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Dispersion from an area source in the unstable surface layer:
an approximate analytical solution
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An approximate solution to the advection-diffusion equation is given, applying to a plume
in the unstably stratified surface layer emanating from a finite ground-level area source
of trace gas. The approximation consists firstly of representing the mean wind profile by
a power law, and secondly, in ‘splitting’ the governing equation so as to determine two
components of the mean concentration that, in sum, satisfy the boundary conditions. The
solution, which is easy to evaluate, is compared with numerical simulations using a standard
Lagrangian stochastic trajectory model (LSM) and, provided the ratio of the upwind fetch
of source to the Obukhov length is not too large (|x/L| � 10), agreement is very good. The
Lagrangian model, in turn, is shown to be consistent with the Project Prairie Grass (PPG)
dispersion data, subject only to the tuning of a flexible constant whose optimal value carries
the implication that the ratio (Sc) of the eddy viscosity to the (far field) eddy diffusivity is
not unity in the neutral limit, but rather Sc ≈ 0.64. It seems unlikely this calibration results
from having neglected deposition of the PPG ‘tracer’ (sulphur dioxide) to the surface.
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1. Introduction

The advection-diffusion paradigm no longer represents a
fundamental framework for understanding or modelling
turbulent dispersion, having long since been surpassed in
generality by (e.g.) Lagrangian stochastic and large-eddy
simulation models. Nonetheless, because it represents the only
obvious prospect for an analytical description, the approach
remains interesting, if for no other reason than from the
perspectives of parsimony, and ease of evaluation. In the context of
an ideal (i.e. stationary, horizontally homogeneous) atmospheric
surface layer (ASL) the downwind (x) advection and vertical (z)
dispersion of passive tracer is represented (approximately) by the
advection-diffusion equation (ADE)

u
∂c

∂x
= ∂

∂z

(
Kc

∂c

∂z

)
, (1)

where the profiles of (unidirectional) mean wind speed u(z)
and of the eddy diffusivity Kc(z) are appropriately given by
Monin–Obukhov (MO) similarity theory. However, because
Eq. (1) with MO profiles is intractable (even in the case of neutral
stratification), all known exact solutions of Eq. (1) applicable
in micrometeorology introduce a power-law representation

u = uH (z/H)m, Kc = KcH (z/H)n for wind speed and eddy
diffusivity, H being an arbitrary reference height. A solution for
a surface line source originating (Monin and Yaglom, 1977) with
O. F. T. Roberts (unpublished, circa. 1923) has subsequently
been applied by many authors (e.g. van Ulden, 1978), and
remains important as the basis for a working theory of the
flux footprint (e.g. Horst and Weil, 1992, 1994; Kormann and
Meixner, 2001). Philip’s (1959) analytical solution of Eq. (1) for a
surface area source (given in Appendix C) was an early paradigm
for quantifying local advection.

Another potential application for solutions of Eq. (1) is ‘inverse
dispersion,’ whereby a theory for the relationship between the
emission rate Q of a source and the mean concentration c that
results at a nearby point permits the former to be quantified by
measuring the latter (e.g. Wilson et al., 2012). This article has been
motivated by a new flux estimation technique, loosely of the ‘flux-
gradient’ type, in which the flux to the atmosphere from a small
surface area source having known perimeter is deduced from the
difference in line-averaged concentration 〈c〉 along two slanting
paths over the source. A flexible theory of the c vs. Q relationship
(or at least, ∂c/∂z vs. Q) is needed to achieve the inversion for
Q, and this article will provide a new solution to Eq. (1) that is
convenient in that regard (complementing that of Philip (1959)
as applied, for instance, by Wittich and Siebers, 2002).
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By exploiting a suggestion of Shwetz (1949; see also Panchev
et al., 1971) and thereby retaining the MO profiles of (u, Kc),
Wilson (1982a) gave an approximate solution of Eq. (1) for
a finite ground-level area source in the stably (or neutrally)
stratified surface layer. This was shown to agree with Lagrangian
simulations and with experimental data, except near the outer
edge of the concentration plume. Here, by the compromise of
substituting the power law for wind speed (taking, in effect, a
half-step towards the exact solutions alluded to above), a compact
new approximate solution for unstable stratification is obtained
(Appendix A gives a partial solution with the MO wind profile
retained). The solution proves to be in reasonable agreement with
the higher-fidelity Lagrangian stochastic (LS) treatment, whose
implementation and whose consistency with observations will be
discussed.

Section 2 gives the new solution and section 3 documents
implementation of the LS model, whose agreement with the
Project Prairie Grass observations is demonstrated in section
4. Finally section 5 compares the analytical and numeric (LS)
solutions, along with the MO concentration profile which is in
principle valid only infinitely far downwind from the leading edge
of a source.

2. Solution to ADE with MO diffusivity and power-law wind

Defining � = −z0/L where z0 is the momentum roughness length
and L the Obukhov length, the profiles adopted are

u = uH (z/H)m , (2)

Kc = (kv/Sc)u∗z

φc(z/L)
, (3)

where

φc = (1 + β � z/z0)−1/2 (4)

(with β = 16) is the Dyer and Hicks (1970) formulation
for the universal MO function representing the normalized
concentration gradient, but for present purposes the Schmidt
number Sc (ratio of the eddy viscosity to the eddy diffusivity in
the neutral limit) will be permitted to differ from unity. In the
convention adopted here the MO φs take the value unity in the
neutral limit, allowing potentially distinct von Kármán constants
for momentum (kv), heat (kv/Pr, with Pr being the turbulent
Prandtl number) and mass (kv/Sc). The power law wind profile
Eq. (2) reproduces the mean wind speed and wind shear at z = H
provided m, uH are specified as

m =φm(H/L)

kvuH/u∗
, (5)

uH =u∗
kv

[
ln

H

z0
− ψm(H/L) + ψm(z0/L)

]
, (6)

where here the MO functions are prescribed as

ψm(z/L) = 2 ln
{

(1 + φ−1
m )/2

} + ln
{

(1 + φ−2
m )/2

}
− 2atan(φ−1

m ) + π/2, (7)

φm(z/L) =(1 − β z/L)−1/4, (8)

which are Paulson’s (1970) form for the mean wind profile and
the Dyer–Hicks formulation for the MO dimensionless wind
shear function φm.

Following Wilson (1982a), the problem is cast in dimensionless
terms by introducing along-wind and vertical coordinates

ξ = x

z0
, λ = ln

z

z0
. (9)

(A displacement height d can be accommodated if z − d is
substituted throughout for the height z; in principle the roughness
length, say z0C, for a scalar variable is distinct from z0, however
in the context of an eddy diffusion solution the distinction can
be overlooked). The mean concentration due to a finite upwind
area source on ground is normalized as

χ (ξ , λ) = u∗c

kvQ
, (10)

(the von Kármán constant kv = 0.4 has been inserted in the
denominator merely to uphold consistency with Wilson (1982a)
and with earlier articles, e.g. Horst, 1979), and the corresponding
(normalized) vertical flux density is

F

Q
= −N φ−1

c

∂χ

∂λ
, (11)

where N = k2
v/Sc.

With the chosen variables and profiles the advection-diffusion
equation transforms to

es λ ∂χ
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}
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where s = 1 + m and

M = kv
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u∗
uH

(
H
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)m

. (13)

Following Shwetz’s method, the solution is decomposed χ =
χ0 + χ1, where the components of the solution are required to
satisfy

0 = M
∂

∂λ

[
φ−1

c (λ, �)
∂χ0

∂λ

]
, (14)

es λ ∂χ0

∂ξ
= M

∂

∂λ

[
φ−1
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∂λ

]
. (15)

At the top (λ = δ, zδ/z0 = eδ) of the concentration plume,
χ0 = χ1 = 0, while at ground the height gradients are individually
specified so as partition a unit surface tracer flux density as

r = − N

(
φ−1

c

∂χ0

∂λ

)
λ=0

, (16)

(1 − r) = − N

(
φ−1

c

∂χ1

∂λ

)
λ=0

, (17)

where a satisfactory choice for the flux partitioning factor
r (≤ 1) is r = 1/2. The flux (r) ‘carried’ by χ0 is height-
independent. Therefore χ1 is constrained such that the height
gradient ∂(χ0 + χ1)/∂λ vanishes on z = zδ , ensuring that both
concentration and vertical flux vanish along that surface (i.e. the
top of the plume). The latter requirement yields a differential
equation for the plume depth δ(ξ). By these steps one readily
finds

χ0 = r

N
{B(δ, β�) − B(λ, β�)} , (18)

where

B(x, α) = ln

∣∣∣∣√1 + αex − 1√
1 + αex + 1

∣∣∣∣ . (19)

(Recall χ0 is the solution with tracer advection entirely neglected,
so in fact Eq. (18) obtains irrespectively of whether one has
adopted the MO profile or the power law for u). Further steps
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establish that the rate of growth of the plume with downwind
distance is

δ̇ ≡ dδ

dξ
= M s

r

√
1 + β�eδ

esδ − 1
, (20)

and (integrating) the plume depth is given by the implicit equation

Ms

r
ξ = B(0, β�) − B(δ, β�)

+(β�)−s
{
A

(
1+β�eδ , m

)−A (1+β�, m)
}
. (21)

The total concentration is found to be

χ = 1

N
(
esδ − 1

){
esδ B(δ, β�) − esδ B(λ, β�)

− (β�)−s A
(
1 + β�eδ , m

)
+ (β�)−s A

(
1 + β�eλ, m

)}
. (22)

In Eqs (21) and (22)

A(x, m) =
∫

(x − 1)m

√
x

dx

= (x − 1)m+1

(m + 1)
√

x

+
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i=1

(x − 1)m+1+i

(m+1)...(m+1+i)

(2i − 1)!!

2i xi+1/2
, (23)

where i!! is the double factorial. (This integral does not appear
to have been tabulated. Equation (23) captures the pattern
that emerges from repeated integration by parts, and normally
converges, proving in good agreement with a purely numerical
evaluation. Appendix D outlines the code used).

The analytical solution also provides the spatial field of the
vertical flux density, which (in normalized form) is

−N φ−1
c

∂χ

∂λ
≡ F(ξ , λ)

Q
= esδ − esλ

esδ − 1
≡ zs

δ − zs

zs
δ − zs

0

. (24)

Interestingly (since s = 1 + m) the index m of the power law
u ∝ zm controls the divergence of the vertical flux between the
surface (where F/Q = 1) and the edge of the plume, a decay
which is not linear. (The role of the eddy diffusivity is of course
also involved in the control of plume depth.)

The neutral limit of the solution∗ is easily obtained by setting
� = 0 at the outset, but (reassuringly) it also emerges (albeit
more laboriously) from the equations above. Under neutral
stratification the plume depth is given by

M s

r
ξ = 1

s

(
esδ − 1

) − δ , (25)

and the mean concentration is

χN = esδ

N(esδ − 1)
(δ − λ) − 1

N s

esδ − esλ

esδ − 1
. (26)

3. Lagrangian stochastic model

Lagrangian stochastic (LS) simulations will be taken as a criterion
of accuracy for the analytical solution, once having (themselves)
been tested (or rather, in effect, calibrated) against the Project
Prairie Grass tracer point source dispersion trials. The LS model
is well known and widely used, so that this section will stress
implementation, rather than ancestry. Two codes were tested, and
proved mutually consistent to within a margin that can probably
be ascribed to their differing levels of discretization error.

∗The neutral limit proved consistent with the full solution (Eq. 22) evaluated
with � = 10−6, which is about the smallest value attainable; at � = 10−8 a
noticeable irregularity sets in.

3.1. Well-mixed, one-dimensional, first-order LS model

Lagrangian variables will be represented in upper case, viz.
W = dZ/dt is the vertical velocity of a particle or fluid element
whose height is Z. A ‘first-order’ LS model explicitly computes
particle velocity, while if it is to parallel the advection-diffusion
equation (Eq. 1) it will neglect horizontal velocity fluctuations
relative to the mean (u), and (therefore) be qualified as being ‘one-
dimensional’ (because only one turbulent velocity component is
retained; for terminology and background on LS models see
Thomson 1987; Wilson and Sawford 1996; Thomson and Wilson
2012). With the further approximation that the probability
density function for the Eulerian vertical velocity fluctuations
is a stationary Gaussian (with standard deviation σw), a unique
algorithm for trajectories in the surface layer follows (in almost
every respect) from the well-mixed condition (Thomson, 1987).
The well-mixed 1D algorithm is

dX = u(Z) dt , (27)

dZ = W dt , (28)

dW = aw(Z, W) dt +
√

C0ε(Z) dζ , (29)

where dt is the time step. In Eq. (29), a ‘generalized Langevin
equation’, ε is the turbulent kinetic energy dissipation rate, C0

is a dimensionless constant introduced by Kolmogorov, dζ is a
Gaussian random variate with zero mean and variance dt, and
aw, the deterministic part of the particle acceleration, is given by

aw(Z, W) = −W

τ
+ σw

∂σw

∂z

(
1 + W2

σ 2
w

)
, (30)

where

τ = 2σ 2
w

C0 ε
(31)

is an effective Lagrangian decorrelation time-scale. In the limit of
infinitesimal dt this model has the property that, applied to the
motion of an ensemble of particles that are (already) well-mixed
in an unbounded position-velocity space, it retains that distribu-
tion – the most powerful known constraint on this class of LS
models. (Note: a zeroth-order LS model, i.e. the random Displace-
ment Model or RDM, corresponds exactly with the advection-
diffusion equation; Wilson and Yee, 2007 and Wilson, 2015.)

It is satisfying that the well-mixed condition establishes the
rigour of a trajectory model, however in practice the time
step is finite, typically specified dt = μτ , with μ � 1; and in
consequence it is usually necessary to introduce an element that
is extraneous to Thomson’s analysis, namely to avoid passage of
trajectories beneath the chosen lower boundary (here, at Z = z0)
a reflection algorithm must be introduced. Wilson and Flesch
(1993) proved that the well-mixed state is retained with perfect
reflection if the turbulence is not only Gaussian, but in addition
homogeneous – which is not the case here. Thus, implemented
in (z, w, t)-space this algorithm entails two uncertainties, both
minor for practical purposes, but needing to be flagged wherever
(as here) the model is treated as a criterion for other solutions:
(i) the reflection strategy may not be rigorous; and (ii) depending
on the manner of solving Eqs (27)–(31), a bias may originate
from the vertical inhomogeneity of turbulence properties, and in
particular the time-scale τ .

3.2. Turbulence profiles adopted for the LS simulations

Wilson et al. (1981c) calibrated the above model (or rather,
the equivalent model in (z∗, wH , tH)-space; Appendix B) against
the Project Prairie Grass profiles of crosswind-integrated
concentration at radial distance x = 100 from a continuous point
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source of gas, and recommended that the time-scale be specified
as

2 σw
2

C0 ε
≡ τ (z) = 0.5 z

σw

{
(1 − 6z/L)1/4 , L < 0,

(1 + 5z/L)−1 , L ≥ 0.
(32)

This parametrization is combined with σw profiles

σw(z) = 1.25u∗

{
(1 − 3z/L)1/3 , L < 0,

(1 + 0.2z/L) , L ≥ 0
(33)

(Kaimal and Finnigan, 1994). The mean wind speed is of course
computed using Eqs. (6–8).

The above calibration is equivalent to a specification of the
surface layer profiles of σw and of φε(z/L) ≡ kvzε/u3∗, along
with an auspicious tuning of the Kolmogorov constant C0. As
discussed by Wilson et al. (2009), the value of C0 implied by
the above profiles is C0 ≈ 3.1. (Note: this differs from the value
cited by Wilson et al. (2009) for a 1D model only because, here,
the neutral ratio σw/u∗ has been taken as cw = 1.25, rather
than 1.3.)

3.3. Implementation in (z, w, t) space

There are two elements to the LS model, namely, the computation
of trajectories (i.e implementation of an algorithm guided by
the well-mixed condition) and the inference of concentration
statistics from those trajectories. To the latter end a suitable
range on the vertical axis was divided into bins of equal
width in ln z/z0 and gridpoints equispaced in λ ≡ ln z/z0 were
defined (and indexed ‘k’). Associated with each gridpoint,
or rather layer, were upper and lower boundaries on the
z/z0 axis.

In each simulation, 19 sub-ensembles each of NP paths were
computed, with NP of order 105. (Breaking the ensemble into
sub-ensembles, each featuring a different sequence of random
numbers, allows to assign a standard error.) The time-step
parameter μ was specified as μ = 0.01. Particles were released at
X = 0, Z = z0 with a vertical velocity chosen randomly from the
Gaussian PDF. Upon each time step dt the sequence of operations
was:

1. compute needed velocity statistics and time step dt;
2. update vertical velocity W , compute vertical step dZ;
3. Z → Z + dZ/2; then if Z < z0,

Z → 2z0 − Z, W → −W , dZ → −dZ;
4. store present position X as ‘Xp’, then step downwind:

X → X + u(Z) dt;
5. if X > xmx (the desired fetch of area source), X → xmx and

dX = xmx − Xp;
6. determine index k of the layer in which the particle resides;
7. increment accumulator tres(k) by the amount dX/u(Z);
8. repeat step 3.

The sub-ensemble normalized mean concentration c/Q (after NP

paths) was derived as

χ(k) = tres(k)

NP �z(k)
, (34)

where �z(k) is the depth of the kth sampling layer, and then
renormalized as u∗c/Q for comparison with PPG or as u∗c/(kvQ)
for comparison with the analytical solution. Because layers were
very thin at small z(k), it proved necessary to use double precision
grid variables and accumulators.

An alternative implementation in ‘(z∗, wH , tH) space’ is
described in Appendix B (for the reasons given there). Happily,
and as will be shown, the two implementations gave closely similar
concentration fields.

3.4. Parametrization of gas absorption at the surface

Because the Project Prairie Grass measurements of the dispersion
of sulphur dioxide serve here as the ultimate criterion for the
analytical solution, and because Grynning et al. (1983) consider
that surface absorption occurred during the PPG trials, some of
the LS simulations to be shown have incorporated surface uptake.

It is relevant to note first of all that the PPG scientists concluded
(Barad, 1958, p77) ‘there is no evidence of any significant loss
of sulphur dioxide due to absorption by vegetation or any other
factor.’ One of the lines of evidence supporting that statement
was their ‘‘approximate check on’’ the total SO2 mass flux past
their 100 m radius arc, which (though varying from run to
run) tended to be within circa. 10% of their estimate of the
emission rate Q, or better. Given that the horizontal mass flux
estimates ignored the contribution of the eddy component (i.e.
covariance of concentration fluctuations c′ with fluctuations in
horizontal wind speed), and in view of the relatively low spatial
resolution of the summation performed to estimate the total flux,
it is appropriate to interpret such a comment as meaning that
deposition could be neglected as a good first approximation.

Suppose, then, one wished to estimate and represent surface
uptake in simulations of the PPG trials. To the degree that it
occurred, uptake of sulphur dioxide – to leaf and stalk surfaces
and into the stomata of the sparse cover of grass, as well as to the
soil – would have been modulated by many unreported elements
of the prevailing circumstances: leaf area density, soil and plant
moisture status, solar radiation, leaf surface contamination and/or
wetness, and more. Surface uptake is universally parametrized
in terms of a ‘deposition velocity’ wd defined by co-located
measurements of the depositional flux density F(zm) and a
reference mean concentration c(zm) at a reference height zm

assumed to lie within a constant flux layer,

wd = F(zm)

c(zm)
. (35)

The deposition resistance w−1
d is regarded (Wesley and Hicks,

2000) as the series combination of an aerodynamic resistance

ra =
zm∫

z0

dz

Kc(z)
, (36)

along the aerial pathway from the roughness height to the
reference height, a laminar surface sublayer diffusion resistance rb

(depending on surface geometry and the molecular diffusivity, at
a minimum), and a complicated ultimate resistance rc determined
(depending on the nature of the canopy and substrate and the
comprehensiveness of the treatment) by a combination of (for
instance) stomatal and physiological resistances.

From the perspective of an LS model, only the contribution
of rb + rc needs to be parametrized, because trajectories to and
from the roughness height z0 are explicitly computed. This is
most easily done by introducing a possibility for absorption
(rather than reflection) each time a particle passes below Z = z0,
and Wilson et al. (1989) established that the needed reflection
probability R is

1 − R

1 + R
=

√
π

2

wd

σw
, (37)

where (at the surface) σw = cwu∗ with cw = 1.25. To parametrize
absorption, each particle is given unit ‘mass’ upon its release, but
each time it is subsequently reflected off the surface that mass is
reduced (multiplicatively) by the factor R; contributions of that
particle to the concentration field are scaled by its mass.

Sehmel (1980) cites deposition velocities for sulphur dioxide
over grass that span 0.002–0.02 m s−1. Where the following LS
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PPG neutral 9
PPG57, L = –240 m
LS a = 0.32
LS a = 0.32, wd/u∗ = 0.05
LS a = 0.5
LS a = 0.5, wd/u∗ = 0.05

z 
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0 0.005 0.01 0.015 0.02

u∗ c/Q (m–1)

Figure 1. Comparison of Lagrangian stochastic simulations with Project Prairie
Grass profiles (symbols) of crosswind-integrated concentration at radius
x = 100 m from a point source, under neutral stratification.

simulations have included surface uptake – the default being
that they have not – the value wd/u∗ = 0.05 used by Grynning
et al. (1983) has been adopted, implying R = 0.95. This should
not be interpreted as support for that particular value of the
deposition velocity: rather, as will be seen, the simulations
suggest that the deposition velocity was sufficiently small to
have rendered deposition negligible, as originally surmised by the
PPG scientists.

4. Validation of LS model against PPG

The LS model will serve (below) as criterion for the validity of the
analytical solution, so we begin by ensuring that LS simulations
are compatible with measurements. Figure 1 compares the LS
simulations with the profile of crosswind integrated concentration
measured at distance (radius) x = 100 m from the source in
Project Prairie Grass trials, under nearly neutral stratification.
Two representations of the PPG neutral profile have been
given, viz. run 57 (L = −240 m, z0 = 0.0058 m), and, the
average and sample standard deviation from nine runs having
|L| ≥ 50 m. For this figure and others to follow LS simulations
computed 19 × 512 000 independent paths from the source (at
zsrc = 0.46 m), with time step �t/τ = 0.01; concentration was
estimated by samplers equispaced in ln z.

The far-field eddy diffusivity implied by the LS model
in the neutral case is K∞ = acwu∗z such that the implied
Schmidt number is Sc = kv/(acw). Figure 1 indicates that, as
originally noted by Wilson et al. (1981c), the choice a = 0.32
(which implies Sc = 1) leads to poor agreement with PPG. In
particular, in the height range from about 4 ≤ z ≤ 11 m simulated
concentrations are systematically too low, and this is not a
deficiency that is amenable to correction by incorporating surface
deposition – which could only further reduce those (simulated)
concentrations.† What is needed, is to enhance the rate of vertical
transport, and (again, in harmony with Wilson et al. 1981c)

†This deficit in the modelled concentration has the consequence that the total
radial mass flux is underestimated relative to the known Project Prairie Grass
source strength, as noted by Sawford (2001) and Wilson (2015).

PPG neutral 9
PPG57, L = –240 m
PPG50, L = –26 m
PPG15, L = –7.8 m
LS neutral
LS run 50
LS run 15

z 
(m

)

0.1

1

10

0 0.005 0.01 0.015

u∗ C/Q (m–1)

Figure 2. Project Prairie Grass profiles (solid circles) of crosswind-integrated
concentration (at radius x = 100,m from a point source) in comparison with
the Lagrangian stochastic (LS) simulations. The stratified PPG profiles are:
run 50 (blue), L = −26 m and z0 = 0.0033m (x/z0 = 3.03×104); run 15 (red),
L = −7.8 m and z0 = 0.003 m (x/z0 = 3.33×104). LS solutions, open symbols.

analy
LS82
MO
LS
LS, z*

z/
z 0

1

10

100

1000

0 10 20 30 40 50 600 0.5 1

x/z0 = 1 × 105

z0/L = +4 × 10–3

F/Qu∗ c / (kν Q )

Figure 3. Normalized concentration and flux profiles at distance x/z0 = 105

from the leading edge of a surface area source, in stable stratification
(z0/L = 4×10−3): comparison of the analytical solution (blue) with Lagrangian
stochastic simulations (as tabulated by Wilson 1982b, and as recomputed here,
red), and with the Monin–Obukhov profile (adjusted to fit surface concentration).
(This is a case shown by Wilson, 1982a, his Figure 4.)

the calibration a = 0.5, implying Sc = 0.64, gives a satisfactory
outcome. Figure 2 confirms that with a = 0.5 (and no deposition)
the LS model also agrees very satisfactorily with Project Prairie
Grass measurements made during moderately and strongly
unstable stratification (L = −28 m, L = −8 m), while Figure 3 is
an equally satisfactory outcome (a = 0.5, wd = 0) for a case of
stable stratification. (Note: Figure 3 pertains to an area source. LS
simulations of PPG point source trials under stable stratification
are shown by Wilson et al. 1981c, Figures 6, 7).
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5. Performance of the analytical solution

This section will begin with a clarification of the extent to
which one may expect the analytical solution and the Lagrangian
simulation to coincide. The solution for L ≥ 0, laid out in detail
by Wilson (1982a), will be briefly revisited and confirmed, but
the bulk of the results pertain to the unstable case. The analytical
solution has invariably been evaluated with N = k2

v/Sc = 1/4.
Correspondingly the LS simulations use kv = 0.4 and the above-
documented formulation of σw(z) and C0ε(z), implying C0 ≈ 3.1
and Sc ≈ 0.64.

5.1. Criterion for near-ground concentration profile

On first thought it would seem that, in view of the deepening
constant-flux layer at the base of the plume off an area source,
the correct concentration gradient near ground would be given
by MO similarity theory (with appropriate allowance for one’s
choice of Sc), viz.

∂χMO

∂(z/z0)
= −

(
u∗z0

kv

) (
φc

(kv/Sc)u∗z

)
, (38)

∂χMO

∂ ln(z/z0)
= −φc

N
, (39)

where N = k2
v/Sc. Provided z/z0 is not too large, the analytical

solution, being based on the eddy-diffusion paradigm, should
match this MO concentration gradient.

Further to that criterion, does the analytical solution correctly
estimate the surface concentration? The latter is not provided by
MO theory, which treats surface concentration (like surface tem-
perature) as an external property. A convenient criterion here is
the concentration profile given by the LS model; but in this context
one must bear in mind that the LS model will (correctly) reveal
the non-diffusive near field of the source, and thereby differ from
the MO solution and the present analytic solution, at heights that
are comparable with the turbulence length scale near the source.
Of course, over natural surfaces one’s specification of turbulence
profiles as height z → 0 is necessarily fictive, in that (inevitably)
there exists an ‘Unresolved Basal Layer’ (Wilson and Flesch, 1993)
in which velocity statistics cannot be (or have not been) measured,
and because (anyway) the exact interpretation of the statement
z = z0 is ambiguous in that one cannot meaningfully assign an
origin for the z axis. In the present simulations the length scale
at z = z0 is given as z0/2, which is no more arbitrary than any
other value one could reasonably have chosen. The point is that
one may expect the LS model not to agree with Eq. (39) for small
z/z0, because ‘built in’ to MO theory is an assumption that for
|z/L| � 1 the eddy diffusivity Kc ∝ z, and accordingly the mean
concentration gradient plotted on a ln z coordinate is constant,
in the limit of small |z/L|. (The effect of the near field of elevated
sources is seen in the mean concentration profiles exhibited by
Figure 2 of Wilson (1982b): very close to the level of the elevated
area source the standard flux-gradient relationship does not apply,
e.g. the mean flux runs against the mean gradient, just beneath the
source).

5.2. The pre-existing solution for stable stratification

Recall that for the stable case, documented by Wilson (1982a),
both the wind speed and eddy diffusivity are represented by MO
profiles. Here it is only intended to affirm that the 1982 results
are reproducable,‡ and in that regard Figure 3 corresponds with
Figure 4 of Wilson (1982a), the solution at distance x/z0 = 105

‡The product δr on the second line of Wilson’s (1982a) Eq. (21) ought to read
δ̇ r.
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Figure 4. Analytical solutions for the depth zδ of the plume versus downwind
distance x/z0, under neutral stratification. H/z0 refers to the reference height for
solutions using the power-law wind profile: H/z0 = (10, 100, 1000).

from the leading edge of an area source, with z0/L = 4 × 10−3.
Though not shown by Wilson (1982a) the MO profile has also
been plotted (with the Schmidt number adjusted to 0.64), its
surface concentration having been assigned arbitrarily to line up
with the analytical solution (of course the MO concentration
profile entails a flexible surface concentration χ(z0), and is
‘unaware’ of the finite extent of the source). Up to z/z0 ∼ 102

the slope of the MO profile accords very well with the analytical
solution – as it should, within the growing constant-flux layer at
the base of the concentration plume.

On Figure 3 two Lagrangian solutions are shown, in addition
to that tabulated by Wilson (1982b) and which was plotted
on Figure 4 of Wilson (1982a). Readers will notice that the
1982 solution appears to lack the deviation (as z/z0 → 1) from
the MO profile slope manifested by the other LS solutions. As
covered above, such a deviation is expected. The inconsistency
stems from the fact that the 1982 solutions entailed a larger
level of statistical error than contemporary solutions (for which
standard error was too small to plot): limited computing power
restricted the number of paths it was feasible to compute, such
that it was necessary to smooth the profile at small z/z0. In
doing so, the author had (wrongly) assumed there would be
no significant deviation from the constant ∂χ/∂ ln z slope. That
anomaly aside, results proved closely consistent with Wilson
(1982a) over all combinations of (x/z0, z0/L ≥ 0) that were
examined.

5.3. Influence of the choice of reference height

The compromise of adopting the power-law mean wind profile
carries the penalty that one cannot correctly represent the MO
wind profile at all heights. The impact of the unconstrained
parameter H (reference height) can be gauged by Figure 4, which
plots the plume depth for neutral stratification as per Eq. (25;
power law wind) alongside that which stems from the use of
the semi-logarithmic wind profile (Wilson, 1982a, Eq. 24N).
As can be expected, the power-law solution is sensitive to the
prescription of H, such that if a small value is used then plume
depth differs greatly at large x/z0 from the preferred solution.
However at fetches liable to be of interest (1 � x/z0 � 105) it can
be expected that any choice H/z0 � 10 should return an adequate
profile of concentration near ground, or more specifically, within
the developing constant-flux layer.
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5.4. Unstable stratification: performance of the new solution

For the following results, unless otherwise stated, the reference
height for the wind profile was specified as H/z0 = 100 and the A
function (Eq. 23) was evaluated out to 200 terms. Where plotted,
the MO concentration profiles are

χMO = χMO(z0) − 1

k2
v/Sc

{
ln

z

z0
− ψ(z, L) + ψ(z0, L)

}
, (40)

where

ψ = ψ(φc) = 2 ln

{
1

2

(
1 + φ−1

c

)}
, (41)

with φc given by Eq. (4). The surface concentration χMO(z0) has
been assigned arbitrarily to permit comparing the concentration
gradients across solutions. (Recall the scaling in use here, i.e.
χ = u∗c/(kvQ), which explains the k2

v factor in Eq. 40).
Figure 5 compares the analytical solution with the LS model, for

the case x/z0 = 5 × 103, z0/L = −10−3. The analytical solution
(not greatly differing if H/z0 is increased by more than an order
of magnitude) and the MO curve are in excellent agreement over
the bulk of the plume, but this does not undercut the utility
of the analytical solution because contrary to the MO curve it
accounts for the finite fetch, and thereby pins down the surface
concentration that lies outside the scope of the MO profile, as
well as the decaying gradient near the top of the plume. One point
needing clarification is that even well above z = z0 there is a slight
difference between the slope ∂χ/∂ ln z of the LS solution and
the (matching) gradients of the analytical solution and the MO
profile. This is readily understandable. The far-field diffusivity
implied by the LS model is σ 2

wτ where the chosen profiles (Eqs. 32
and 33) imply that for L ≤ 0

σ 2
wτ = (kv/Sc) u∗z (1− 6z/L)1/4 (1− 3z/L)1/3 , (42)
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Figure 5. Normalized concentration and flux profiles at distance x/z0 = 5×103

from the leading edge of a surface area source in unstable stratification
(z0/L = −1×10−3): comparison of the analytical solution with Lagrangian
stochastic solutions, and with the Monin-Obukhov profile (adjusted to fit
surface concentration by imposing u∗χ/(kvQ) = 20). LS solutions include: (i)
the tabulated LS solution of Wilson (1982b), computed using the z∗ method; and
contemporary LS calculations of paths in (ii) (z, w, t)-space (solid black line) and
(iii) in (z∗, wH , tH )-space (dashed red line). The flux profile corresponding to the
(incomplete) analytical solution with Monin-Obukhov wind profile (blue dashed
line) is given in Appendix A.

which differs from the MO eddy diffusivity (evaluated according
to Eq. (4), the Dyer and Hicks (1970) formulation with an explicit
adjustment of Sc) which is:

Kc = (kv/Sc)u∗z

φc(z/L)
= (kv/Sc)u∗z (1 − β z/L)1/2 . (43)

Evidently the two formulations differ in their z/L dependence,
and readers may wonder why the profiles chosen for the LS
simulations were not chosen for exact compatibility with (say)
the Dyer–Hicks far-field eddy diffusivity. The reason is that it
is the nature of the Lagrangian model that one requires specific
profiles for σw and for τ (or equivalently ε).

Figure 5 also gives the analytic solution for the profile of the
normalized vertical flux, and in particular, compares Eq. (24)
– the present solution (with U ∝ zm) – against the solution given
by retaining the MO wind profile (Eq. A9). The near coincidence
of the two flux profiles suggests that the penalty for invoking the
power law wind profile is not severe, a point we return to below.

Figures 6 and 7 give the analytical solution for z0/L = −10−3 at
x/z0 = (2 × 103, 2 × 104), respectively using a logarithmic and a
linear height axis; the summation in Eq. (23) was truncated at 100
terms for the longer fetch. Recall that the context here is the case of
finite fetch of ground-level (area) source, for which the constant
flux layer does not (in general) extend to the top of the ASL. It
would appear from the results that one might just as well base a
flux-gradient method on the MO profile, notwithstanding that it
(by definition) presupposes an infinite fetch (or equivalently, the
existence a constant flux layer to all heights of interest, i.e. to the
top of the surface layer). However when the MO profile and the
present fetch-cognizant solution are plotted using a linear height
axis (Figure 7) it can be seen that accounting for the finite fetch
will give a superior estimate.

These points are clearer when one focuses on the height
gradient of concentration. From Eq. (24) it is evident that

∂χ

∂(z/z0)
= −

(
u∗z0

kv

)(
φc

(kv/Sc)u∗z

)(
zs
δ − zs

zs
δ − zs

0

)
, (44)
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Figure 6. Normalized concentration profiles at distances x/z0 = (2×103, 2×
104) from the leading edge of a surface area source, in the unstably stratified
surface layer (z0/L = −10−3). Solid red lines give the present analytical solution
(power-law wind profile and MO eddy diffusivity); solid circles tabulate the
solution given by Wilson (1982b) based on a well-mixed LS model, which is
shown in comparison with new LS solutions (solid black, and red dashed lines)
as described here. The black dashed line is the MO concentration profile for a
constant flux layer (i.e. it is appropriate to the situation of an infinite fetch of
source) with an arbitrary offset on the concentration axis. On the right-hand
panel the solution using the z∗ implementation is not shown; blue lines are
LS simulations using the power-law wind profile (solid, H/z0 = 103; dashed,
H/z0 = 10; please note that the solid blue line overlaps the solid black line, i.e.
the LS solution with MO wind profile).
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at distance x/z0 = 2×104 from the leading edge of a surface area source
(z0/L = −10−3). For power law profiles, H/z0 = 100. Analytic flux profiles
from Eq. (24), power law wind, and retaining the MO wind profile (Appendix A).

where the first factor on the right-hand side juggles the units, the
second is the reciprocal of the eddy diffusivity (in its dimensional
form, for clarity), and the final factor attenuates the flux with
increasing distance from the source. The corresponding MO
gradient is of course Eq. (38), and so we may write

∂χ

∂(z/z0)
= ∂χMO

∂(z/z0)

(
zs
δ − zs

zs
δ − zs

0

)
. (45)

Figure 8 plots ∂χ/∂(z/z0) and the normalized vertical flux density
for z0/L = −10−3 at fetch x/z0 = 2 × 104. It is interesting to note
that one must plot ∂χ/∂(z/z0) on a log axis in order to distinguish
the difference in slope relative to the infinite fetch (MO) case,
suggesting that assumption of the MO profile for the purpose of
making flux-gradient measurements of area source fluxes ought
to be very forgiving in terms of the necessary fetch.

Returning now to Figures 6 and 7, two further points may
be made. Firstly, note that the concentration profiles provided
by the two implementations of the LS model are very consistent
(i.e. they overlap), albeit slightly different from that of the 1982
tabulation (probably for the reason given earlier), and with their
gradient slightly different from the MO gradient (again, for the
reason given above). Secondly, deviation between the analytical
and LS solutions is greater for the longer of the two fetches
(right hand panel). Short of adjusting the β parameter of the Kc
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Figure 9. Comparative LS simulations with the MO wind profile and the power
law wind profile: concentration profile at distance x/z0 = 2 × 104 from the leading
edge of a surface area source (z0/L = −10−3).

profile – which would be hard to justify – there seems no remedy
within the compass of the present solution.

5.5. Sources of error in the analytic solution

It is of interest to establish the relative importance of two sources
of error in the analytic solution, viz. that which stems from the
adoption of a power law wind profile, and that which arises from,
or is inherent to, the Shwetz solution procedure.

Error of the first type can be examined without reference to
the analytic solution, by comparing LS simulations using the
MO wind profile (i.e. identical in every respect to those shown
above) with those that result when the power law formulation is
substituted. Figure 9 suggests that (for that particular fetch and
stability) the impact of invoking the power law representation
is greatest near the upper edge of the plume, and more serious
for smaller choices of H/z0, the reference height: relative to the
LS simulation with the MO wind profile, simulations with the
power law wind profile underestimate the plume depth. However
in this case, simulations with U ∝ (z/H)m and H/z0 = 103 differ
negligibly from the reference solution (LS with MO wind profile)
and this establishes that provided due care is taken in the choice
of H/z0, the dominant source of error in the analytic solution
is of the second type, i.e. that which arises because the solution
χ does not exactly satisfy the advection-diffusion equation. A
further indication that use of the power law wind profile is the
less serious source of error is implied by the near coincidence
(Figure 5) of two flux profiles both stemming from the Shwetz
solution procedure, one (Eq. 24) based on the the power law wind
profile and the other (Eq. A9) based on a MO wind profile.

But if a power law representation of the wind profile is
an acceptable compromise, then what of the eddy diffusivity
profile? – for with both parametrized by power laws, we have
exact solutions to the ADE. Figure 10 plots Philip’s (1959)
exact solution for a surface area source (with u ∝ zm, Kc ∝ zn;
Appendix C) alongside the new solution (of section 2) for which
u ∝ zm but Kc ∝ z/φc(z/L). Evidently one’s specification of the
reference height H is considerably more consequential for the
Philip solution than for the present (new) solution. As it has been
established that solutions are not unduly sensitive to the reference
height where the power law is introduced for wind speed alone,
one must conclude this heightened sensitivity to H (of Philip’s
solution relative to that of section 2) is a consequence of having
invoked the power law for eddy diffusivity. This implies that the
shape (i.e. Kc ∝ z/φc(z/L)) of the MO profile for eddy diffusivity
is less amenable to an approximation of power law form than is
the shape of the mean wind profile.
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Figure 10. Normalized concentration profiles at distance x/z0 = 2×104 from
the leading edge of a surface area source, in the unstably stratified surface layer
(z0/L = −10−3). Red lines give the present analytical solution (power-law wind
profile and MO eddy diffusivity); solid circles tabulate the solution given by
Wilson (1982b) based on a well-mixed LS model. The black dashed line is the MO
concentration profile for a constant flux layer (i.e. it is appropriate to the situation
of an infinite fetch of source) with an arbitrary offset on the concentration axis.
Blue lines give Philip’s (1959) analytical solution with H/z0 = (10, 100).

6. Conclusions

Retaining the MO profile for the eddy diffusivity, this article
extends to unstable stratification an approximate analytical
solution to the advection diffusion equation given by Wilson
(1982a). The necessity to adopt a power law representation of the
mean wind for the L < 0 case has the consequence of introducing
an arbitrary choice (the reference height H), but solutions are not
unduly sensitive to reasonable choices of the latter. Furthermore
retention of the MO diffusivity is advantageous because solutions
to the ADE that invoke a power law representation for the
latter (i.e. for Kc as well as for wind speed) are more sensitive
to the specification of the non-physical and arbitrary reference
height.

Notwithstanding the arbitrariness of Shwetz’s decomposition
of the advection-diffusion equation, the solution proves useful for
the surface area source, as judged by its close agreement with the
LS model (and by implication, according to Figures 1 and 2, with
reality). Of course the Lagrangian model handles a much wider
range of problems, so that strictly speaking one has no need of
eddy diffusion solutions, however there are circumstances where
a simple formula is preferred. Wilson and Flesch (2016) apply this
solution in the context of a modified flux-gradient technique for
determining ground/air exchange fluxes, based on pairing line-
averaged concentrations along upward- and downward-slanting
paths over a finite surface area source; this is a case for which the
inversion (to obtain the flux from the concentration difference)
by conventional means (viz. the LS model ‘WindTrax’, Wilson
et al., 2012) is computationally cumbersome, owing to the need
to compute trajectories from a sufficient number of heights to
adequately represent the slanting gas sample-paths.

The Schmidt number, or another parameter equivalent to it,
has been made explicit both in the analytical solution and the
Lagrangian solution, and their mutual consistency does not hinge
on any adjustment in that regard. Should it eventually be proven
(contrary to what has been assumed here) that the neutral Schmidt
number for passive tracer Sc = 1, as many readers may already
believe on the evidence of the classic flux-gradient experiments,§

then the utility of the analytical solution is not diminished: one

§However Wilson (2013) gives an indication that those experiments are not
as definitive on the matter as could be wished. Independently of the inference
drawn in this article from the Project Prairie Grass trials, numerous tracer
dispersion studies (summarized by Harper et al. 2010, Table A1) have shown

simply recalibrates Sc (and a or C0 in the LS model) to whatever
value later evidence recommends.
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Appendix A

Partial solution with MO diffusivity and MO wind

The goal of this work had been to obtain a solution to the
advection-diffusion equation (Eq. 1) that would be applicable
for unstable stratification, with appropriate MO profiles of wind
speed and eddy diffusivity: section (2), a solution with the MO
diffusivity but a power law wind profile, represents only a half
step in that direction. The solution procedure of Shwetz promptly
leads to difficult integrals if one adopts the Paulson wind profile
(or the alternative proposed by Wilson 2001), however a partial
solution (plume depth; the field of the vertical flux density) has
been obtained with the wind profile represented as

u

u∗
= 1

kv

{
ln

z

z0
− 2 ln

1 + √
z/(−L)

1 + √
z0/(−L)

}
, (A1)

which follows from specifying the MO function for the normalized
mean wind shear as

φm =
(

1 +
√

z/(−L)
)−1

. (A2)

Figure A1 indicates that Eq. (A1) is in satisfactory agreement with
the wind profile computed using widely accepted choices for φm

(viz. Dyer and Hicks, 1970; Dyer and Bradley, 1982).
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Figure A1. Comparison of Eq. (A1) (W) for the mean wind profile in unstable
stratification (z0/|L| = 0, 4×10−4, 4×10−3) versus profiles based on the φm(z/L
functions recommended by Dyer and Hicks (1970; DH) and by Dyer and Bradley
(1982; DB).

With Eq. (A1) for u(z) along with the conventional MO
eddy diffusivity (Eq. 3), the advection-diffusion equation

that emission rates Q yielded by inverse dispersion on the basis of the
assumption Sc ≈ 0.64 agree well with the true release rate.
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transforms to

eλ {λ − ψ(λ, �)} ∂χ

∂ξ
= N

∂

∂λ

{
φ−1

c (λ, �)
∂χ

∂λ

}
, (A3)

where φc is given by Eq. (4) and

ψ = 2 ln
1 +

√
�eλ

1 + √
�

, (A4)

with � = −z0/L and (as before) N = k2
v/Sc. Now working

through the Shwetz procedure one finds the slope of the plume
to be

δ̇ =
(
1 + β�eδ

)1/2
N/r

G(δ)
(A5)

where the function G(t) is

G(t) = tet − 2
(
et − �−1

)
ln

1 + √
�et

1 + √
�

+2 �−1/2
(
1 − et/2

)
. (A6)

To express the result

N

r

∫
dξ =

∫
G(δ) dδ√
1 + β�eδ

+ ĉ2 (A7)

of integrating Eq. (A5) term by term, define θ(δ) = �eδ ,
�(δ) = β�eδ . Then with the help of various transformations of
the variable of integration one finds that the plume depth δ at
distance ξ from the leading edge of the source can be obtained by
solving

N

r
ξ = 2
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√
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+ ĉ2. (A8)

To obtain this result, two terms have been simplified by the
approximation that, with β = 16 � 1, β + 1 ≈ β. The integra-
tion constant ĉ2 was evaluated by forcing Eq. (A8) to coincide
with the neutral solution (Wilson’s 1982 Eq. 24N) at a ‘cal-
ibration point,’ i.e. a small value of the plume depth such
that buoyancy effects should have had negigible impact. As a
check on the analytical solution for δ(ξ), Eq. (A5) has also been
integrated numerically by a Runge–Kutta method, using the
neutral form to provide δ directly at small ξ (e.g. in the region
�eδ = zδ/|L| ≤ 2×10−3).

Due to the difficulty of the final integration, the concentration
field for the area source has not been obtained, however the
vertical flux density (i.e. flux field for an area source) is
given by

fu(ξ , λ) = 1 − G(λ)

G(δ)
. (A9)

Figures 5 and 8 indicate that this flux profile agrees closely with
that of section (2).

Appendix B

Implementation of LSM in (z∗, wH, tH) space

There was cause to wonder whether the LS calculations according
to section 3.3 might have been compromised by the ‘�t bias
error’ identified by Wilson and Flesch (1993), and/or by the
surface reflection algorithm, which lies outside the scope of
Thomson’s (1987) well-mixed condition. Therefore it was useful
to also implement the formulation of Wilson et al. (1981c),
whereby particle motion in the real world is mapped into a
system of sheared homogeneous turbulence. (Later discussion
of this approach, by Wilson et al. 1983 and Thomson 1984,
addressed the equivalent process in (x, z, t) space; but it appears
that, subsequent to Wilson et al. (1981c), there is no report of
trajectories having been computed in this ‘zstar-system’.)

The reasoning that culminated in (or justifies) the model will
not be reiterated here, but it bears mention that the algorithm was
subsequently proven to be well-mixed, and indeed equivalent to
the unique well-mixed model given above. In this section we will
slightly adjust the terminology of Wilson et al. so that Lagrangian
variables are in upper case. Let H be a reference height in the
surface layer (note: the H of this section is unrelated to the
reference height for the power-law wind profile of the analytical
solution, and its specification is entirely free) at which vertical
velocity fluctuations are characterized by a standard deviation
σwH and integral time-scale τH . Position increments on the z∗
axis are given by

dZ∗ = (
WH + W

)
dtH , (B1)

where W is a bias velocity

W = σwHτ (z)
∂σw

∂z
, (B2)

and WH is stochastic with variance σwH and time-scale τH . The
stochastic component is conveniently computed by the Langevin
equation

dWH = − WH

τH
dtH + σw

√
2dtH/τH r, (B3)

where r is a standardized Gaussian random variate (zero mean,
unit variance).

The relationship between z∗ and real height z is given by

dz

dz∗
= σw(z) τ (z)

σwH τH
, (B4)

and (depending on the choice of σw and τ profiles) this may be
amenable to analytical integration. With the choices used here,
the relationship is of the same form as the MO mean wind profile;
for stable stratification

(1 + 5 H/L)
z∗
H

= ln
z

z0
+ 5

z − z0

L
(B5)

while for unstable stratification the relationship is analogous to
Eqs (6)–(8), viz.

z∗
H (1 − βτ H/L)1/4

= ln
z

z0
− ψτ (z/L) + ψτ (z0/L), (B6)

where

ψτ (z/L) = 2 ln
[
(1 + φ−1

τ )/2
] + ln

[
(1 + φ−2

τ )/2
]

− 2atan(φ−1
τ ) + π/2 , (B7)

φτ (z/L) = (1 − βτ z/L)−1/4, (B8)

c© 2015 The Authors. Quarterly Journal of the Royal Meteorological Society
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(in which βτ = 6). Finally, motion along the horizontal axis
occurs with a transformed velocity, i.e.

dX = u(Z)
τ (z)

τH
dtH . (B9)

For any wanted fetch xmx of source a suitable upper limit
to the z/z0 axis was chosen, and the corresponding value of z∗
was divided into Nk layers (typically Nk = 201). The turbulent
component of the motion is homogeneous on the z∗ axis,
but the bias component and the horizontal distance step refer
back to z-space. Accordingly, arrays were created, these being
indexed to the z∗ layers, and storing the horizontal distance step
dX(k) and the bias velocity W(k). Paths were computed with
dtH/τH = μ = 0.05.

Apart from its computational rapidity, this model has the
virtue that trajectories need not be reflected at the lower boundary
(note: z = z0 maps to z∗ = 0). One simply allows the particle’s
(transformed) height Z∗ to evolve as it will, reversing (only)
the bias velocity whenever Z∗ < 0. Whenever the index k is
wanted, it is based on |Z∗|, and if |Z∗| is such as to imply k > Nk

one sets k = Nk. On each step a concentration accumulator is
incremented,

�x(k) = �x(k) + dX(k) (B10)

and sub-ensemble normalized mean concentration (after NP

paths, and here showing the u∗/kv factor included in comparisons
with the analytical solution) is

χ(k) = u∗ �x(k)

kv NP �z(k) u(k)
. (B11)

Again, it proved vital to define the axes and the layer boundaries
and thicknesses, as well as the concentration accumulators, using
double precision arithmetic. The order of operations was the
same as that given above.

Appendix C

Philip’s exact solution of the ADE

Philip (1959) gave an exact solution to Eq. (1) with power law
profiles

u = uH (z/Hu)m = Uzm , (C1)

Kc = KcH (z/HK )n = κzn , (C2)

valid provided n �= 1 (i.e. neutral stratification is excluded). Just
as indicated earlier in regard to (m, uH), one may choose (n, KcH)
to reproduce the eddy diffusivity¶ and its height gradient at the
reference height. For computations shown here H ≡ Hu ≡ HK

and:

n = 1 − H

φc(H/L)

[
∂φc(z/L)

∂z

]
z=H

, (C3)

KcH = (kv/Sc)u∗H

φc(H/L)
, (C4)

with

φc =
{

(1 − 16z/L)−1/2 , z/L < 0

1 + 5z/L , z/L > 0 .
(C5)

¶There is no necessity to enforce the constraint n = 1 − m (Schmidt’s conjugate
power law) that is obligatory if parameterizing the eddy viscosity for the constant
stress layer.

Philip introduces the dimensionless variable

η = U zr

r2 κ x
(C6)

where r = 2 + m − n, and his solution for the mean con-
centration due to a unit area source at the surface covering
x ≥ 0 is

c(x, η) = 1

(1 − n) �(μ) κ

(
r2 κ x

U

)1/β

F(η, β) (C7)

where μ = (1 + m)/r, β = r/(1 − n) ≡ 1/(1 − μ), and

F(η, β) = 1 − �(μ) η1/β + η

β − 1
− η2

2!(2β − 1)

+ η3

3!(3β − 1)
− η4

4!(4β − 1)
+ ... (C8)

For large η this series approximation for F(η, β) does not
converge, however (as stated by Philip) for the η range liable
to be of interest convergence is rapid.

Appendix D

Evaluation of A(x, m)

A(x, m) is defined by Eq. (23). Suppose the infinite sum is
evaluated out to N terms. Symbolically, A(x, m, N) can be
evaluated as follows, ‘dblfctrl’ being the double factorial of its
argument:

s=1+m; xm1=x-1;
A=pow(xm1,s)/s*1/sqrt(x);
for(i=1;i<=N;++i){
ireal=(double) i;
sequence=s;
for(k=1;k<=i;++k){
kreal=(double) k;
sequence=sequence*(s+kreal);

}
term=pow(xm1,s+ireal)/sequence*dblfctrl(2*i-1);
term=term*1.0/pow(2,ireal)*1/pow(x,ireal+0.5);
A=A+term;
}
return(A);
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