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Lagrangian simulation of wind transport in the urban
environment
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ABSTRACT: Fluid element trajectories are computed in inhomogeneous urban-like flows, the needed wind statistics being
furnished by a Reynolds-averaged Navier–Stokes (RANS) model that explicitly resolves obstacles. Performance is assessed
against pre-existing measurements in flows ranging from the horizontally uniform atmospheric surface layer (no buildings),
through regular obstacle arrays in a water-channel wall shear layer, to full-scale observations at street scale in an urban
core (the Oklahoma City tracer dispersion experiment Joint Urban 2003). Agreement with observations is encouraging,
e.g. for an Oklahoma City tracer trial in which sixteen detectors reported non-zero concentration, modelled concentration
lies within a factor of two of the corresponding observation in nine cases (FAC2 = 56%). Although forward and backward
simulations offer comparable fidelity relative to the data, interestingly they differ (by a margin far exceeding statistical
uncertainty) wherever trajectories from source to receptor traverse regions of abrupt change in the Reynolds stress tensor.
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1. Introduction

Lien et al. (2007) have described the coupling of the
Canadian Meteorological Centre’s (CMC) Global Envi-
ronmental Multi-scale weather analysis/prediction model
(GEM) and a high-resolution Reynolds-averaged
Navier–Stokes (RANS) model of urban winds
(urbanSTREAM–Lien and Yee, 2004; Yee et al., 2007;
Wang et al., 2009). The latter uses k − ε closure, is pro-
vided a detailed three-dimensional (3D) database of build-
ing layout, and by virtue of its coupling to regional GEM
(via intermediate cascades to 2.5, 1 and 0.25 km grids)
may be provided with model fields of the ambient meteor-
ology at a resolution of 250 m–on the basis of which
urbanSTREAM performs a detailed computation (gri-
dlength of order metres) of the urban winds. The purpose
of this paper is to document the promising performance of
a particle trajectory model (urbanLS) that is ‘driven’ by
the wind statistics provided by urbanSTREAM. Trajecto-
ries are computed using the well-mixed, 3D Lagrangian
stochastic (LS) model of Thomson (1987); novelty here
stems from the origin and complexity of the gridded wind
field provided to the LS model, from details pertaining
to discretization, but primarily in a demonstration of the
overall performance of this suite of models.

Being founded on fully 3D velocity statistics, the
present modelling approach is valid across a wide range
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of urban scales, embracing the street canyon scale to the
neighbourhood scale. This is distinct from the approach
exemplified by Rotach et al. (2004) (also Rotach, 2001),
whose Lagrangian stochastic model is based on velocity
statistics that vary with height alone; the flow field of
Rotach et al. defines a generic urban roughness layer,
and simulates urban dispersion on the neighbourhood
scale without resolving buildings. One may classify ear-
lier efforts on the simulation of trajectories in 3D flow
according to the following criteria: is the flow rural (e.g.
Carvalho et al., 2002, who used the Regional Atmos-
pheric Modeling System (RAMS) mesoscale weather
model to provide spatially varying velocity statistics to
the Lagrangian stochastic model; Mayer et al., 2008,
whose trajectory model was driven by the German LMK
weather model), or urban? Here focusing on the urban
case, does the study concern the building or street scale
(perhaps flow around a single building), or the neighbour-
hood scale? Are the 3D velocity statistics computed (e.g.
Näslund et al., 1994; Diehl et al., 2007), or measured
(e.g. Leuzzi and Monti, 1998), or provided by a heuris-
tic empirical strategy (e.g. Lanzani and Tamponi, 1995;
Kaplan and Dinar, 1996; Tinarelli et al., 2007)? Is fidelity
the primary modelling objective, or are short cuts such
as adoption of a simple, heuristic trajectory model (often
the Langevin equation: Borrego et al., 2003; Santiago and
Martı́n, 2008) taken in the interest of computational rapid-
ity? Although broadly related to all of the above efforts
(and many others we have not cited), the present work is
in effect a further (and rather obvious) step down the path
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initiated by Näslund et al. (1994) and Lee and Näslund
(1998), who simulated dispersion around one or two iso-
lated buildings using (as here) Thomson’s well-mixed LS
trajectory model, and (as here) providing the needed flow
statistics by way of a RANS k − ε calculation.

2. Details of the Lagrangian dispersion model

Let Xi(t) be the evolving position of a fluid element
and let Ui(t) be the deviation of its velocity from the
local mean velocity ui , where the latter is a function
ui = ui(x) of the coordinate x = (x, y, z). A first-order
LS dispersion model computes the paths of fluid elements
by a sequence of discrete time (dt > 0) and distance steps

dXi = (Ui + ui) dt , (1)

during each of which the Lagrangian velocity fluctuation
evolves according to an Ito stochastic differential equa-
tion (or generalized Langevin equation)

dUi = aidt + bij dξj . (2)

In Equation (2) we can identify a ‘memory’
term involving the conditional mean acceleration ai =
ai(Ui,Xi) (here assumed stationary, i.e. having no
explicit dependence on time), and a random forcing term
responsible for the idiosyncracy of individual paths of
the (needed) ensemble. Each component of the random
forcing vector dξj is a Gaussian random variate with
〈dξj 〉 = 0 and 〈dξi dξj 〉 = dt δij (thus, dξi is an incre-
ment of the Wiener process; Gardiner, 2004). Following
Thomson (1987), if we demand that the coefficient bij

ensure consistency of the LS model with the Kolmogorov
similarity principle

〈dUidUj 〉 = C0εdtδij , (3)

then

bij =
√

C0 ε δij , (4)

where ε = ε(x) is the mean turbulent kinetic energy
dissipation rate and C0 is a universal constant. Thomson’s
well-mixed condition provides a (single) constraint on
the vector ai , linking its specification to the (known or
hypothesized) probability density function (PDF) of the
Eulerian velocity fluctuations.

In general, the PDF for the Eulerian velocity in an
urban flow is not expected to be Gaussian. Large eddies
shed by tall buildings probably ensure that the trans-
port terms ∂u′

iu
′
ju

′
k/∂xk in the Reynolds equations are

significant, just as they are in the natural roughness sub-
layer, and this implies the likelihood of velocity skewness

(e.g. Sw = w′3/σ 3
w, where σw is the standard deviation

of vertical velocity) in some regions; indeed Christen
et al. (2003) reported large negative skewness of vertical
velocity in the lee of a building. Nevertheless, experi-
ence has shown (e.g. Flesch and Wilson, 1992) that in a
regime of turbulence in which skewness is accompanied

by drastic inhomogeneity of velocity statistics, the latter
factor dominates the former at large travel times/distances
from the source. This is because differential advection
due to strong multi-axial shear in the mean wind field
is the (asymptotically) dominant contribution to particle
dispersion. Therefore we adopt the approximation that
the Eulerian velocity-fluctuation PDF in the urban wind
regime is Gaussian, viz.

ga

(
u′) =

√
det

(
R−1

)
(2π)3/2

exp

[
− 1

2
u′

i R−1
ij u′

j

]
, (5)

where dependence on position arises through the spatial
variation of the (inverse) of the stress tensor Rij . Thom-
son gave one particular well-mixed LS model† that is
consistent with Gaussian turbulence, viz.

ai = 1

2

∂Ri�

∂x�

− 1

2
C0 ε R−1

ij Uj

+ 1

2
R−1

�j

∂Ri�

∂xk

(
Uj uk + Uj Uk

)
. (6)

The first term is a constant, depending only on the spatial
gradient of the Reynolds stress. Remaining terms are
either linear or quadratic in the fluctuation Ui . Thus
symbolically

ai = T 0
i + T 1

ij Uj + T 2
ijk Uj Uk , (7)

(the T s are prescribed below).
Thomson’s model (Equation (6)) is only one of a class

of acceptable models selected by the well-mixed con-
straint for multi-dimensional Gaussian turbulence. Never-
theless, it has the merit that it does not produce artificial
rotation of particle trajectories (Wilson and Flesch, 1997;
Sawford, 1999) and no study to date has proven that
any alternative model provides a superior simulation of
dispersion in highly inhomogeneous turbulence. Sawford
(1999) stated that ‘until further progress is made, we
recommend Thomson’s model since it is the simplest’.
Näslund et al. (1994) and Lee and Näslund (1998) used
the Thomson model in what appears to have been the
earliest application of the Lagrangian stochastic approach
to a (building-resolving) urban dispersion problem: they
adopted the standard k − ε turbulence closure in a finite-
element discretization to compute the mean flow and tur-
bulent kinetic energy (TKE, k) about an idealized rectan-
gular building, and provided these fields to ‘drive’ zeroth-
order and first-order LS models. The model described
here differs little from Näslund et al., however we apply it
in a much more complex regime of buildings, and thereby
are able to extract some insight that may be novel.

†Thomson actually gave the equivalent model for the total Lagrangian
velocity. The distinction between a model for the increment in
Lagrangian fluctuation Ui and a model for the increment in total
velocity Ui + ui can be inferred from

d (Ui + ui) ≡ dUi + dui = dUi + (
uj + Uj

)
dt

∂ui

∂xj

.

The drift term in a model for the Lagrangian fluctuation differs from
the drift term for a model of the step in total velocity, by the amount
(uj + Uj )dt ∂ui/∂xj .
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2.1. Backward simulations

In backward (b) simulations, we retain a positive timestep
(dt > 0). Let

dXb
i = Xb

i (t − dt) − Xb
i (t) ,

dU b
i = U b

i (t − dt) − U b
i (t) , (8)

be the increments one adds to particle position and
velocity fluctuation, in order to take one computational
step further along the backward path. Then

dXb
i = − [

ui{Xb(t)} + U b
i (t)

]
dt ,

dU b
i = ab

i dt +
√

C0 ε dξi , (9)

where the conditional mean acceleration (drift coefficient)
differs from that given above for the forward model.
(Note that, since the random forcing term is Gaussian,
the sign attached to the scaling coefficient

√
C0 ε is

irrelevant; in other words, the statistics of the processes
dξi and –dξi are identical, and cannot be distinguished
from each other.) Recall that for the forward model
the conditional mean acceleration is (merely re-writing
Equation (6), with an added superscript f to clarify that
this is for application in forward simulations)

af
i = 1

2

∂Ri�

∂x�

− 1

2
C0 ε R−1

ij Uj

+ 1

2
R−1

�j

∂Ri�

∂xk

(
Uj uk + Uj Uk

)
, (10)

in which we distinguish terms as being either ‘constant’
(in the sense of being independent of the Lagrangian
velocity fluctuation Ui), linear, or quadratic in Ui . For
backward simulations, instead

ab
i = − 1

2

∂Ri�

∂x�

− 1

2
C0 ε R−1

ij Uj

− 1

2
R−1

�j

∂Ri�

∂xk

(
Uj uk + Uj Uk

)
, (11)

where (in effect) all terms emerging from the φ/ga term
of the Thomson model (i.e. all terms except the classical
‘Langevin’ damping term) have had their signs reversed.
Accordingly, one may unify the code for forward and/or
backward simulations by adopting Equation (7) with the
T s specified as

T 0
i = (−1)n

1

2

∂Ri�

∂x�

,

T 2
ijk = (−1)n

1

2
R−1

�j

∂Ri�

∂xk

,

T 1
ij = −1

2
C0 ε R−1

ij + T 2
ijk uk , (12)

where

n =
{

0 forward,
1 backward.

Note that, in a horizontally homogeneous and neutrally
stratified atmospheric surface layer, terms distinguishing
the conditional mean acceleration in forward and back-
ward models vanish.
Terminology: simulations will be labelled ‘1f ’ or ‘1b’,
where ‘1’ signifies the first-order Lagrangian stochastic
model as distinct from the zeroth-order (‘random dis-
placement’) model of section 5.3.

2.2. Velocity decorrelation time-scales

In Equation (7) the coefficient T 1
ij has the character

of an ‘inverse time-scale’ matrix for relaxation of the
velocity fluctuations towards zero: its three eigenvalues
imply three time constants. It is helpful for what follows
to briefly consider the special case of a stationary
flow in which not only is the Eulerian velocity PDF
Gaussian, but also independent of position–restrictions
which do not conflict with an idealized description of
the horizontally homogeneous and neutrally stratified
atmospheric surface layer (NSL) as a constant stress
layer. For this ‘reference flow’, Thomson’s LS model
simplifies drastically. Assuming the x-axis is aligned with
the mean wind and the friction velocity is defined as

u∗ =
√

− u′w′ = constant, the inverse stress tensor is

R−1 = 1

σ 2


 σ 2

w 0 u2
∗

0 σ 2σ−2
v 0

u2
∗ 0 σ 2

u


 , (13)

where σ 2 ≡ σ 2
uσ 2

w − u4
∗, and the eigenvalues of T 1

ij imply
three time-scales

T 1
L = 2

C0 ε

2σ 2

σ 2
u + σ 2

w −
√(

σ 2
u − σ 2

w

)2 + 4u4∗
,

T 2
L = 2

C0 ε
σ 2

v , (14)

T 3
L = 2

C0 ε

2σ 2

σ 2
u + σ 2

w +
√(

σ 2
u − σ 2

w

)2 + 4u4∗
.

Upon the further simplification u∗ = 0 (i.e. velocity
covariance non-existent or neglected) the time-scales
reduce to T

(1,2,3)
L = 2(σ 2

u , σ 2
v , σ 2

w) (C0 ε)−1, and give the
decorrelation time-scales of three independent Langevin
equations for independent velocity fluctuations on the
three axes (see also Tennekes, 1979). We henceforth drop
the superscript on T 3

L , and regard

TL = 2σ 2
w (C0 ε)−1 (15)

as generally the velocity autocorrelation time-scale, rel-
ative to which the time step dt must be limited.

2.3. The discretized LS model (implementation)

When an LS model is ‘driven’ by a computed field
of wind statistics, continuous properties (e.g. the mean

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1586–1602 (2009)
DOI: 10.1002/qj



LAGRANGIAN SIMULATION OF URBAN WIND TRANSPORT 1589

velocity ui and its derivatives ∂ui/∂xj ) are available only
at discrete points. The present model (urbanLS) imports a
rectangular (Cartesian) grid and accompanying flow field
from the building-resolving k − ε model urbanSTREAM.
Grid nodes are indexed (I,J,K) where the x-axis points
eastward, the y-axis northward, the z-axis vertically, and
I = J = 1 labels the southwest corner of the domain. The
dimensions of the grid cells are stretched away from
the region of interest (urban core) and cells that fall
within buildings are distinguished by the logical variable
γ (I, J, K), unity for air space and zero for building space.

For computational efficiency, the unvarying tensor
coefficients of Equation (12), i.e. the T s, are computed
at each grid point and stored for look-up during the
trajectory calculations: the T s are not interpolated from
the gridpoints to the particle position, because such a
strategy is expensive in terms of computation time, and
earlier work (Wilson and Yee, 2000) did not suggest it
results in a gain in accuracy (though of course this latter
point must depend on the fineness of the flow grid in
relation to the inhomogeneity of the velocity statistics).

As indicated above, the core of urbanLS is a standard
algorithm for paths of marked fluid elements in turbu-
lence, and novelty arises only from the necessity to evade
buildings. Velocity statistics in cells that are adjacent
to walls can be regarded as (at best) a reasonable first
approximation to reality (urbanSTREAM uses the stan-
dard ‘wall function’ approach to imposition of boundary
conditions). However the (actual) variation of the velocity
statistics along the path of a particle to a wall is unre-
solved, so whatever boundary treatment is imposed, it
is a parametrization. Obviously one needs some form of
(perfect) reflection strategy, which will accomplish the
one outcome that is indisputably required: that there be
no flux from air space to/from building space. Beyond
that requirement, probably the only criterion for treat-
ment of interaction of paths with walls is that it should
be such as to ensure particles do not spuriously concen-
trate near walls, i.e. that the treatment should uphold the
well-mixed condition.

The approach that has been taken here is as follows: if,
having stepped forward from position (X1, Y1, Z1) in cell
(I,J,K) over a distance (dX, dY, dZ), a particle is found
to be in an illegal cell (γ = 0), then it is reflected off the
first solid wall it would have encountered along its path.
It is placed at an arbitrary distance �n (‘nudging distance’;
�n = 1 m for the Oklahoma City simulations) outside the
wall, with its velocity fluctuation randomly reset, i.e.

Ui = σ(i) r(i) (16)

(where the ri are independent standardized Gaussian ran-
dom variables; the brackets (i) indicate summation is not
to be applied). In some wall-adjacent cells, the computed
flow field may have the peculiarity that the mean veloc-
ity vector drives a particle into a crevice (junction of
two building walls), while the (computed) velocity stan-
dard deviation is insufficiently large to ensure a prompt
escape. (Such cells are labelled ‘inescapable’ according

to a criterion on the turbulence intensity.) The conse-
quence is that a particle may encounter a solid wall after
having made a distance step that is arbitrarily small, and
indeed may cross two or more walls simultaneously. The
logic required to deal with all possibilities is taxing, not
to mention computationally laborious, and so the sub-
routine involved very occasionally does fail to prevent
entry into a building. The approach taken is to tolerate
this (extremely rare) outcome, and merely abandon the
particle in question whether or not the offending step
was launched from an ‘inescapable’ cell. This is a con-
cession to the requirement that the code be robust. A
further concession relates to the numerical instability of
Thomson’s model examined by Yee and Wilson (2007):
except where otherwise noted, rather than incorporate
their semi-analytical time integration which eliminates
the instability, the present version of urbanLS uses ordi-
nary Cauchy–Euler time-stepping (Gardiner, 2004), and
should the velocity fluctuation exceed n (= 6 here) times
the local standard deviation, the velocity is reset in accor-
dance with Equation (16).

We have covered the basic principles of the LS model.
Any number of steady (or transient) sources may be
specified, and for each one a large ensemble of paths
is computed (this being sub-divided into sub-ensembles,
so that a standard error may be attached to any computed
statistic of the concentration field) to any number of
detectors. Regarding the latter, a subroutine makes a
careful (but laborious) assignment of the contributions
of particle residence time in each user-specified detector
(these are rectangular, and specified by their centre
position and half-span on each axis), whereas every grid
cell also functions as (rapid, but less exact) detector, in
that a residence time contribution dt is added to the cell
occupied by a particle at the end of its step. As a detail
not relevant to the tracer gas simulations shown here, a
particle size distribution may be specified, and a partial
reflection probability (off ground and buildings) can be
computed following Wilson et al. (1989).

2.4. Specification of the Kolmogorov constant C0

Free specification of the (nominally universal)
Kolmogorov coefficient C0 amounts to ‘tuning’ the
Lagrangian model, which (objectivity demands) should
be done once and for all, relative to best available
relevant observations. Although inessential, it is infor-
mative to interpret the tuning of C0 in the context of the
following subtle (and inexact) argument – that the value
adopted for C0 correlates with the (implied) specification
of an effective turbulent Schmidt number, i.e. ratio
Sc = νT /K of the eddy viscosity to the eddy diffusivity
for mass, in an (implicit, hypothetical) eddy diffusion
treatment.

To put this idea in context, we note that in broad
terms a ‘diffusion’ treatment of turbulent convection
is plausible to the extent that a particle’s cumulative
displacement from its point of release can be regarded
as being the sum of many independent random distance
steps; the ‘far field’ of a source is by definition the
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regime (in time or distance from release) where this
is true. Accordingly, reconciliation of the Lagrangian
stochastic and eddy diffusion treatments (in the far field)
has been a familiar theme since Taylor (1921); and Durbin
(1983) proposed as a criterion for generalized Langevin
(or first-order Lagrangian stochastic) models that they
should reduce, in the limit of vanishing velocity auto-
correlation time-scale TL (or in practice, if the ratio
t/TL of travel time to time-scale is very large), to
an equivalent random displacement model (RDM, or
‘zeroth-order LS model’), i.e. to a stochastic equation
for increments in particle position. Focusing on vertical
dispersion, in view of Equation (15) we may envisage
that the ‘diffusion limit’ of a Langevin model is the RDM
implied in the limit of infinite C0 (interpreted as implying
TL → 0, with compensating increase in σw, such that
K = σ 2

wTL is held finite). Amplifying Durbin’s idea,
Thomson (1987) qualified the circumstances under which
a first-order Lagrangian stochastic description of turbulent
transport should be equivalent to (or imply) a random
displacement model: if τH is a time-scale characterizing
the inhomogeneity of the turbulence, then what is of
immediate interest is Thomson’s point that in strongly
inhomogeneous turbulence ‘it is not clear whether the
model becomes an eddy-diffusion model at large times
or indeed whether it should’.

Arguably the most suitable observations to tune the
present LS model–for they are unambiguous and took
place in the simplest regime of surface-layer turbu-
lence–are those of the Project Prairie Grass (PPG) short-
range tracer dispersion trials (Barad, 1958; Haugen, 1959)
that occurred in neutral stratification. As the source was
near ground, dispersion during neutral runs occurred in a
regime of turbulence characterized by a nominally height-
independent vertical velocity standard deviation σw, and
a vertical velocity autocorrelation time-scale (nominally)
varying linearly with distance z from ground. A suitable
scale for the inhomogeneity of turbulence in this ideal-
ized, horizontally homogeneous NSL is

τH ≡ TL

σw

(
∂ TL

∂z

)−1

= z

σw

. (17)

It is easy to show (retrospectively, from what follows
below) that for the PPG trials (and for the NSL in
general) τH ∼ TL, for from the calibration adopted below
it follows that TL ≈ 0.5z/σw. Thus, Thomson’s caution
applies, that it is not clear whether the first-order LS
model implies an eddy diffusion model, or whether it
should. However what is certain is that, the eddy viscosity
in the NSL being νT = kvu∗z (where kv is the von
Kármán constant), the far-field eddy diffusivity must be

K ≡ 1

Sc

kvu∗z . (18)

(This follows by definition of the turbulent Schmidt
number, which it is usual to assume is constant across
the flow, such that kv/Sc may be called the ‘von
Kármán constant for mass’.) As the PPG source was

only 0.46 m above ground and the nearest detector was
50 m downwind, the PPG observations lie in the far
field of the source. Provided that the effective Schmidt
number in Equation (18) is assigned a value Sc ≈
0.63, these observations can be quite well reproduced
by Eulerian dispersion models,‡ i.e. by solving the
advection–diffusion equation or computing trajectories
by means of an equivalent random displacement model.

Recognizing the connection is not rigorous for the
reasons covered above, in a heuristic spirit we may extract
a value for the Kolmogorov coefficient by reconciling
Equation (18) with the eddy diffusivity

Keff = 2
(
σ 4

w + u4∗
)

C0 ε
(19)

implied (Sawford and Guest, 1988) by the diffusion limit
of Thomson’s multidimensional LS model for Gaussian
turbulence. (Note that, if covariance of along-wind and
vertical velocity fluctuations were neglected in the LS
model, then implicitly u∗ → 0 in Equation (19), but not,
of course, in Equation (18)). Equating Equations (18),
(19) and invoking the idealization that in the NSL ε =
u3∗/kvz (i.e. local equilibrium), we find

1

Sc

= 2

C0

(
c4
w + 1

)
, (20)

where cw = σw/u∗ ≈ 1 − 1.3 (Wilson, 2008). If the
target value of Sc is regarded as fixed, then the ratio of
the optimal values for C0 in LS simulations of the NSL
that retain (3D) and neglect (1D) velocity covariance is

C
(3D)
0

C
(1D)
0

= c4
w + 1

c4
w

. (21)

Interestingly Equation (21) is almost (but not quite)
identical to the ratio implied by demanding equality (for
1D and multi-dimensional LS simulations of the NSL) of
the third of Equations (14) , viz.

C
(3D)
0

C
(1D)
0

=
√

c2
uc

2
w − 1

c2
w

, (22)

(where cu = σu/u∗). With (cu = 2, cw = 1.3) Equa-
tion (21) evaluates to 1.35, whereas Equation (22) eval-
uates to 1.42.

In this paper we adopted Equation (20) and assumed
the NSL best characterized by (cw = 1.3, Sc = 0.63), on

‡Wilson and Yee (2007) found that first-order Lagrangian simulations
of Project Prairie Grass tracer dispersion can be distinguished from
zeroth-order Lagrangian simulations (‘Random Displacement Model’),
which as noted are equivalent in principle to an Eulerian eddy-diffusion
treatment. This is consistent with Thomson’s reservation, that if (as
is the case in the neutral surface layer) τH ∼ TL then ‘it is not
clear whether the model becomes an eddy-diffusion model at large
times’. The distinction between these two classes of models is anyway
not of great practical importance as regards performance for far-field
dispersion; however Wilson and Yee argue in favour of the Langevin-
type of Lagrangian model on the basis of its wider generality and only
marginally lesser computational efficiency.
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the basis of earlier simulations (both Lagrangian and
Eulerian) of Project Prairie Grass; results of section 3
confirm this choice. Thus our calibration of Thomson’s
first-order LS model to reality was achieved by setting
the Kolmogorov constant C0 = 4.8 (see also Wilson
et al., 2001, Appendix A; Sawford, 2001). From the
above reasoning, in any simulation for which velocity
covariance is neglected in the LS model (in which case
u∗ → 0 in Equation 19), one must set C0 = 3.59. Unless
otherwise stated, in simulations to be shown velocity
correlation was retained.

2.5. Rate of horizontal dispersion not calibrated

Thomson’s model is configured to reproduce the
desired velocity PDF and Kolmogorov structure func-
tion (Equation (3)), however it is not tailored to a mea-
sured (or hypothetical) power spectrum of velocity (or
equivalently, a velocity autocovariance function). As seen
earlier, Equation (6) implies comparable decorrelation
time-scales for the vertical and horizontal components
of velocity, although greater differences (than conveyed
by Equations (14)) exist when the restrictions leading to
those results are removed, i.e. in the presence of vertical
and/or horizontal gradients in velocity statistics. Thus the
spectral range of the (model’s) horizontal velocity fluctu-
ations is approximately the same as the spectral range of
the vertical velocity, the latter tuned (by virtue of the way
C0 controls the decorrelation time-scale) against vertical
dispersion.

Of course, in principle one could have chosen C0 to
optimize agreement with the observed rate of horizontal
spread, e.g. to best conform the model to observed plume
cross-wind standard deviation σy(x) at streamwise dis-
tance x from a source. However σy(x) is (comparatively)
ambiguous – or perhaps one should rather state, is sen-
sitive to a greater number atmospheric conditions than is
vertical spread. In the surface layer, the power spectrum
of vertical velocity is adequately characterized by a single
height-varying time-scale, but horizontal velocity spectra
typically lack that convenient property. In addition to the
rapid variability of the ‘active’ (stress-carrying) eddies
(which the multi-dimensional LS model does represent)
horizontal velocity spectra may (and usually do) contain
a slow component related to the large ‘inactive’ turbulent
eddies of the ABL–and possibly also a contribution from
mesoscale motion. In short, particularly in the case (as
here) that velocity statistics for the Lagrangian model are
furnished by a RANS wind simulation, horizontal veloc-
ity fluctuations are not parametrized with the same level
of fidelity as are the vertical.

2.6. Time step

The graininess of the computed flow field imposes
an inhomogeneity length-scale, and for the calculations
shown here the time step was specified as

dt = µ min [TL, τh], (µ � 1) , (23)

where TL is defined by Equation (15), and the inhomo-
geneity time-scale

τh =
√

�xi�xi√
(Ui + ui) (Ui + ui)

(24)

represents the transit time across a grid cell. Thus distance
steps are required to be small with respect to the cell size.

3. Demonstration of consistency relative to Project
Prairie Grass

With appropriate choice of the Kolmogorov constant
C0, the first-order LS model is known to provide an
excellent simulation of vertical dispersion in the neutral
atmospheric surface layer, as observed in Project Prairie
Grass. Recall however that, in the context of its being
provided continuous profiles of velocity statistics, a
Lagrangian model is ‘grid free’ – whereas this is not an
attribute of the present code (urbanLS), which is set up
to exploit a gridded field of velocity statistics (that is, the
present model is subject to a discretization error that is
absent in a model able to represent u etc. as continuous
functions of position). In a horizontally homogeneous
wall shear layer, e.g. the horizontally homogeneous,
neutrally stratified atmospheric surface layer (‘hhNSL’),
the Reynolds stress tensor is spatially invariant. This
implies that as a particle moves from cell to cell of the
grid (i.e. as its indices change) there are no stepwise
variations in the velocity variances and covariances.
However the mean velocity u(z) and the dissipation rate
ε(z), by virtue of the way urbanLS is tied to a flow
grid, are discontinuous. Thus we ought not necessarily
to expect urbanLS to exactly reproduce the solution that
would obtain in the case of a non-gridded Lagrangian
solution.

Nevertheless the same excellent performance can be
demanded of the present gridded implementation, pro-
vided the grid is sufficiently fine to provide a suit-
able resolution of the velocity statistics. To demonstrate
this, an ideal, horizontally uniform wall shear layer was
overwritten onto urbanSTREAM’s grid for the Okla-
homa City trial ‘IOP9r2’ (section 5), velocity statis-
tics being specified as: σu/u∗ = σv/u∗ = 2, σw/u∗ = 1.3,
ε = u3

∗/(kvz), u = (u∗/kv) ln(z/z0). The cell centres,
zc, of the Oklahoma grid span the height range from
1.4925 ≤ zc(K) ≤ 761.27 m, where K ≥ Kmin is the cell
index. By (arbitrarily) specifying the roughness length as
z0 = zc(Kmin)/2 = 0.74625 m we can perform an hhNSL
simulation from a ground-level source placed (arbitrar-
ily) at x = 1000 m on the Oklahoma grid out to a fetch
of 5000z0, i.e. a distance of travel of 3.7312 km (taking
the particle to x = 1000 + 3731.2 m on the grid). By this
rescaling of the geometry, we represented the surface-
layer (hhNSL) velocity statistics with over 58 grid points
in the lowest 200 m (268z0), thereby limiting the dis-
cretization error.

We are concerned to demonstrate the consistency
of the trajectory model’s predictions of crosswind-
integrated concentration χ/Q with the reference (i.e.
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Table I. Normalized crosswind-integrated concentration z0 u∗ χ/(kvQ) at height z/z0 ≤ 20 due to a continuous point source near
the wall in a wall shear layer, as computed by urbanLS on a discrete flow grid (19 × 32 000 paths). The symbol �indicates
that velocity covariance is retained. These results document the need for a small time step (dt = µ TL), confirm the (expected)
forwards/backwards equivalence, and illustrate that the value specified for C0, as indicated by Equation (21), should be harmonious

with the decision to include/neglect velocity covariance.

Forward/backward µ C0 Sc x/z0 PPG z0u∗χ/(kvQ)

f 0.1 4.8� 0.63 2000 1.46 × 10−3 1.35 × 10−3 (0.01)
b 0.1 4.8� 0.63 ·· ·· 1.30 × 10−3 (0.01)
f 0.02 4.8� 0.63 ·· ·· 1.44 × 10−3 (0.005)
b 0.02 4.8� 0.63 ·· ·· 1.45 × 10−3 (0.01)
f 0.02 4.8 0.84 ·· ·· 1.80 × 10−3 (0.01)
f 0.02 3.59 0.63 ·· ·· 1.42 × 10−3 (0.01)

f 0.1 4.8� 0.63 5000 6.0 × 10−4 5.26 × 10−4 (0.05)
f 0.02 4.8� 0.63 ·· ·· 5.88 × 10−4 (0.06)
f 0.02 3.59 0.63 ·· ·· 5.68 × 10−4 (0.04)

Tabulated ‘true’ PPG values are from Wilson (1982b, p 412). In brackets, rounded and without multiplier, is the standard error computed from
the 19 sub-ensembles. (e.g. row 1: relative error 0.01/1.35).

field-calibrated, or Project Prairie Grass) value. At a
dimensionless distance of |x − xsrc|/z0 = 2 × 103 from
the source and beyond, the crosswind-integrated con-
centration χ/Q is almost invariant below 20z0 (Wil-
son, 1982b). For forward simulations the source, treated
as a point, was placed at z = 13.5 m (z/z0 = 18,
i.e. effectively ground level), and trajectories were
reflected at zrefl/z0 = 1. The forward detector was
centred at z = 4.5 m (z/z0 = 6), and had half-spans
(100, 700, 3) m in the along-wind, cross-wind and ver-
tical directions. Backward simulations used a point
source at the centroid of the crosswind-integrating
forward detector, and a crosswind-integrating detec-
tor, also with half-spans (100, 700, 3) m, whose cen-
troid coincided with the forward point source. The
along-wind span of detectors (±100 m) is small rel-
ative to the large dimensional fetch, while the verti-
cal span is negligible in view of the height-constancy
of χ at this low height and large fetch. The wide
lateral span of the detectors performs the cross-wind
integration.

Table I lists the outcomes of hhNSL simulations in
relation to the correct value.§ Forward and backward
simulations show the expected consistency, and provided
the time step is sufficiently small (and with a proviso
on the specification of C0, see below), agree closely
with the observations. It was noted in section 2.4 that
in the context of a first-order LS model the Kolmogorov
constant C0 is implicitly related to the effective turbulent
Schmidt number Sc, but that the relationship is ambiguous

§The tabulated PPG values from Wilson (1982b), case � ≡ z0/L = 0,
can be considered within 5% of the ‘true reference value’. (Since field
observations in the hhNSL define the true value, and they themselves
carry uncertainty, we must regard the true values as uncertain to about
this extent, i.e. ±5%.) The tabulated values of Wilson (1982b) were
computed with a grid-free, well-mixed 1D LS model (no streamwise
and lateral velocity fluctuations, u′, v′) that had been verified (Wilson
et al., 1981; Wilson, 1982a) against the reference data, i.e. neutral
dispersion experiments of Project Prairie Grass.

in the sense that it depends on the dimensionality of the
Lagrangian model (and more particularly, the inclusion or
otherwise of velocity covariance). That the ‘true value’
of C0 has proved elusive is well known, and certainly
the validity of Equation (20) is quite restricted. However
Table I confirms that, if one chooses to eliminate velocity
covariance, the constant C0 does need to be adjusted
(according to Equation (20)) so as to ensure Sc = 0.63,
the value implied by the neutral PPG data whether one
best fits an Eulerian (Wilson, 1982a) or a first-order
Lagrangian (Sawford, 2001) model.

Having established what is needed as regards calibra-
tion so that short-range atmospheric dispersion in its very
simplest manifestation–a surface source in the neutral and
horizontally homogeneous surface layer–is satisfactorily
simulated, we now examine the performance of urbanLS
in complex, urban-type flows.

4. Performance relative to observations in water-
channel flow: MUST

The Mock Urban Setting Test (MUST) experiments
(Yee and Biltoft, 2004) involved an array of shipping
containers (12.2 m long by 2.42 m wide by 2.54 m high)
laid out to form a regular unstaggered array on a salt
flat at the Dugway Proving Grounds, in Utah, USA.
Here we examine the performance of the LS model
relative to gas dispersion measurements carried out in
a water-channel analogue to atmospheric-MUST (Yee
et al., 2006; Hilderman and Chong, 2007). The water-
channel array (Figure 1) entailed 12 × 10 obstacles with
dimensions (X, Y, H) = (11.8, 59.4, 12.4) mm, where x

is the direction of the mean stream. The canyon widths
were (Xc, Yc) = (62.9, 38.5) mm so that the spacing
between front faces (x-wise periodicity length) was X +
Xc = 74.7 mm (or 6.024H ).

A computed 3D field of the velocity statistics was
provided by the k − ε model urbanSTREAM, measured
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Figure 1. Configuration of the water-channel MUST experiments. The mean flow was directed along the x-axis, and the tracer point source was
at position L. H = 12.4 mm is the height of the obstacles.

profiles being imposed at the upstream (inflow) bound-
ary. The computational mesh, imported by the trajectory
model along with the velocity statistics, was defined by
202 × 42 × 44 coordinate planes cutting respectively the
streamwise (x), lateral (y) and vertical (z) directions,
and spanning a volume of (1.152 × 0.0979 × 0.2484) m
or (93 × 8 × 20)H . The flow simulation encompassed
only a single row of obstacles, and a periodic lateral
boundary condition was applied on the cross-wind (y)
axis, hence the narrow cross-wind extent of the domain.
(For trajectory simulations, flow statistics were extrap-
olated outside the grid by invoking the assumed peri-
odicity along the y axis.) The x-coordinate origin lies
at the upwind face of the first building, the y-origin
on the midline of the array, and z = 0 on the lower
boundary. The dimensions of the computational cell con-
taining the tracer source (position L in Figure 1) were
(�x, �y, �z) = (2.2, 2.2, 1.13) mm.

Figure 2 compares observed and simulated flow
fields at the source position L (Figures 4 and 5 of
Wang et al., 2009 give a more detailed comparison).
The flow model gives rather a good simulation of
the mean velocity (except in the lee of the build-
ing, where it appears to overestimate the magnitude of
the–reversed–velocity vector), but discrepancies relative
to the measured velocity variance are of the order of
100%. Performance at other locations was comparable.
Elsewhere Lien and Yee (2004) examined the perfor-
mance of this flow model for an array of cubes, i.e.
a flow of qualitatively the same nature as the present
MUST flow. Again, simulations gave a good stream-
wise mean velocity field u, with greatest errors in the
recirculation zone behind the obstacle farthest down-
stream. Largest errors in the mean vertical velocity
w were of order 25%. The computed TKE field was

qualitatively poorer than the mean velocity field, with
errors of up to 100% (though typically no worse than
50%).

4.1. Simulated versus observed concentration field

A continuous point source of tracer was located at posi-
tion L (Figure 1) between the first and the second
row of obstacles, at xsrc = (43.25, 0, 0.564) mm, where
the physical source had diameter 2.8 mm and released
tracer fluid (a fluorescent dye–water mixture) at volume
flow rate Vs = 12 ml min−1 = 2 × 10−7m3s−1 (volume-
mean exit-velocity in the exit jet 32 mm s−1; the tracer
released from the source was rapidly mixed into the
wake region of the upwind obstacle, producing effec-
tively a ‘volume’ source). In the simulations to follow,
urbanLS treated the source as a passive point source,
and simulated concentrations at the available observa-
tion points were insensitive to source placement within
the height range 0 ≤ zsrc ≤ H/2. Mean concentrations
will be given as C/Q where Q kg s−1 is the tracer
source strength, and relate to the concentration ratio C/Cs

(where Cs kg m−3 is the concentration of tracer in the
tracer–water mixture emanating from the source) accord-
ing to C/Cs ≡ Vs C/Q. Trajectories were reflected at
zrefl = 2 mm (zrefl/H = 0.16).

Simulations of the MUST experiment with time step
dt/TL = µ = (0.02, 0.1) provided indistinguishable out-
comes, and the influence of the velocity covariance was
also minor. Due to the reverse mean flow in the lee of the
‘buildings’, most trajectories from the source progressed
against the background (or overhead) flow and towards
the leeward wall of the first building; after some mean-
dering, these tracer particles escaped, most often around
the sides of the building into the stronger current down
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Figure 2. Comparison of urbanSTREAM flow simulation with observations in the water channel MUST flow, for the source position L, centred
in the canyon in the lee of the first ‘building’. Notations (uv) and (uw) denote orientation of laser beams of the laser doppler velocimeter used

to measure the specified two velocity components. Note the reverse mean velocities in the urban ‘canyon’.

the streamwise-oriented urban ‘canyons’. Figure 3 indi-
cates that the predictions of the LS model are not in
particularly good accord with the observations. There is
a visible offset of the observed plume centreline relative
to the computational y = 0 axis (about which, suppos-
edly, the water-channel flow exhibited reflection symme-
try; we suspect that in reality the water channel flow
was imperfect in that regard, as is frequently the case;
D. J. Wilson, personal communication). However even
if one eliminates that bias, the predicted plume is too
narrow, and (in consequence) centreline concentration
decays more slowly with increasing downstream distance
than the observations. Interestingly, Eulerian simulations¶

(e.g. Keats et al. (2007), Figure 5a) also with Sc = 0.63
exhibited the same tendency, and overall, they were of a
very similar quality. Knowing that the flow field is imper-
fectly computed, one is unsure what part of the error
indicated by Figure 3 is due to the trajectory model.

4.2. Comparison: Forward and backward simulations

To test for the (expected) consistency of forward
and backward LS algorithms, a set of simulations

¶The Eulerian simulations performed by urbanSTREAM used an
isotropic eddy diffusivity νT /Sc, and thus that model differed somewhat
from urbanLS, which implements whatever anisotropy is implied by
the ratio σu : σv : σw in the fields provided; however anisotropy in
the turbulence predicted using urbanSTREAM is probably quite small,
due to the simple Boussinesq eddy-viscosity approximation used to
compute the Reynolds stress tensor. In any case, lateral spread of
a plume in a regime of flow like this is dominated by differential
advection (e.g. Wilson et al., 1993), and is accordingly less sensitive to
specification of the diffusivities for along-stream (x) and cross-stream
(y) spread.

were run with the particle release position random-
ized over a volume whose dimensions exactly matched
those of the detectors, the half-spans specifically being
(0.020, 0.005, 0.001) m. In a first consistency test, the
forward source was centred at position L (i.e. between
the first and the second row of obstacles at x =
0.04325 m, y = 0, z = H/2), while the forward detec-
tors (for convenience labelled D1, D2, D3) were cen-
tred at y = 0, z/H = 1/2 at downwind positions x =
0.2 m (midway between third and fourth buildings),
x = 0.64 m (midway between ninth and tenth build-
ings) and x = 0.86 m (downwind of the twelfth and
final building of the array). The corresponding back-
ward simulations were performed with a (volume) source
at each (in turn) of the three (‘forward’) detector posi-
tions (D1, D2, D3), and a single (‘backward’) detector at
position L. Then (for example) forward and backward
simulations would be considered perfectly consistent if
the C/Q ratio at D3 due to the (forward) source at L
exactly matched the C/Q predicted for position L by a
backward simulation with (backward) source at position
D3.

Table II indicates that the theoretical for-
ward–backward equivalency of the infinitesimal
Thomson model does not (in general) carry over
to a discrete implementation, the magnitude of the
discrepancy being in some manner proportional to
the complexity of the flow region that is sampled by
trajectories from source to detector. When the source
and detector lie well above the obstacles such that
streamwise gradients are weak, forward and backward
simulations are consistent (backward to forward ratios
no more different from unity than can reasonably be
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Figure 3. Observed (lines or open circles) and modelled (shadowy points) concentration transects in the water channel MUST array at height
z/H = 1/2. (a) gives the streamwise transect along y = 0, other panels give cross-stream transects (b) midway between second and third buildings
(cf. Keats et al., 2007, Figure 5a), (c) midway between third and fourth, and (d) midway between sixth and seventh buildings. The streamwise

interval between the upstream faces of successive buildings is 6.024H.

Table II. Ratios Cb/Cf of mean concentrations from back-
ward and forward simulations of a source in the MUST flow,
comparing outcomes using elementary or semi-analytic (s.a.)
time-stepping. Volumes of sources and detectors are identi-
cal, their heights being (all) 4H or (all) H/2, where H =
0.0124 m is the height of the ‘buildings’. The cited statisti-
cal uncertainty was computed by adding the relative errors
(standard error divided by mean) for forward and backward

computations.

x (m) Cb/Cf Cb/Cf (s.a.)

Source and detectors at z/H = 4
0.2 1.005 ± 0.007 0.994 ± 0.008
0.64 1.072 ± 0.030 0.958 ± 0.029
0.86 1.044 ± 0.035 0.980 ± 0.033

Source and detectors at z/H = 1/2
0.2 1.189 ± 0.018 1.148 ± 0.021
0.64 1.333 ± 0.033 1.188 ± 0.042
0.86 1.522 ± 0.057 1.175 ± 0.046

attributed to a statistical uncertainty that would be
reduced by computing substantially more numerous
random paths). When, however, the source and detector
are placed in a region of strong gradients, significant
discrepancies occur.‖ Furthermore, contrary to what was

‖Additional forward–backward consistency tests were performed in the
flow field computed by Bourdin and Wilson (2008) for diagonal flow
across a square plot surrounded on all sides by a porous windbreak

hoped, implementing the semi-analytical time-stepping
scheme of Yee and Wilson (2007) to obviate the neces-
sity of intervening to reset excessively large velocities
(here defined as velocity fluctuations exceeding six
times the local standard deviation) did not restore
forward–backward equivalence. We return to this subject
in section 5.2.

5. Performance relative to Oklahoma City field trial
IOP9 release 2

In June–July 2003 tracer experiments were performed
in central Oklahoma City (Allwine and Leach, 2007);
Flaherty et al., 2007; and companion papers). Here we
focus on Intensive Observations Period IOP9 release
2, when sulphur hexafluoride was released continuously
from 0600 to 0630 Local Standard Time, LST (27
June) from a near-ground point source on Park Avenue
(latitude 35.4687◦N, longitude 97.5156◦W). The source

(the experimental flow is described by Wilson and Flesch, 2003).
These tests, which will be reported elsewhere, revealed substantially
more serious inconsistency of forward and backward simulations than
indicated by Table II for the MUST flow. Ratios Cb/Cf that were
both lower and higher than unity were found, and as an example (not
necessarily the worst case) Cb/Cf < 0.1 for a source at plot centre and
detector at the intersection of two shelter fences. Inhomogeneity of the
Reynolds stress tensor is the underlying cause of this forward/backward
asymmetry of the discretized Thomson model. A further comment on
Lagrangian dispersion simulations in this flow field follows in the
conclusions.
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strength was Q = 2 g s−1, and winds blew from the
south. We assume concentrations (provided by the NOAA
Air Resources Laboratory Field Research Division, on
the ‘ARLFRD grid’) averaged over 0615–0630 LST
approximate the mean concentration that would occur
under stationarity of both the meteorology and the source.

The urbanSTREAM grid covered a volume of
1934.25 m×3610.6 m×800.0 m in the x- (west–east), y-
(south–north) and z- (vertical) directions respectively,
covering the central business district of Oklahoma
City with 98 × 138 × 68 coordinate planes. The
urbanSTREAM coordinate origin is defined to be the
southwest corner of the domain, which in this case stood
at (35.449959◦N, 97.52694◦W). Within this overall
computational boundary lay a sub-domain within which
buildings were explicitly resolved; its southwest corner
stood at (x, y) = (644.75, 1611.88) m and its northeast
corner at (x, y) = (1289.5, 2321.1) m. The source for
IOP9r2, placed at (xsrc, ysrc) = (1001.7, 2095.7) m,
therefore lay about 1 km east and 2.1 km north
of the southwest corner of the grid, and the grid
lengths of the cell containing the source were
�x, �y, �z = (8, 7, 3) m. Figure 4 displays a region of
the city containing the source and (some of) the detec-
tors; the source and the detectors were at height 1.9 m,
within the lowest layer of cells of the urbanSTREAM
grid. Vertical profiles σw(z) of the standard deviation of
vertical velocity are given in Figure 5 for three locations
(at the source, and at detectors 65 and 84). Note the
elevated peak in σw broadly at or near the effective top
of the urban canopy; the strong vertical gradients in σw

will have exerted a strong influence on trajectories.

The salient characteristic of a typical urban core is
irregularity on a length-scale L set by building dimen-
sions and spacing. Until the plume from a source has
expanded to have a cross-section � � L, its spatial distri-
bution relative to a Cartesian coordinate system is irreg-
ular, and plotting measured or modelled concentrations
on vertical profiles or horizontal transects does not give
rise to orderly curves that can be understood in terms of
familiar paradigms, e.g. mean ground-level concentration
due to a continuous ground-level point source decreasing
monotonically with increasing height or with downstream
distance (C0 ∝ x−2, e.g. Batchelor, 1964). One mundane
consequence is that there is little or nothing to be gained
by ordering information that way, and the approach taken
in this section is to compare modelled and measured con-
centrations on a log–log scatter diagram.

The tracer source for IOP9r2 was near ground level
(i.e. 1.9 m), in the immediate lee (1.6 m from the wall)
of a tall building on Park Avenue (Figure 1 in Flaherty
et al., 2007). Consequently the plume was unlike what
would be seen on open terrain. Inspection of trajectories
showed that most particles climbed up the wall of
the building in a recirculation eddy, until released into
the wind stream passing over its top (cf. Figure 2 in
Christen et al., 2003). Figure 6 and Table III indicate
the reasonably good agreement between the forward
Lagrangian stochastic simulation (µ = 0.05) and the
corresponding observations in this extremely complex
flow (for which, surely, the computed velocity field
is imperfect). The modelled concentrations lie within
a factor of two of the observations in nine of the

Figure 4. Oklahoma City, and layout of detectors with their positions on the urbanSTREAM grid. The streamwise (y) distance from the source
to detector 74 is about 350 m. (The diagrams are not drawn to the same scale.)
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Figure 5. Examples of urbanSTREAM’s computed profiles of the
standard deviation of vertical velocity, for the IOP9r2 flow. Locations
of the profiles can see seen in Figure 4, and kinks in the profiles reflect

the influence of nearby building towers.

total of sixteen cases∗∗ (FAC2 = 0.56; Table III) for
which observed concentration was non-zero, an outcome
which compares reasonably favourably with the FAC2 =
0.67 obtained by Milliez and Carissimo (2007) from
Eulerian (k − ε) simulations of the MUST field trials in a
simpler (periodic) ‘urban’ setting. (Milliez and Carissimo
do not specify the value they used for the turbulent
Schmidt number which, like other constants of the closure
scheme, may have been tuned for optimal agreement
with MUST.) We may also compare the present results
with a somewhat similar study by Carvalho et al. (2002)
wherein the same Lagrangian stochastic model, driven
by meteorological fields from the mesoscale weather
model RAMS, computed the pattern of ground-level
concentration over a region (very roughly 150×150
km) of the Rhine Valley. Carvalho et al. compared
their simulated concentration field with the measured
concentrations at ten locations that had reported non-
zero concentrations and their best results, obtained when
RAMS was run at 4 km horizontal resolution, gave a
FAC2 of 0.14–0.57, depending on specific assumptions
in regard to ABL depth and turbulence profiles.

∗∗The corresponding backward first-order LS simulation, from a total
of sixteen of the IOP9r2 detectors, scored FAC2 = 8/16. An Eulerian
simulation, with the turbulent Schmidt number specified as Sc = 0.63,
yielded FAC2 = 10/16 (E. Yee, personal communication, 2006).
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Figure 7. Computed concentrations (ppt) for IOP9r2, with terms in
the Thomson LS model that involve horizontal derivatives of the stress
tensor suppressed (however, velocity covariance is retained; C0 = 4.8).
Error bars give the standard error; these are hidden by symbols in

most cases.

5.1. Consequences of simplifying the LS model

When given horizontally varying fields of velocity statis-
tics, one may be tempted to invoke ‘local homogeneity’,
wherein terms in the well-mixed Thomson model that
involve horizontal derivatives of (any) velocity covari-
ance are dropped. Figure 7 shows that the impact of that
simplification upon the computed concentration field for
IOP9 is very modest, the FAC2 score remaining high at
FAC2 = 8/16 = 0.5.

However, if terms involving vertical derivatives of
stress are also dropped, model performance is poor
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Table III. Comparison of observed mean concentration (0615–0630, [ppt]) during IOP9 release 2, and the outcome of LS
simulations (1f, 1b). Both LS simulations used dt/TL = 0.05. Forward simulations have 19 × 80 000 paths, and backward
simulations have 19 × 102 400 paths backward from each of a subset of 16 detectors that had reported non-zero concentration.

Location Observed 1f (st.err.) 1b (st.err.) 1f/Obs 1b/Obs

52 – 0 (0) – – –
53 881 43 (15) 0 (0) 0.05 0.00
54 10399 11911 (397) 7677 (469) 1.15 0.74
55 8164 25694 (257) 35430 (951) 3.15 4.34
56 1980 366 (32) 498 (115) 0.19 0.25
62 – 0 (0) – – –
63 356 24 (9) 23 (15) 0.07 0.06
64 6167 5792 (129) 7502 (442) 0.94 1.22
65 6809 14705 (207) 12201 (520) 2.16 1.79
66 8070 3205 (127) 3952 (288) 0.40 0.49
72 – 0 (0) – – –
73 – 57 (17) – – –
74 – 3750 (127) – – –
76 – 2149 (99) – – –
83 70 37 (8) 57 (44) 0.54 0.82
84 1860 1767 (67) 3366 (347) 0.95 1.81
86 2525 2955 (100) 4325 (280) 1.17 1.71
94 1450 840 (50) 1936 (265) 0.58 1.33
96 1565 1743 (56) 3776 (236) 1.11 2.41

512 – 11 (6) – – –
513 192 208 (16) 276(92) 1.09 1.44
514 – 983 (43) – – –
515 1826 2270 (80) 878 (149) 1.24 0.48
516 – 2695 (94) – – –
517 113 1340 (51) 994 (184) 11.9 8.79

(Figure 8), indeed FAC2 = 0. This is presumably
attributable to the spurious neglect of the drift correc-
tion term ∂σ 2

w/∂z in the Langevin equation for verti-
cal velocity, e.g. Wilson and Sawford (1996), whose
Equation (12) gives that Langevin equation for the case
of a 1D model for horizontally homogeneous Gaus-
sian turbulence. Referring to Figure 5, we see that
this term would have the effect of pushing particles
that are near ground towards larger heights, so that
its neglect could be expected to increase ground-level
concentrations.

Another tempting simplification of the full 3D Thom-
son model is to neglect velocity covariance, i.e. set the
off-diagonal terms in the stress tensor to zero. Again,
quite a number of terms could accordingly be dropped
from the generalized Langevin equation if one wished
to reduce the computational burden. A simulation (not
shown) proved that neglect of the u′v′ covariance has
negligible impact on the simulation (FAC2 remains at
9/16). However Figure 9 shows that if the covariance
of vertical velocity with the horizontal velocities (also)
is neglected, the FAC2 score is negatively impacted,
dropping from the reference value of 9/16 (covari-
ances retained, C0 = 4.8 i.e. the ‘calibration value’)
to 7/16 (covariance neglected, C0 accordingly reduce
to C0 = 3.59) or more steeply to 6/16 if that adjust-
ment of C0 is not made. This is perhaps the first
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Figure 8. Computed concentrations (ppt) for IOP9r2, with terms in the
Thomson LS model that involve horizontal or vertical derivatives of
the stress tensor suppressed (however, velocity covariance is retained;
C0 = 4.8). Error bars give the standard error; these are hidden by

symbols in most cases.

indication that retaining the velocity covariance is advan-
tageous for the prediction of dispersion in a complex
flow.
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Figure 9. Impact of neglecting velocity covariance on LS model
performance for IOP9r2. As shown earlier, if covariance is important
in regard to vertical spread, then its neglect might be expected to be
compensated to some degree by the proper optimization of C0, arguably

as C0 = 3.59.

Finally, what if one adopts a one-dimensional LS
model, that is, if one neglects entirely the horizontal
velocity fluctuations? In that case the LS model reduces
to the unique well-mixed model for vertically inhomoge-
neous Gaussian turbulence and, according to what has
been seen earlier, we should specify C0 = 3.59. The
temptation to drop u′, v′ stemmed from a speculation
that differential advection in the highly complex mean
flow field might render the contribution of the horizon-
tal velocity fluctuations unimportant. However when put
to the test, such a simulation produced an unrealistically
narrow plume and very poor agreement with the obser-
vations; station 55, seriously overpredicted by the full
model (Table III) was the only prediction within a factor
of two of observation, thus FAC2 = 1/16.

The point of this section, then, is to indicate the
need for caution if adopting a heuristic LS model
rather than the well-mixed model. While it is true
that one might be able to compensate to some extent
for the choice of a simpler model by adjusting the
value of C0, in doing so one departs from the most
rational approach. A final point worth making very
emphatically is that if the driving velocity field is
rendered horizontally-homogeneous by application of
an area-average encompassing all unoccupied cells on
each given horizontal plane, the LS model scores a far
poorer FAC2=2/16 (in lieu of 9/16); accounting for the
horizontal inhomogeneity of the flow is crucial.

5.2. Comparison: Forward and backward simulations

Backward simulations were performed from all sixteen
detectors that had reported non-zero concentration during
IOP9r2, namely numbers 53–56, 63–66, 83, 84, 86, 94,
96, 513, 515, 517. Figure 10 indicates that backward and
forward simulations, identical as regards all physical and
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Figure 10. Comparison of computed concentrations (ppt) from forward
and backward first-order LS simulations of IOP9 release 2 (Oklahoma
City, Joint Urban 2003), showing all 16 stations that reported non-zero
concentration. Error bars give the standard error; these are hidden by

symbols in most cases.

numerical parameters (including the time step µ = 0.05),
produce concentration estimates at the IOP9r2 detectors
that, while very similar, differ by a margin much greater
than the standard error (this is seen most clearly in
Table III).

Forwards–backwards equivalence is an assured prop-
erty of the infinitesimal-dt (i.e. continuous) Lagrangian
models. By the evidence above (also section 4.2), it is not
upheld in the present discrete implementation. Possible
mechanisms to break the symmetry include: (a) discrete-
ness of the velocity statistics, implying discontinuities
from cell to cell, (b) reflection off building walls, and
(c) reflection off ground.

If (c) were relevant, the f/b discrepancy should be
observable even in LS models for which velocity statis-
tics are given as a continuous function of particle posi-
tion. Relative to standard error, however, differences in
the outcomes of test forward and backward simulations
(time step dt/TL = 0.01) of a source in the horizontally
uniform surface layer (whose flow properties were speci-
fied as continuous functions of height) were insignificant.
Thus the origin of the forward/backward non-equivalence
lies in (a) or (b). Regarding wall reflection, ‘nudging’ the
reflected particles to the exact distance �n (set to �n = 1 m
for the IOP9r2 simulations) outside a wall must result in a
small-scale non-uniformity of the computed concentration
field, and in that case proximity of a detector or source to
a wall might modulate the degree of forward/backward
inconsistency.

To eliminate the possible influence of wall reflection,
matched forward and backward simulations were per-
formed for a (hypothetical) case where the source and the
detector were placed far from the city core, i.e. outside
the sub-domain of resolved buildings and the possibility
of proximate walls. In this case the source and detector
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were given identical volumes (i.e. volume source rather
than point source, with the volume of source and detec-
tor equal). For these simulations dt/TL = 0.1, with other
details the same as above.

The (forward) source was centred at x = 1001.7, y =
800.0, z = 10.0 m, and (19×16 000) particles were
released uniformly over a surrounding volume whose
half-spans were (50 × 50 × 5) m. The (forward) detector
was centred at x = 1001.7, y = 3000.0, z = 10.0 m, and
had the same half-spans (50 × 50 × 5) m. Forward and
backward simulations, identical in all respects but for
exchange of source and detector, resulted in outcomes:
Cf = 419 ± 18 ppt versus Cb = 254 ± 12 ppt, where the
specified uncertainty is the standard error, and where (for
both simulations) the source strength, integrated over its
volume, was Q = 2.0 g s−1. The outcomes of these care-
fully matched forward and backward simulations differ
significantly from each other. It seems most likely that
mechanism (a), the discreteness of the velocity statistics,
is causing the non-equivalence of forward and backward
simulations.

5.3. Performance of Random Displacement Model

The Random Displacement Model (RDM)

dXi =
(

ui + ∂K(i)

∂x(i)

)
dt + √

2K(i) dξ(i) (25)

(e.g. Näslund et al., 1994) is equivalent to an eddy
diffusion treatment, and generally considered a satisfac-
tory treatment in the far field of sources. (As earlier, a
bracketed index, (i), signifies summation is not implied;
dξi represents a Gaussian random variate with 〈dξi〉 = 0
and 〈(dξi)

2〉 = dt .) In this model the eddy diffusivity is
anisotropic but diagonal, and we have evaluated it (fol-
lowing Taylor, 1921) as

K(i) = σ 2
(i) TL , (26)

where σ(i) is the velocity standard deviation along coor-
dinate direction i and as earlier TL = 2σ 2

w/(C0ε). For
backward simulations ui is reversed in sign (with dt > 0
according to our program design), but the drift term
∂K(i)/∂x(i) is not reversed. Following the recommenda-
tion of Wilson and Yee (2007), the time step for the RDM
has here been subjected to the limitation

dt = µ min [τv, τh], (µ � 1) , (27)

where the inhomogeneity time-scale τh was given earlier
(24), and a second (heuristic) limit

τv = 2Scz

kv

(
u′w′ 2 + v′w′ 2

)−1/4
(28)

is introduced to ensure that the root mean square step
length

√
2Kdt is small enough to satisfy

√
2K dt

1

K

∂K

∂z
� 1 . (29)
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Figure 11. Performance of the forward Random Displacement Model
(0f) for IOP9 release 2, according to two choices of the Kolmogorov

constant C0.

For consistency with first-order LS simulations, IOP9r2
simulations with the RDM also used µ = 0.05.

Figure 11 gives the predictions of the RDM for two
choices of C0. In the case that C0 = 3.59, which (we
would argue) is the most reasonable choice, the RDM
scores FAC2 = 8/16, although in principle it ought to
match the FAC2 = 10/16 scored by the Eulerian solution
mentioned earlier. A slightly better FAC2 = 9/16 is
attained with C0 = 4.8, a choice (however) that cannot
be defended.

This section has established that for the Oklahoma
City IOP9r2 far-field dispersion problem, performances
of the random displacement model and the more complex
Langevin model are very similar (FAC2s of 8 and
9 respectively). This should not be surprising. The
argument in favour of the Langevin treatment is its greater
fidelity to the underlying process, for following Thomson
(1987) one explicitly crafts the generalized Langevin
equation to reflect available information on the velocity
statistics.

6. Conclusion

Whereas, in the interests of computational speed, others
(e.g. Diehl et al., 2007) have explored the use of
simplified, heuristic Lagrangian stochastic models to
compute urban dispersion, our aim here has been to
document the performance of Thomson’s well-mixed
model. Although urban velocity statistics are not (in
general) Gaussian, their deviation from Gaussianity is
neither universal, nor in any generalizable sense known.
Therefore the adoption of Thomson’s LS model, based as
it is on the assumption of Gaussian velocity PDFs, should
not be the most serious of the causes of loss of accuracy,
particularly if we consider urban flows that are not too
strongly affected by buoyancy.
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Lagrangian simulations of a full-scale urban dispersion
experiment were performed using Thomson’s model
with a time step sufficiently small (dt/TL ≤ 0.05) to
assure the results are effectively time-step-independent.
Without tuning of physical (e.g. C0) or numerical (e.g.
dt/TL) parameters away from reference values known
to be appropriate (or optimal) in the very simplest
regime of atmospheric turbulence (horizontally uniform
and neutrally stratified surface layer), and on the basis
of an imperfect computed field of velocity statistics,
Thomson’s LS model has given reasonably accurate
predictions (FAC2> 50%) at street scale of the field of
mean concentration due to a point source, in a flow (urban
core) whose complexity can scarcely be exceeded.††

Eulerian calculations (as described by Keats et al., 2007)
provide comparably good performance, which is not
surprising because, given that the source was near ground,
all the present observations can be regarded as having
been made in the far field.

The most interesting and surprising of our findings
is that, while forward and backward simulations pro-
vide comparable answers, they are not exactly equiva-
lent. This has to be interpreted as owing to discretization
error (the corresponding continuous models are known to
be symmetric), and specifically the cause is abrupt spa-
tial changes in the Reynolds stress tensor. Reflection off
building walls does play an influential role in this disper-
sion problem; e.g. if absorption (rather than reflection) is
imposed on walls, the predicted concentration (averaged
over the sixteen detectors of IOP9r2) falls to 41% of its
reference value with reflection. However the reasonable
agreement of LS simulation (with wall reflection) and
observations suggests that, while not rigorous, the wall
reflection scheme used is acceptable.

Non-equivalence of forward and backward simula-
tions is of particular concern in the context of (poten-
tially) applying the backward Lagrangian method for
‘inverse dispersion’ calculations, such as outlined by
Flesch et al. (1995), in flows disturbed by obstacles
such as barns, reservoirs, etc. Although with care in
instrument placement, useful results may be obtained
while neglecting horizontal variability of velocity statis-
tics (e.g. Flesch et al. (2009) who quantified ammonia
emissions from dairy farms on the basis of measured
downwind concentrations), one would hope to be able
to achieve higher fidelity by the strategy of supplying
the Lagrangian model a computed estimate of the, actu-
ally, disturbed statistics. An obvious question is whether
interpolating velocity statistics from the flow grid to
particle position might substantially moderate or even
eliminate the forwards–backwards non-equivalence noted
above–for urbanLS employs no such interpolation. We
have addressed this question in a preliminary way with

††Forward Lagrangian simulation of Oklahoma City run IOP9r2 (Fig-
ure 6, 19 × 80 000 paths) occupied about 3 hours on a workstation
(2MB RAM; AMD Athlon Dual Core Processor 4800+ with CPU
speed 2494.025 MHz). However, the inherent parallelism in the for-
ward (or, backward) LS model can be easily exploited by running
each sub-ensemble of particles on a different processor of a massively
parallel computer.

further forward- and backward-dispersion simulations in
the windbreak flow field computed by Bourdin and Wil-
son (2008), arbitrarily implementing an inverse-distance-
weighted interpolation of flow statistics (and the coeffi-
cients of the Langevin equation, i.e. the T s) to the particle
position. (The interpolation used information from up to
eight neighbouring nodes.) This refinement resulted in but
modest changes to computed concentration fields (con-
sistent with a similar report by Wilson and Yee, 2000),
whereas dramatic change would have been needed, if this
were to be the explanation for, and avenue to eliminate,
forward–backward inconsistency of Lagrangian simula-
tions.
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The above article was originally published on Early View on 28 July 2009, and
subsequently in volume 135 (issue 643): 1586–1602; DOI:10.1002/qj.452.

A footnote on p 1595 alluded to a serious forwards/backwards inconsistency of the
Lagrangian stochastic model, in calculations for hypothetical sources and detectors
placed in a computed three-dimensional windbreak flow. It was subsequently
discovered that a simple coding error in those particular Lagrangian simulations
(i.e. only those pertaining specifically to the windbreak flow) had rendered the
Reynolds stress gradients grossly wrong and that, with the error corrected, close
forwards/backwards consistency obtains. The reported simulations of dispersion in
urban-like flows, i.e. the main subject of the paper, were not subject to the error and
are correct. Copyright c© 2010 Royal Meteorological Society
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