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For many purposes it is useful to be able to mimic the paths of heavy particles in a

turbulent flow. This paper gives a simple procedure by which this may be achieved,
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provided particle spin is not important and under the restriction that the ratio of
particle to fluid density exceeds about 1000. The procedure is related to the models
of Faeth (1986) and Hunt and Nalpanis (1985). Simulation of the experiments of

Snyder and Lumley (1971) yielded acceptable agreement with the observed rate of
heavy particle dispersion.

1 Introduction

In this paper we present a new method for the simulation of
heavy particle trajectories in a turbulent flow. The method
could be applied to calculate, for example, the drift of aerial
spray or the distribution of fuel droplets within a combustion
chamber (please note, however, that to date the method has
been tested against observations only for the case of nearly
homogeneous turbulence). The superiority of the Lagrangian
approach to turbulent dispersion has been evident since it was
developed by Taylor (1921). With the advent of accessible
computing power it has become possible to mimic turbulent
dispersion by calculating a large number of random trajec-
tories from the source to the point of interest. This is the
Lagrangian stochastic (or trajectory-simulation) method.

The fundamental advantage of the Lagrangian approach is
that it correctly predicts the rate of dispersion in the near field
of a source, whereas all attempts to close the heirarchy of
Eulerian conservation equations have yielded solutions which
are seriously in error close to the source. Thus if first-order
closure (K-theory) is adopted, the eddy diffusivity (K) can be
shown to depend not only upon the characteristics of the tur-
bulence but also upon the time of travel (or distance) from the
source. (Csanady, 1973; Batchelor, 1949).

Correct treatment of the near field is crucial in simulation of
turbulent transport within crops or forests, and the adaptation
of the Lagrangian stochastic method to this type of problem
has lead to rapid development of supporting theory (see Dur-
bin, 1983; van Dop et al., 1985; Thomson, 1984 and 1987,
Sawford, 1986; Pope, 1987; Sawford and Guest, 1988). While
some fundamental problems remain it is well established (e.g.,
Wilson et al., 1981) that the trajectory-simulation method can
give accurate predictions for complex dispersion problems
given only a crude knowledge of the flow field—the mean
velocity, the velocity-fluctuation variances, and the autocor-
relation timescale.

In the case of heavy particle dispersion, the trajectory-
simulation method has a further advantage over other
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methods in that it is easy to include time-dependent processes
such as droplet size reduction due to evaporation. However it
is more difficult to calculate a heavy particle path than a fluid
element path, because the velocity sequence driving the heavy
particle is neither a fluid Lagrangian nor an Eulerian se-
quence. Therefore one must encapsulate both the temporal
and the spatial correlation of the fluid velocity field rather
than just the Lagrangian temporal correlation.

There are two approaches to the calculation of heavy parti-
cle trajectories. The first option is to calculate both the parti-
cle velocity u,,; and the fluid velocity u; in the immediate vicini-
ty of the particle, these velocities being linked by the equation
of motion of the particle. The core of the problem then lies in
determination of the fluid forcing velocity u;. The work by
Hunt and Nalpanis (1985) and Faeth (1986) falls into this
category, as does the model we present. The alternative option
is to establish the heavy particle velocity statistics (velocity
variance and autocorrelation timescale). Given these statistics
one may apply Taylor’s analytical result, or, in the case of in-
homogeneous turbulence, carry out a trajectory simulation.
The recent work by Walklate (1987; see also comments by
Wilson and Zhuang, 1988) belongs to this category.

Section 2 describes the new model, and section (3) presents
simulations of the heavy particle dispersion experiments of
Snyder and Lumley (1971).

2 Formulation of New Model

Provided the ratio p,/p of particle density to fluid density is
large (> 10%) the equation of motion for a rigid nonrotating
spherical particle may be written (Schlicting 1968, Hjelmfelt
and Mockros 1966):

dupi/dt=F(ui—upi)—gi (1)

Here the total instantaneous fluid velocity u;(f) may be decom-
posed into a mean and fluctuation u,(¢) = U; + u;'(f), and g; is
the gravitational acceleration vector. F, whose reciprocal is the
particle acceleration timescale, is given by:

F = (3/4) C, p/ (dp,) lu;— ;] @)
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where d is the particle diameter and C, is a drag coefficient
C,=24(1+3R,/16)/R, 3)

Equation (1) is valid only for R, < 5, where R, is the slip
Reynolds number:

R, =dlu;—uy,l/y 4)

Here » is the kinematic viscosity of the fluid. Equation (1) is a
nonlinear stochastic equation which may be integrated
numerically to determine the heavy particle trajectory provid-
ed one can determine an appropriate (stochastic) sequence of
values for the driving fluid velocity at discrete times %,

In our model, as in that of Faeth (1986), the driving fluid
velocity undergoes abrupt, random changes as the particle en-
counters new eddies. Between these changes, while the-particle
passes through a given eddy, the driving fluid velocity remains
correlated along the particle path but not, as in Faeth’s model,
constant.

When the particle encounters a new eddy we mark as the
‘“‘star’’ the fluid element surrounding the particle at that in-
stant (see Fig. 1). The particle is considered to stay within the
present eddy until its separation from the star exceeds a chosen
lengthscale L. To monitor this separation R, i.e., the passage
from one eddy to the next, we calculate the trajectories of both
the particle and the star.

We need correlated time series for the star velocity uy;’ and
the driving fluid element velocity u;’. These we generate using
the Markov chains:

Goi* D = e iqe® + pa D
g%V =0;q;® + p, Y

Ga)
(59)

where the ¢’s are dimensionless quantities which are scaled to
obtain the velocity fluctuations

us;'®=0,q.;® (6a)

(6b)

The summation convention does not apply in equations (5, 6)
and o; is the velocity standard deviation. In the Markov chain
equations (5a, b) the o’s control the correlation between con-
secutive values of the velocity fluctuation. The p’s are random
variations. To ensure unit variance for the ¢’s the u’s must
have the form

u;'® =g,q,0

u =T=a? ™

where the v’s are random numbers having zero mean and unit
variance. y{9, v{9, and v are independent of each other and
of their values at any other time.

Each time the heavy particle encounters a new eddy and a
new star is marked, say at time #©@, the Markov chains are
reset

C]*,'(O) = qi(o) = 'Yi(o) ®

so that at that instant the driving fluid element and the star,
being coincident, have equal velocities. The total velocities are
obtained from the fluctuations by adding the mean. It remains
to specify the a’s.

For the star trajectories we require a fluid Lagrangian
series, and the choice

ax;=exp[—At/T; ] Oa)

is conventional; here T, is the Lagrangian integral timescale.

In the case of the time series for the driving fluid velocity we
use the simple expression

i=expl — At/T, ~ |Ar;1 /L) (95)

where L, is the lateral integral lengthscale and Ar; is the

separation between the previous and the present driving fluid

element, i.e., the separation between the driving fluid element

at the previous time #® and at the present time %+, The
reasoning behind equation (9b) is simple. Figure 1 identifies
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Fig. 1 Defining sketch for trajectory calculations showing the
discretized path of a heavy particle (o) which is slipping downwards
relative to the fluid around it. For clarity motion is shown only in the ver-
tical direction. At each location (O) denotes the driving fluid element
and ( ¢ ) the “star,” a special tluid element identifying the eddy within
which the particle now lies. A dashed image (3,5 ) implies that the
element is not tracked beyond its present location. R is the separation
between the particle and the star, and Ar is the separation between the
particle and that fluid element which, at the previous time, was the driv-
ing fluid element.

Attime t9 the particle has entered a new eddy and the star is marked.
A9+ Ar= R< [, where L is the eddy lengthscale. At 0+ 2 and ¢0+3)
Ar<R<L. At t(o""b the particle has departed the eddy, i.e., R>L, and
entered a new one. The new star is marked.

the heavy particle and the star, both at the location A at the in-
stant the particle enters a new eddy. In the succeeding timestep
At the star moves to B and the heavy particle to C. Provided
the separation R between the particle and the star does not ex-
ceed the lengthscale L we consider the driving fluid velocity to
be correlated with its previous value, We specify the correla-
tion coefficient over interval Af to be the product of the
Lagrangian correlation coefficient along the (previous driving
element) path AB and the Eulerian spatial correlation coeffi-
cient for the separation BC between the previous and the new
driving element.
The timestep has been specified as

(10)

where 7, is the particle time constant. A discussion of the
choice of the timestep for Lagrangian stochastic models is
given by Wilson and Zhuang (1989). Our criterion (10) ensures
that the choice of a smaller timestep will not affect the out-
come of a simulation. Earlier simulations by Hunt and
Nalpanis (1985) did not in all cases satisfy this necessary
limitation on the timestep and may have yielded simulations
whose agreement with experiment is misleading. The
lengthscale L has been specified as

L=CL, an

A single value for C is to be used for all particle sizes. We
found that the specification C=1.5 gave best agreement with
the Snyder and Lumley data.

Our model differs from that of Faeth (1986) primarily in
our treatment of the driving fluid velocity as varying within
each eddy. In Faeth’s model the driving velocity was constant
within an eddy and changed randomly (without correlation)
when either the separation between the particle and the
(constant-velocity) star exceeded a specified lengthscale or
when a specified time had elapsed since the last fluid velocity
choice. Faeth had available two adjustable constants and in-
dicated that the model yielded simulations in good agreement
with the Snyder and Lumley data.

At=0.1 minimum (7, 7;)

3 Comparison With Observations
Snyder and Lumley (1971; hereafter SL) measured the
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Fig. 2 Mean square heavy particle displacement x2in the cross-
stream direction as a function of time. Comparison of simulations with
the experimental data of Snyder and Lumley (1971). Symbols give model
solutions for:

o Hollow glass 7p = 1.7 millis.

o Corn pollen 7p = 20.0 millis.

a Solid glass 7, = 45.0 millis.

Error bars give +/— the standard error of the mean.

dispersion of several types of particles which were injected in-
to the decaying turbulence downstream from a grid in a wind
tunnel. In addition to the particle dispersion data, comprehen-
sive fluid velocity statistics were measured. The mean stream
direction (x,) was vertical. In our simulation we have included
the variation of the velocity statistics along the stream. The
streamwise and cross-stream fluid velocity variances are given
by SL equations (9, 10). In decaying grid turbulence the
timescale is expected to vary linearly with the streamwise coor-
dinate, and from SL Fig. 14 we inferred that:

T, =0.10x;/M—14)/(73 — 14) 12)

where M=0.0254m is the grid mesh length and x;/M=14 is
our choice for the virtual origin of the decay. The transverse
lengthscale was specified as:

L,=T, /o 13)

where ¢ is the transverse velocity standard deviation.
Density ratios o,/p for the particles released by SL ranged
from 8900 for solid glass down to 260 for hollow glass. The
value p,/p=260 for hollow glass violates the restriction
0,/p>1000 placed on the particle equation of motion (1).
However if we estimate a typical value of the Stokes number

N, =v/2nfd> (14)

by setting the frequency f=1/T, we obtain, for the hollow
glass beads of the SL experiment, N, ~ 10. At such a value for
N, (and even at values corresponding to a tenfold increase in
frequency) it can be shown (Hjelmfelt and Mockros, 1966)
that equation (1) is a very good approximation.

For each particle type released by SL we performed 10
simulations, in each of which we calculated 200 trajectories on
an IBM PC-AT. Calculation of 2000 trajectories took approx-
imately 2 hours using a ‘‘C’’ language program. During the
simulations the slip Reynolds number was monitored. For the
lightest particles, hollow glass (o,/p =260), R, averaged 0.2.
For the solid glass particles (o, /0 =8900), R, averaged 2.5.
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Figure 2 shows the observed and calculated values for the
mean-square transverse particle displacement as a function of
time. The error bars shown +/— one standard error. The
agreement between the observed and simulated spread is
satisfactory.

4 Conclusion

We believe our model to be an improvement over earlier
work. The temporal variation of the driving velocity is more
realistic (we think) than is the case for Faeth’s (1986) model;
furthermore our model contains only 1 optimisable constant.
We obtained a satisfactory simulation of the spread of Snyder
and Lumley’s lightest particles using an appropriate value for
the timestep, whereas we believe the timestep used by Hunt
and Nalpanis (1985) was unjustifiably large.

The generality of our method is limited by neglect of parti-
cle spin and other terms in the equation of motion. At one ex-
treme, particles which are both small (d<Kolmogorov
lengthscale) and light (o, <p) can legitimately be treated as
fluid elements. At the other extreme, a small and very massive
particle, our model is limited only by the restriction on the slip
Reynolds number and an alternative formulation of the ac-
celeration timescale (1/F) could be substituted.
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