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1. INTRODUCTION

At an intermediate stage in the dispersion of a plume in a
city, inhomogeneity of the wind field may remain an
important factor, even though the details of the distribution
of buildings may be redundant. We examine a simple
numerical model as a potential means to quickly generate
a non-uniform urban flow field, and we study the
significance of the spatial-inhomogeneity of the
(modelled) flow for plume dispersion, using a Lagrangian
stochastic (LS) model to simulate tracer trajectories.

The idea is to compute the large-scale spatial gradients in
wind statistics, on length scales comparable to the
building size, gradients we can characterize (eg.) in terms
of a spatial mean-velocity variance 2 , defined by’
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We ask, is X2 accurately calculated by this particular
model?, and, irrespective of the answer, whether in urban
flows %2 is generally big enough, in relation to the
turbulent kinetic energy (TKE), to warrant computation of
the 3d wind field, and input to a dispersion model?

2. FLOW MODEL

We compute the 3-d fields of mean velocity (u,v,w) and
TKE (k) within an idealized domain that encloses one or
more buildings, and connects to neighboring domains via
the assumption of periodicity, on intervals L,,L . Buildings
(height H) are represented as porous, and assigned a
(fictitious) drag coefficient x area density product, C, A.
We invoke eddy viscosity K= A k*, where the lengthscale
A=max (A, A,), the inner and outer scales being
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Here k,=0.4 is von Karman’s constant, and A_ is a canopy
“shear length scale,”
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where S is mean horizontal windspeed. This closure has
proven useful in uniform and disturbed plant/forest
canopies (Wilson et al., 1998, hereafter WFR; Wilson &
Flesch, 1999), and our numerical procedure follows those
descriptions.

*Single point time averages, such as of x-wise
velocity u, will be denoted by an overbar, thus u. The
spatial average of u is written as <u>.

3. SIMULATION OF AN “URBAN CANOPY”

Raupach et al. (1986; hereafter RCL) reported wind
statistics, and Legg et al. (1986) the temperature field due
to a line source of trace heat, within the “Tombstone
Canopy,” a staggered array of vertical bars (H=60mm
high, Y,=10mm wide, X,=1mm thick), arranged in a
diamond pattern on the floor of a wind tunnel (cross-
stream spacing L,=60mm, along-stream spacing 72
L,=44mm). Figure (1) gives velocity contours for this
canopy, calculated with resolution Ax=Ay=Az=2mm.
Inputs were a prescribed displacement length d/H =0.01;
closure parameters c=p=1.0, a=0 (see WFR); and
C,A=1000m"". Contrary to what was hoped, solutions were
not independent of this last (fictitious) parameter.
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Figure 1. Contours of mean streamwise velocity u [m/s] at
z/H=1 in the periodic Tombstone Canopy.

Model u contours at zH=1somewhat resemble those
measured by RCL (their Fig 4), but although the spatial
ordering of speeds was encouraging, u(z)-profiles
compared poorly with those measured (RCL Fig.3a,
stations A-J). Spatial variation in the canopy is rather
small (RCL Fig.3a), despite the fact that the frontal area
index A, = 2 (H X,)/(L,L,) = 0.23 implies a near maximally-
rough canopy, in terms of its effective drag coefficient.
From the model, at zZH=% the index ( 2/ <k> ) << 1,
suggesting thatinhomogeneity of the mean fields may not
be very important for dispersion in this flow.

The model’s spatial-mean profiles <u>, <k> (not shown)
were in poorer agreement with the observations than
those provided by the 7-d form of the flow model (Wilson
et al., 1998), but success of that 7-d model is largely



ordained by one’s having provided a drag coefficient
derived from the observed profiles of mean velocity and
shear stress.

In the next section we depend on the flow model only in
that it provides us a gridded 3-d flow field having a
plausible degree of inhomogeneity, relative to the
Tombstone Canopy observations.

4. DISPERSION MODEL

To explore the consequences of resolving/neglecting
horizontal-inhomogeneity in urban flow, we calculated
dispersion from the line source in the Tombstone Canopy,
using Thompson'’s (1987) well-mixed, 3-dimensional, LS
model for trajectories in Gaussian, inhomogeneous
turbulence (in our modelled flow there is no basis to
assume other than Gaussian velocity pdf's; and there is
evidence, Sawford, 1999, that this LS model is at least as
good a choice as any other).

Normal components of the stress tensor V! were deduced
from the modelled TKE by assuming the same partitioning
as in neutrally stratified, horizontally-uniform atmospheric
surface layer flow, where k/u? = % (c,> + ¢,> + ¢c,? );
tangential components were calculated from the mean
shear du'/ox and eddy viscosity. Flow statistics (and their
spatial gradients) were (optionally) interpolated from
gridpoints to the particle’s equivalent position in the
fundamental cell (interpolation was based on the eight
radii from the particle to nearest gridpoints).

Thomson'’s criteria for LS models do not limit the
“permissible” spatial variability of flow statistics; in
principle, arbitrary profiles are accommodated, provided
only that the timestep is appropriately small. “Continuity”
of a modelled flow field is a contradiction in terms, and so
it is not clear what criteria must be imposed. In practise,
these complex (generalised) Langevin equations may
generate “rogue trajectories” terminating with impossible
velocities, or (in the 3d urban field) trajectories that “go
dormant” in regions of tiny time- and velocity-scales. It is
unclear how legitimately to prevent these sorts of
difficulties without ad hoc interventions. May one insist, for
example, that in the limit |U| — « (where U, is the
Lagrangian velocity fluctuation), the conditional mean
acceleration a; should act to decrease the magnitude of
the fluctuation? For the present model that would imply
that the effective timescale should obey

(o, the velocity standard deviation for direction /, with no
summation implied). The “stability intervention” mentioned
below was this: if (for any i) |U|>100, and the inequality (4)
was untrue, we reset all velocity fluctuations by random
choice from a Gaussian with the given o, We found it very
helpful to be able to view the trajectories, so as to observe
whether they appeared feasible. “Bad” trajectories
typically culminated in floating-point errors.

5. PROVISIONAL CONCLUSIONS

1) Representation of solid buildings as porous, in order to
simplify calculations, does not appear to be a useful idea.

2) Rogue trajectories resulted if we neglected terms in the
Langevin equations involving horizontal derivatives (like
90, 2/ox; “locally-homogeneous” LS model). This was so
even with the stability intervention.

3) The inverse (V') of the stress tensor needed to be
calculated after interpolation of V' to the particle (if both V!
and (V")! are individually interpolated, their product is
unlikely to be the identity matrix).

4) In our experience stability intervention was necessary
even if no terms in the LS model were neglected. Is this
a problem of the LS model itself, or one’s implementation
of it? Does it imply, eg., that velocity statistics provided
were unphysical or mutually inconsistent?

5) Prohibition of particle entry into tombstones, by
reflection or absorption, was no remedy for rogue or
dormant trajectories.

6) Continuing reduction of the timestep (as small as
dt=0.0005 T,) did not prevent the above difficulties

7) For this (fairly high-resolution, modelled) urban flow
field, interpolation of flow statistics to the particle greatly
increased trajectory computation time, with undetectable
impact on the mean tracer concentration field.

7) None of our simulations of tracer dispersion in the
modelled Tombstone canopy matched the data as well as
those reported by Flesch and Wilson (1992), which were
based on the horizontally-uniform reduction of this same
LS model, driven with (formulae fitted to) measured,
horizontally-invariant flow statistics. Probably this is
symptomatic of (our present) imperfectly-computed
horizontal-mean flow properties, but it surely also implies
that our (not wholly unrealistic) representation of spatial
variability in the flow did not have a positive impact.

In conclusion, even though the Tombstone canopy is very
rough, inhomogeneity is not so serious (in terms of its
implication for dispersion on the scale examined) as to
warrant the step of calculating an imperfect 3d flowfield,
for provision to a dispersion model. In this example, good
estimation of the spatial mean fields (<u>, <k>) from
measurements or from a 1-d model, seems more
important than attempting to represent the horizontal
inhomogeneity.
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