire domain. For a given choice of that vector, the resulting steady
state wind speed at any given point (e.g. at the reference anemometer)
is dependent on the span of the chosen domain, as well as the manner in
which the terrain has been filtered — because the form drag is terrain-
specific. This (expected) feature of the simulations is of course obscured
when the model windspeeds are normalized so that at the reference
anemometer they concur with the observation.

Fig. 5 compares the observed and modeled (ASL3D) windspeed
transects for NE winds, giving a broad view of the wind response to
topographic features (the case of northeast winds is the most useful,
because that wind direction resulted in the most distinct variation of

Fig. 5. (a) Observed (filled circles) and modelled (ASL3D, line) transect of relative wind
speed for winds from the northeast (NE): (a) transect at x = 13 m, encompassing the
entire y-axis of the model domain, which spans± 960 m about the origin on both hor-
izontal axes (horizontal resolution Δx= Δy= 12 m, domain depth H= 960 m); (b) fil-
tered terrain perturbation height along the y-axis; (c) terrain height along the x-axis; and
(d), relative terrain height along a SW–NE line (wind “path”) through the reference an-
emometer (cup no. 3), with negative values lying downwind from cup 3. Terrain is at-
tenuated by the “Gaussian” filter beyond radius R= 840 m from the origin, with
damping length (or standard deviation) ℓd = 40 m. (The slight SW–NE asymmetry of the
manner in which the terrain filter has attenuated the relative terrain transect is explained
by the fact that cup no. 3 stood some 60 m north and 13 m east of the coordinate origin.)
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mean wind speed amongst the anemometers). What is evident from
Fig. 5, computed with resolution Δx= Δy= 12 m over a domain
spanning±960 m about the origin on each horizontal axis, is that the
most abrupt spatial gradients in model wind speed align qualitatively
with regions of strong topographic slope, as is to be expected.3 Panels
(b, c, d) of Fig. 5 convey the terrain elevation field, which had been
subjected to Gaussian attenuation, applied beyond R= 840 m from the
origin with standard deviation ℓd = 40 m.

Figs. 6 and 7 give a more detailed view of ASL3D simulations for the
north-east wind direction, in comparison not only with the measured
winds but also with an MSFD calculation (i.e. essentially the linearized
equivalent of ASL3D, briefly described in Appendix A). Evidently in
terms of domain size and terrain filtering, for present purposes it suf-
fices to ensure that terrain is represented (without attenuation) over a
radius of at least about R= 360 m about the origin (run B, domain size
−480 ≤ (x, y) ≤ 480 m with R= 360 m). Quadrupling the area cov-
ered by the domain with terrain unattenuated out to R= 840 m (as in
run A) produces only a minimal alteration of the solution. It was also
found (not shown) that a domain depth of H= 480 m is sufficient, a
doubling having no discernable effect over the region of interest.

On the basis of the above finding, it suffices to examine the impact
of horizontal resolution on the (± 480 m)2 domain (Fig. 7). The small
difference between ASL3D outcomes with 6 m versus 12 m horizontal
resolution establishes that simulations with Δx= Δy= 12 m are close
to being grid-independent, while (unsurprisingly) a coarser simulation
with Δx= Δy= 24 m is much inferior. All told, the strong resemblance
of the transect of observed (relative) wind speed to model curves
(ASL3D, excepting run B”, and MSFD) puts to rest any suspicion that the
measured pattern might be without meaning, perhaps a reflection of
nothing more than anemometer bias, and beyond causal interpreta-
tion.4 The MSFD solution shown in Fig. 7 differs slightly from that of

Fig. 6 as a result of the reduced lateral span of the domain (which re-
sults in the terrain being represented by 26 = 64 waves rather than
27 = 128, for 64 × 15 m gives the domain sidelength 960 m). All in all,
the strong similarity of the non-linear and linear (MSFD) solutions
testifies to the (expected) adequacy of the linear treatment on this
terrain, and lends confidence to the numerical solution (ASL3D). Ap-
plication of local terrain smoothing (as per Eq. (17)) had almost no
impact on the model transects.

Fig. 8a compares simulated and observed mean wind speeds for the
SW wind direction. Several choices of the computational domain were
examined, and as for the case above (i.e. NE winds) it is evident that a
domain encompassing about± 0.5 km (horizontally) relative to the
origin and about 0.5 km deep is sufficient (lower domain heights H
were not tested). Naturally the computed solution is compromised if the
terrain is attenuated too close to the region of interest, as clearly shown
by ASL3D simulation “D”. And regarding terrain attenuation Fig. 8b
gives a cross-section along the y-axis of the unattenuated terrain per-
turbation — which is discontinuous across the lateral boundaries and
for which (consequently) the ASL3D model failed, i.e. a converged so-
lution could not be obtained — along with examples of the terrain after
application of the ‘Gaussian’ filter that assures the needed upwind/
downwind continuity of the imposed terrain field.

Still referring to Fig. 8a and SW winds, the fractional variation in
the wind speed is smaller than for the NE case, but once again the
correlation of the ASL3D simulations with the observations is striking.
At first glance it is not obvious from Fig. 4 why (in this case) the non-
linear simulation (ASL3D) should outperform the linear treatment
(MSFD), the fetch upwind from plot 22 appearing to be little more
complex than it is for NE winds. However there is a sharp gulley some
200 m southwest of plot 22, and the associated steep slope perhaps
explains the better simulation by ASL3D. The model transects depart
most seriously from observation at anemometer no. 9, the northern-
most on the transect, which was positioned in a narrow but distinct
gulley (see Fig. 4) that represents the strongest nearby terrain feature. It
is not surprising, therefore, that the present simple models (with an
imposed turbulence length scale, λ ∝ η) should perform poorly in the
area of cup no. 9.

For SE winds Fig. 9, observed spatial variation of the mean wind
speed was quite modest — if one were to disregard anemometer no. 1
which, at (x, y) = (12.4, 18.7) m, was positioned in the SW corner of

Fig. 6. Sensitivity of ASL3D simulations to domain size and terrain filtering: observed
(red-filled circles) and modelled transects of mean wind speed in plot 22 at Lacombe, for
NE winds. Error bars on observations give± standard error. For all simulations, terrain
was attenuated beyond the given distance R from the origin, using the Gaussian filter: for
ASL3D simulation C, damping length ℓd = 24 m, while for all other simulations (both
ASL3D and MSFD), ℓd = 40 m. For the ASL3D simulations, horizontal resolution
Δx = Δy= 12 m. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Sensitivity to horizontal resolution: observed (red-filled circles) and modelled
transects of mean wind speed in plot 22 at Lacombe, for NE winds. For all simulations
(ASL3D and MSFD) the domain spanned (±480 × ±480 × 480 m) along respectively
the (x, y, η) axes, and the terrain had been subjected to Gaussian attenuation beyond
R= 360 m with damping length ℓd = 40 m. ASL3D run B is the same simulation as run B
in Fig. 6. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3 Had the purpose of the anemometers been to test this wind model, they could have
been sited so as to sample more dramatic lateral gradients than those across “plot 22” at
Lacombe; however the objective was to sample wind variability over the region where
trace gas dispersion experiments were ongoing (Hu et al., 2016).

4 Figs. 6 and 7 show that that anemometer no. 1, at the south end of the transect, lies
farthest from the model transect. This low relative wind speed, noted early in the mea-
surement campaign, prompted an exchange of anemometers, but the relative wind speeds
at the positions alternately occupied by the two anemometers proved indifferent to the
identity of the reporting instrument.
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plot 22, close to access gates and the boundary fences that ran east–west
and north–south through the origin. Additional east–west fences, de-
fining a stock access route and a farm road, lay nearby at y∼−5 m
and y∼ 12 m and beyond. In case those gates and fences might have

appreciably sheltered cup no. 1, the ASL3D run B simulation included a
momentum sink

= − + − −S k V U V δ y s η h( 0) ( )v r f
2 2 (18)

along y= 0 to represent their amalgamated effect (see analogous Eq.
(14) for explanation; the momentum sink extended to hf = 2 m,
roughly the height of the fences and gates; the resistance coefficient was
prescribed arbitrarily as kr = 2). The result of adding the momentum
sink is a markedly better accord (than seen in the other simulations)
with the observations at the south end of the transect.

Turning finally to the case of a NW wind direction, Fig. 10 shows that
(as for the NE and SW wind directions) simulations by MSFD and by
ASL3D are broadly similar with each other, provided ASL3D is run at
adequate resolution (Δx= Δy=12 m). However they are not in good
accord with the observed wind transects — plural in this case because two
transects are shown, corresponding to data selection threshold wind
speeds ≥S 2.5ref

min m s−1 (118 runs) and ≥S 4.0ref
min m s−1 (71 runs).

While disappointing, the poor agreement of the model with the ob-
servations for a NW wind direction is not particularly surprising, for it is
evident from the terrain contours (Fig. 4) that NWwinds present steep and
complex topography upwind from plot 22 (there were also woods on that
NW slope and at its crest: no attempt was made to represent them). Note
too from Fig. 10b that for the NW wind direction the anemometers lay on
a lee slope, which is significant because (e.g. Carruthers and Hunt, 1990)
in numerical studies broadly similar to the present one “the velocity defect
on the lee side of the hill decreased too rapidly on the lee slope.” Car-
ruthers and Hunt (see also Weng et al., 1989) adjust the turbulence length
scale (“blocking-shear mixing-length model”) to try to remedy this, how-
ever an approximate implementation of that length scale here, as

= + + ∂ + ∂
λ λ η
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c E

1 1 0.6 /
1.3

,
e0

2 2

(19)

Fig. 8. (a) Observed (filled circles) and modelled transects of mean wind speed in plot 22
at Lacombe, for SW winds. Terrain field subjected to ‘Gaussian’ attenuation beyond radius
R from the origin, with ℓd = 40 m or (run D) ℓd = 24 m. (b) Terrain perturbation fields
over the wide (black) and narrow (red) domains. For results shown on (b) the Gaussian
filter, where applied, used terrain damping length ℓd = 40 m. (Note: the terrain pertur-
bation is defined relative to average elevation over the computational domain.) (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. Measured and modelled transects of mean wind speed in plot 22 at Lacombe, for
SE winds. For all simulations the domain spanned (± 960 × ±960 × 960 m) along
respectively the (x, y, η) axes, and the terrain had been subjected to Gaussian attenuation
beyond R= 840 m with damping length ℓd = 40 m; horizontal resolution for the ASL3D
simulations was Δx = Δy= 12 m. The ASL3D run B designated ‘with fence’ (dashed line)
included a momentum sink representing shelter by the boundary gates and fences along
and near y= 0.

Fig. 10. (a) Measured and modelled transects of mean wind speed in plot 22 at Lacombe,
for NW winds. Solid red circles, observed mean transect over runs satisfying

≥S 2.5ref
min m s−1 (118 runs); solid blue circles, wind speed threshold increased to

≥S 4.0ref
min m s−1 (71 runs). ASL3D simulations A and B used Δx = Δy= 12 m, while C

(on the laterally expansive domain) used Δx = Δy= 24 m. For all model runs shown, the
standard deviation (i.e. damping length) for the ‘Gaussian’ filter was ℓd = 40 m. (b)
Transect of relative terrain height corresponding to ASL3D simulation A, along a NW–SE
line (wind “path”) through the reference anemometer (cup no. 3), with negative values
lying upwind from anemometer no. 3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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did not appreciably alter the ASL3D transect. Likewise, there was no sign
of any qualitative improvement in the solution when (run C in Fig. 10), as
a means to mitigate any unwanted consequence of the periodic boundary
condition, the domain was expanded to cover almost±2 km away from
the origin (along x and y), but with the Gaussian filter attenuating the
terrain beyond R=840 m — a configuration that provides about a 2 km
interlude of flat land that in effect isolates the downwind edge of the
(undamped) terrain from the region (upwind) of terrain onset (that is, the
wind blows over almost a kilometer of flat land before encountering the
outflow boundary, and upon “re-entering” the inflow boundary a further 1
kilometer of flat land before onset of undamped terrain). While this large
domain simulation entailed a reduced (and – see also Fig. 7 – evidently
inadequate) resolution (Δx= Δy=24 m) such that the model is unable to
resolve the shortest modes (i.e. Fourier components) of the lidar-DEM
topography, were the periodic boundary condition responsible for the
mediocre simulations at higher resolution the expanded domain should
have produced a better model consistency with the longer modes of the
wind field — which it did not.

Returning to the fact that Fig. 10 exhibits two transects of observed
wind speed, and noting the fact that these do not greatly differ, there is
a useful point to be made in defense of having treated the model at-
mosphere as neutrally stratified: for a given magnitude of the vertical
heat flux, the increase in threshold wind speed from ≥S 2.5ref

min m s−1 to
≥S 4.0ref

min m s−1 implies a fourfold increase in the magnitude |L| of the
Obukhov length, therefore (at all points in the flow) a fourfold reduc-
tion in |η/L|. The absence of any gross change in the transect suggests
the influence of stratification on the selected data is weak, even when
the selection uses the more permissive criterion that ≥S 2.5ref

min m s−1.
To summarize the performance of ASL3D, given adequate resolution

on an adequate domain, Fig. 11 plots model versus observed fractional
deviation of mean wind speed from the value at the reference location (i.e.
location of cup no. 3), omitting those points at which ASL3D was forced to
fit (by the rescaling). The linear correlation coefficient between model and
observed values, computed on a sample embracing the best simulation for
each wind direction, was a modest 0.72. In short for winds from the NE or
SW the models, and more especially so ASL3D, agree quite well with the
observations. For SE winds, the model transects show some resemblance to

the form of the measured transect, particularly so when (the hypothesized)
sheltering by fences is parameterized. However model transects for E or W
winds (not shown) were mediocre (cup nos. 1 & 9 standing well away from
the models’ transect of relative wind speed), while for winds from the NW
they exhibited only a weak correlation with the transect observed. As
noted above there is reason to consider winds from the NW axis as being
intrinsically less amenable to calculation, in view of the steep and wooded
terrain lying NW of the anemometers, and the positioning for cup no. 9 in
a narrow gulley also presumably challenges the simple modeling paradigm
explored here — a paradigm widely reported elsewhere as being more in
line with observations on an upslope than on a leeward downslope.

5. Conclusions

Earliest simulations of the Lacombe wind measurements were made
with the pre-existing linear (MSFD) model, and while for the northeast
transect agreement with the measurements was at once striking, it was
difficult to understand why agreement should be less pleasing for other
wind directions – accepting that abrupt topography upwind of the site for
northwest winds might mean those cases should be eliminated (as lying
outside the legitimate scope of a linear treatment). There was also the
question of the disparity near anemometer no. 1. Those puzzles prompted
the excursion (here) into the non-linear treatment, which offers, in addi-
tion to the retention of non-linear advection, sufficient flexibility to re-
present drag on fences, allow for stratification, and/or admit (potentially)
a resolved grass canopy. That flexibility carries a price: the linear com-
putation completes in seconds to minutes (on an Intel CORE i7 PC), while
typically the iterative non-linear code entails hours of calculation.

In regard to the mixed quality of the Lacombe wind simulations of
the previous section, the following factors need to be born in mind: (i)
the models’ imposition of lateral periodicity; (ii) the coarse horizontal
resolution (15 m) of the lidar-based Digital Elevation Map; (iii) the
assumed uniformity of the shear stress imposed over the upper domain
boundary; (iv) the simplicity of the models’ ∝K λ E turbulence clo-
sure and algebraic lengthscale formulation, and indeed of the RANS
approach in its entirety; (v) the imposition of a constant roughness
length, and neglect of tree cover along some transect directions; and
(vi), the neglect of any influence of Coriolis terms.5 In addition, recall
that each experimental transect is an average over several intervals
whose mean wind directions (as observed at a single point in plot 22)
fell within a wind direction sector (e.g. 45°± 22.5° compass angle),
such that terrain lying off the nominal or mean wind path would in-
termittently have lain directly upwind of the anemometers. Only the
lateral diffusion terms (parameterized with a small artificial viscosity

∼K * 0.1h m2 s−1) in the numerical model could be said to represent the
fluctuation in wind direction, and certainly not with any realism.

Simulations using commercial CFD (Computational Fluid Dynamics)
RANS-based codes (such as ANSYS Fluent), though in some respects
more sophisticated (e.g. intricate mesh generation, higher-order dis-
cretizations for derivatives), would be subject to many of these same
limitations. So then, to what extent do the findings of this paper suggest
that the wind field can be determined over a non-ideal measurement
site — as, hypothetically, a means to refine one's representation of the
micro-meteorological fields? The imperfection of the suite of simula-
tions shown above, and the fact that they collectively constitute a band6

about the observations, might suggest it would be better to refuse the
(impure) site, than depend on a calculation whose fidelity, if these

Fig. 11. Modelled (ASL3D) versus observed fractional deviation of mean wind speed from
the value at the reference location (i.e. location of cup no. 3). For cross-reference to model
transects shown earlier the legend identifies, for each wind direction, the specific ASL3D
run plotted. As the wind speeds (observed and modelled) are rescaled to match at the
reference location, those points (falling at 0, 0) are not plotted. The linear correlation
coefficient between the model and observed data is 0.72.

5 Neglect of atmospheric stratification has not been added to this list, for it has been
argued above that stratification was unimportant for the selected intervals of measure-
ment at Lacombe.

6 A “band” of simulations rather than a single transect, because quite apart from the
arbitrariness implicit in choosing a particular turbulence model (LES or RANS; and with
RANS, first- or higher-order closure; and within first-order RANS, one of many possible
prescriptions), further subjective choices come into play, such as the domain size, choice
of lateral boundary conditions, and the manner of filtering the terrain.
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results are indicative, is uncertain. But here a reminder is in order that,
absent the model transects and assuming one had not the luxury to
expose a large number of anemometers over the site, one has only a
single datum as regards the wind, at the reference anemometer (in the
Lacombe case, cup no. 3): the default situation is that one has only that
single measured wind speed such that (of necessity) one would be
forced to map that value (unchanged) laterally all over the site, and
extrapolate vertically using the appropriate equilibrium wind profile,
usually S(z) ∝ ln(z/z0). Even at their worst, these model curves permit
an extrapolation no less skillful than to have assumed lateral constancy,
while at their best (e.g. Figs. 6–8) the model's mean wind fields are a
much superior description than to have invoked lateral homogeneity.
Accordingly it seems safe to speculate that, availed of even such a
simple three-dimensional representation of the wind field as has been
explored here, micrometeorological “applications” such as inverse dis-
persion (deduction of ground-air emission rates indirectly, from mea-
sured concentration rise) should be more robust relative to imperfec-
tions of site, than if they were based on the convenient myth of a

horizontally-homogeneous wind field. The ‘should’ is important how-
ever, not only because the models’ 3D mean wind fields are imperfect,
but also because in the context of atmospheric dispersion the disturbed
field of turbulent kinetic energy is of no less importance than that of the
mean wind,7 and it has long been established that the simple models
examined here are less satisfactory in regard to predicting turbulence
statistics than as regards the mean wind.
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Appendix A. MSFD

The “Mixed Spectral Finite Difference” (MSFD) model of flow over terrain (Beljaars et al., 1987a,b), is founded on a linearization of the mo-
mentum equations, in the spirit of Jackson and Hunt (1975), but with height-dependent background velocities. Thus, for example, the U velocity
component is decomposed U= U0(η) + ΔU(x, y, η) where ΔU is the flow disturbance (i.e. response to terrain), and advection terms take the form
U0(η) ∂ΔU/∂x (etc). Ayotte et al. (1994) remark that MSFD “assumes a constant stress layer to zero order throughout the vertical extent of the
model”. The Coriolis terms are neglected, as are gradients in the diagonal components of the Reynolds stresses. As used here, stratification is neutral,
and the turbulence closure matches that of the non-linear model (ASL3D, described in Section 2). Thus MSFD is a close cousin of ASL3D: indeed, in
the limit of small terrain, there should be little to differentiate the two treatments in terms of fidelity (though much in terms of computational
efficiency).

Further details: because MSFD represents the horizontal structure of the wind field by Fourier decomposition, the terrain field is Fourier
transformed. MSFD solutions shown here retained 2n waves with n = 6 or 7. It was necessary for the Fourier transform routines of MSFD that there
be 2n + 1 gridlines along each direction, with the distance interval constrained (by the resolution of the Digital Elevation Map) to be 15 m.

Appendix B. Testing the algebraic core of ASL3D

By ‘algebraic core’ is meant the “line-by-line” solver (“LBYL”), whose function is to accomplish each refinement (m→ m+ 1) of each of the
coupled fields that together constitute the numerical solution. Within each such single step or update, LBYL in fact sequentially and repeatedly calls
two Numerical Recipes subroutines: “cyclic” advances the solution on sweeping horizontal lines of nodes, “tridag” on sweeping vertical lines of
nodes. An optional test was coded into the main program (ASL3D), which upon selection used LBYL to solve Laplace's equation ∇2T= 0 on a 3-
dimensional domain [−D ≤ x, y≤ D, 0≤ z≤ H], with lower boundary condition T(x, y, 0) = 0, upper boundary condition T(x, y, H) = cos(πx/D)
cos(πy/D), and periodic lateral boundary conditions. After an arbitrary number of iterations within LBYL, the numerical solution was compared
(statistically and graphically) with the analytical solution, determined as

=
− −
− −

★T x y z
π z D π z D

π H D π H D
πx D πy D( , , )

exp( 2 / ) exp( 2 / )
exp( 2 / ) exp( 2 / )

cos( / ) cos( / ) .
(20)

Table 1 summarizes the results of these tests, in relation to iteration count, choice of first guess field, and gridlength (computational resolution).
Computational nodes were uniformly distributed, and results are shown for a ‘coarse’ grid (81 × 81 × 50 nodes) and a ‘refined’ grid
(161 × 161 × 98 nodes) for which discretization error should be much smaller. The mean magnitude of the analytical solution, averaged over all
nodes, may be taken as a scale for the root-mean-square solution errors cited in Table 1, values being 9.263 × 10−2 for the coarse grid and
9.067 × 10−2 for the refined grid.

With the first guess taken as =T 0i j k, ,
(1) , which if not the worst possible is at the least a poor start, the solution after (only) 21 iterations was in

mediocre accord with the true solution (correlation coefficient8 0.935, slope of regression line 0.76). Increasing the iteration count improves the
solution, whose accuracy however is compromised by discretisation error and machine roundoff error. If instead the analytical solution T★ is
provided as (a perfect) first guess, the numerical solution deteriorates (albeit only slightly) with increasing iteration count, this (again) being
attributable to discretization error (the evidence being that, for a given iteration count, the r.m.s. solution error is much smaller on the refined grid
than on the coarse grid). Table 1 confirms that the core numerical algebra is performing as it should (a poor solution is progressively improved; a
good solution is retained). When applied for the wind calculations, calls to LBYL are repeated while interim states of the solution are nudged
progressively towards a converged solution. In view of the manner in which nonlinear terms are evaluated, e.g. U2 being represented as UmUm+1, it is
pointless to seek an extremely accurate solution field at guess m+ 1 when the prior field Um is imperfect. For that reason, and because (except
initially) the Um

field is usually a good guess for the subsequent solution Um+1, it suffices to terminate iterations of LBYL with a low maximum count,
typically 21.

7 Simply put, the mean wind sets the travel time from source to receptor, while the velocity standard deviations largely control the rate of ‘spread’ about a nominal plume centreline.
8 The correlation coefficient was based on the sample of model solution values Tmod at all gridpoints and the corresponding sample of true values T★.
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Table 1
Diagnostics for solution of Laplace's equation in relation to iteration count, first guess field and computational resolution (T★ is the analytical solution). The mean magnitude of the
analytical solution, averaged over all nodes, is 9.263 × 10−2 for the coarse grid, and 9.067 × 10−2 for the fine grid.

1st guess Grid Iterations r.m.s. error Slope Corr. coefft.

T = 0 Coarse 21 6.58 × 10−2 0.759 0.935
T = 0 Coarse 101 3.91 × 10−2 0.935 0.975
T = 0 Coarse 501 3.85 × 10−2 0.952 0.976
T = T★ Coarse 21 3.37 × 10−5 1.00 1.00
T = T★ Coarse 101 6.34 × 10−5 1.00 1.00
T = T★ Coarse 501 6.79 × 10−5 1.00 1.00
T = 0 Fine 21 1.03 × 10−1 0.516 0.825
T = T★ Fine 21 2.69 × 10−6 1.00 1.00
T = T★ Fine 101 8.08 × 10−6 1.00 1.00
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