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a b s t r a c t

Multi-source emission rates inferred from measured concentrations using numerical
dispersion models are often extremely sensitive to measurement and model error,
rendering them unusable. This sensitivity to error is quantified by the condition number of
the matrix of model-derived coefficients relating source strengths to concentrations. Using
a dispersion model, we examine the dependence of this condition number on source–
sensor geometry, atmospheric conditions, and the amount of concentration data included
in the solution. Optimal sensor arrangements are those that measure source emissions
(and background concentration, if it is unknown) as independently from each other as
possible under the expected range of wind directions and atmospheric stabilities. Although
including more concentration measurements can improve the emission inferences, the
benefit is highly contingent upon sensor placement. A set of recommendations to mini-
mize sensitivity to error is presented. This includes arranging sensors so that each detects
emissions from as few sources as possible; keeping sensors separated, both horizontally
and vertically, to benefit from asymmetries in source distribution and surface layer
structure; using more measurements in a given calculation, either by adding more sensors
or by incorporating data from different times; and using dispersion models to assess
condition number and guide sensor placement before and during a field study.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Because it can be difficult to directly measure trace gas
fluxes from distributed sources, emission rates are
commonly estimated indirectly from predictions made by
numerical dispersion models (e.g. Wilson et al., 1982;
Raupach, 1989a; Flesch et al., 1995). When provided with
concentration measurements obtained in the vicinity of
a single source, models can infer with reasonable accuracy
the source strength required to produce the given
concentrations (for experimental verification, see e.g.
Flesch et al., 2004). When more than one source is present,
or where a single emitting surface is highly
m (B.P. Crenna).

. All rights reserved.
inhomogeneous, the objective may be to determine
multiple emission rates. Here, we shall refer to these as
multi-source problems.

Many real-world emission sites are a composite of
sources. For example, a farm may be a significant source of
gases to the atmosphere, with emissions from barns,
animal waste lagoons, outdoor animal pens, food stocks,
etc. It can be practically difficult (and scientifically chal-
lenging) to make isolated measurements of emissions from
these components. Other sources, such as field crops, are of
a single type but are spatially variable to the extent that
a quantification of this variability is valuable.

Unfortunately, emission rate estimates for multi-source
problems are often badly behaved, with spurious predic-
tions obtained comparably often to appropriate values (e.g.
Raupach, 1989b). Consider a multi-source problem in
which n concentration sensors are located in proximity to
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m sources, each source having its own emission rate Qj

(j¼ 1, ., m). Each source can potentially contribute to the
signal (Ci, i¼ 1, ., n) seen by each sensor, the amount
depending on the state of the atmosphere between source
and detector. This relationship can be determined by an
atmospheric dispersion model and expressed as a coeffi-
cient aij, so that concentration Ci is the superposition of
products aijQj, plus any background concentration CBG. The
result is a linear system of equations:

aijQj þ CBG ¼ Ci (1)

which can be solved using standard numerical techniques
to calculate Qj. The emission sources can be arbitrarily
complex in shape (elevated and/or on the surface),
provided the dispersion model is capable of correctly
associating their emissions to concentration.

A solution to system (1) exists if and only if there are at
least as many equations as unknowns; we must therefore
provide at least as many suitable concentration measure-
ments as unknowns (here being the m emission rates and
possibly CBG). Of course, we can include more equations
than unknowns; though the solution then becomes a best-
fit in a statistical sense, rather than being unique.

Under certain conditions, this system can amplify minor
errors in measured concentrations Ci and/or model-derived
coefficients aij by many orders of magnitude. A system is
said to be ill-conditioned if small changes in its data result in
large changes in its solution, and well-conditioned other-
wise. This sensitivity is quantified by the condition number k

of the m� n matrix of coefficients aij. Many introductory
texts in applied linear algebra (e.g. Scheick, 1996) provide
numerical examples of ill-conditioning in simple systems.

The problem of ill-conditioning in equations relating
source emission rates to concentrations has been explicitly
examined in previous studies. It arose in analyses of the
source–sink distribution of scalar quantities within plant
canopies (e.g. Raupach, 1989a; Hsieh et al., 2003; Wohl-
fahrt, 2004; Simon et al., 2005; Qiu and Warland, 2006), in
which a (nominally) horizontally uniform plant canopy was
divided into m discrete layers whose unknown emission
rates were related to a vertical profile of n concentration
measurements using numerical dispersion models. This
problem is characteristically ill-conditioned, and various
approaches have been used to handle the difficulties that
this causes. Raupach (1989b) recommended that n exceed
m to reduce the effect. Leuning et al. (2000) applied
a standard method of solution called singular value
decomposition (SVD) (Press et al., 1986) as a fitting proce-
dure to reduce error sensitivity; while Siqueira et al. (2000)
added a smoothness constraint on the predicted source
profiles to further improve the solutions.

Roussel et al. (2000) provided a thorough analysis of the
condition number problem for estimating deposition rate
from multiple sources, and suggested a technique that
requires extra concentration data to obtain a solution in
poorly conditioned cases. Haupt (2005), Haupt et al. (2006),
and Allen et al. (2007a,b) examined ill-conditioning in
a system of equations similar to Eq. (1). They used
a ‘‘genetic algorithm’’ to seek a solution to a highly over-
determined system created by introducing concentrations
measured over an extended period of time. We might
expect from statistical reasoning that as more information
is added to the system, the solution should improve.

In earlier studies, little has been said about the influence
of concentration sensor placement on sensitivity to error in
the solutions. This is potentially an important factor for
real-world applications, since sensor positioning is under
an experimentalist’s control. In some locations, a given
sensor might detect emissions from only one source; while
in others, it will intercept emissions from several sources at
the same time. We shall refer to the relative positioning
between sensors and sources as source–sensor geometry.
Modifying this geometry will affect the coefficients of the
system of equations to be solved and, therefore, its condi-
tion number k. Changes in environmental variables such as
wind direction and atmospheric stability alter the effective
sensor positions within the source plumes and will cause
effects equivalent to physically moving them.

In this paper, we will examine how source–sensor
geometry and meteorological conditions can affect k, in
a set of dispersion model-generated test cases involving
area sources at the surface. In addition, we will briefly
examine the effect of increasing the number of equations in
the system by deploying more sensors. From these studies,
we will infer a set of general guidelines for use when
estimating multiple source strengths from measured
concentrations.

2. Algebraic formulation

In a multi-source problem, we can express the govern-
ing system of equations (1) in vector notation as

AQ þ CBG ¼ C (2)

where A is the m� n matrix of model coefficients, C is the
vector of n observed concentrations, and CBG¼ CBGr, where
r is a vector whose n components are all one. We assume
that CBG is spatially uniform but may vary from one
measurement interval to the next. We can derive a relation
for condition number k by considering the effect of
perturbations dC on the vector C of measured concentra-
tions and dA on the m� n matrix A of model-derived
coefficients, which we presume causes an error dQ in our
calculated source strengths Q. Introducing these perturba-
tions to Eq. (2) and performing standard matrix operations,
we find that the sensitivity of the overall system of equa-
tions to measurement and modeling error is bounded by

kdQk
kQk � k

�
kdAk
kAk þ

kdCk
kCk þ

kdCBGk
kCBGk

�
(3)

where condition number k A k k A�1 k is the amplification
factor relating perturbations to changes in emission rate dQ
and (for this study). k A k is the so-called l2 norm of
coefficient matrix A. This norm is selected because it
appears in the standard SVD technique we use to solve the
systems.

Eq. (3) implies that the relative errors in the estimated
emission rates are amplified by the condition number k.
However, it is important to note that k gives only an upper
bound to the relative error k dQ k = k Q k, rather than being



1 In these examples, we have used units of gas density (mg m�3) rather
than gas concentration (ppmv, ppbv).
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sufficient as a measure to determine the sensitivity of the
system to error (Noble and Daniel, 1988). In other words,
although small k does guarantee that the system is insen-
sitive to error, a large value of k does not guarantee
sensitivity to error. We must therefore be somewhat
cautious in our interpretation of large k where it occurs.

A particularly misleading source of unreasonably large k

is referred to as artificial ill-conditioning (Gentle, 1998).
Numerically, this can occur when the elements in one row or
column of the matrix are significantly different in scale from
the other elements. In calculating condition number, the
ratio of large to small aij can lead to high k even where it does
not imply a marked sensitivity to perturbations. Artificial ill-
conditioning reduces the usefulness of k as a diagnostic of
error sensitivity, and we must consider the potential for its
occurrence in a given experiment. In the case studies to
follow, we will test for this explicitly in some cases.

3. Modeling studies

We will examine a set of model-generated scenarios in
which background concentration and/or one or more
unknown ground-level area source strengths are deter-
mined from measured concentrations. In this study, the
positions and shapes of all area sources are assumed to be
known and unchanging. The size, location, and strengths of
the sources are mostly arbitrary but have been chosen to
illustrate general cases. The general principles we derive
from these studies will be applicable to measure a wide
range of sources (e.g. distributed within plant canopies,
localized at points, etc.) and not restricted to area sources
alone.

We use a numerical model implementing the Flesch
et al. (2004) Lagrangian stochastic (LS) or particle-
following scheme to relate measured concentrations to the
emission rates from surface area sources. LS models are
arguably the most natural or realistic of existing dispersion
models for this type of problem (Wilson and Sawford,
1996). Like all LS schemes, our model introduces unavoid-
able error because its predictions are generated by
ensembles of randomized particle trajectories. For most of
the studies in this paper, very large numbers of particles
(up to 109) are used and the model error is kept much
smaller than any noise added intentionally to our concen-
tration measurements. Model error also arises unavoidably
because numerical models are based on idealized rela-
tionships that are only an approximation of the real world.
Such idealizations presumably introduce systematic errors
in aij, but it is outside the scope of this paper to attempt to
address such errors.

Our goal is to vary the positions of a set of concentration
sensors and/or the atmospheric state and observe resulting
changes in the condition number, which we compute from
the coefficients provided by our numerical model. In some
cases, we will also assess the system’s response to noise in
a specific geometry. To do this, we first assume that the
source strengths are known and use the model to predict
concentrations at the locations of our sensors. These pre-
dicted concentrations are then used to back-calculate the
source emission rates, with noise of specified amplitude
being added to the concentrations.
3.1. Case 1: single unknown source with unknown
background concentration

The simplest case in which condition number exerts an
influence on estimates is that of a single source with
unknown emission rate Q and unknown background
concentration CBG. This is perhaps the most common situ-
ation in field experiments and, as we shall see, it is prone to
artificial ill-conditioning. Because there are two unknowns,
at least two concentration measurements are required for
a solution; for two sensors, system (1) in matrix form
becomes

�
af 1
am 1

��
Q

CBG

�
¼
�

Cf

Cm

�
(4)

in which Cf and Cm are the measured concentrations and
coefficients af and am are model-derived parameters
relating these concentrations to Q.

The column of 1’s in the matrix is responsible for the
potential occurrence of artificial ill-conditioning; it will
arise if af and am are of similar size and are both either
much smaller or much larger than unity. This can occur
trivially by the choice of units for concentration, wind
speed, and emission rate. Model coefficients will be
smallest whenever the source has only a weak influence on
concentration at either sensor’s location. This will happen
outside and at the edge of the source plume and if the
source area is small relative to the sensor’s concentration
footprint. The latter can arise either because the source is
intrinsically small or when the concentration footprint
grows large in unstable atmospheric conditions that
broaden horizontal dispersion.

Gentle (1998) states that there is no general procedure
to determine if ill-conditioning is artificial or real.
Fortunately, it is possible to reduce potential artificial ill-
conditioning in this case by rescaling the left column to
match the 1’s, replacing the system by

af

b
1

am

b
1

3
75
�

bQ
CBG

�
¼
�

Cf

Cm

�2
64 (5)

where

b ¼
�

min
�
af ; am

�
if af s0 and ams0

max
�
af ; am

�
if af ¼ 0 or am ¼ 0

(6)

We consider a test case in which the source is a 100 m
diameter circle with a surface roughness of 0.01 m,
a Northerly wind (friction velocity u* of 1 m s�1), and
surface layer stratification ranging from very stable
(L¼þ10 m) to very unstable (L¼�5 m). The emission rate
Q is assumed to be 100 mg m�2 s�1 and the background
concentration1 CBG is 100 mg m�3. Two sensors are placed
1.5 m above the surface: one sensor remains stationary
100 m downwind from the trailing edge of the source,
while the other is placed at various locations to generate



B.P. Crenna et al. / Atmospheric Environment 42 (2008) 7373–73837376
a plot of k as a function of its position. Note that the
specifics are completely arbitrary and have no bearing on
the general conclusions.

The sensors are optimally placed with one upwind of
and outside the source plume and the other downwind and
within the plume (Fig. 1a), because it fully separates the
measurements needed to infer the two unknowns. The
system in matrix form then reduces to:

�
af 1
0 1

��
Q

CBG

�
¼
�

Cf

Cm

�
(7)

in which Cf and Cm are measured by the downwind and
upwind sensors, respectively. For this arrangement, we
note that the potential for both real and artificial ill-
conditioning occurs as af / 0. If the upwind sensor is
moved into the plume (Fig. 1b), k increases because both
sensors detect an increasingly similar combination of
background- and source-derived tracer.

Fig. 2 plots k as a function of the location of the move-
able sensor under different stabilities. In all cases, the k

distributions (shaded) are symmetrical and have maxima
at the position of the fixed sensor, meaning that predictions
using data from co-located sensors are most sensitive to
error. Irregularities in the shading are artifacts generated by
contouring k values calculated on a finite grid and by model
uncertainty. The teardrop-shaped maxima follow the
concentration contours (lines) at which both sensors see
the same concentration C, implying that inferred source
strengths are most sensitive to error whenever their
measured concentrations are the same. This becomes
obvious when we consider that under such conditions the
system is

af Q þ CBG ¼ C
amQ þ CBG ¼ C

(8)

which implies that af¼ am and therefore k / N. Although
not shown, the resultant patterns are qualitatively similar
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+
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Fig. 1. Placement of two concentration sensors relative to a circular area source. In al
(b) Test sensor is moved to a location with concentration similar to that near the fi
when the test sensor’s height differs from that of the
stationary sensor.

In the unstable case shown in Fig. 2c, k is slightly larger
when the test sensor is upwind of the source than when it
is a short distance downwind. This is weak artificial ill-
conditioning caused by a reduction in af in Eq. (7); no real
increased sensitivity to error exists. It arises because
greater lateral dispersion in the unstable case widens the
fixed sensor’s concentration footprint, reducing the sour-
ce’s influence on Cf and decreasing af. When the moveable
sensor is placed just downwind of the source, it measures
higher concentrations than the fixed sensor and am exceeds
af sufficiently to reduce k.

Because k is only an upper bound on error response and
artificial ill-conditioning can occur, it is helpful to observe
the actual response of emission rate estimates to changes in
concentration. With the sensors placed as shown in Fig. 1a,
if we reduce Cf by 10%, the predicted Q decreases by 14%
and CBG remains correct. We note that for this geometry,
jdQj/Q z jdCfj/Cf. Moving the test sensor into a position
where k w 1500 (Fig. 1b), we find that a much smaller 1%
reduction in Cf results in spurious predictions of
�40 mg m�2 s�1for Q and 2180 mg m�3 for CBG; now, jdQj/
Q [ jdCfj/Cf and jdCBGj/CBG [ jdCfj/Cf.

We next vertically align two point concentration
sensors on a tower placed at various distances downwind
of the same source (Fig. 1c). One sensor remains fixed at
0.5 m above the surface while the other sensor’s height is
varied from 1 m to 10 m. Fig. 3 shows k as a function of both
the tower’s distance from source center and the moveable
sensor’s height, for three surface layer stabilities. In each
case, k increases with the tower’s distance downwind of the
source and decreases as the separation between sensors
grows. The lowest k values occur for stable stratification,
where the higher sensor is located above the source plume
and reads CBG directly. Conversely, unstable stratification
leads to the largest k, because the concentration is similar at
all heights considered and little new information is
metry
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provided by the second sensor. For all stratifications, large k

values downwind of the source imply that attempts to
estimate both Q and CBG using two vertically aligned
sensors on a 10 m tower placed well downwind are likely to
suffer from sensitivity to error.

It is evident from each of the above experiments that the
optimal arrangement is generally to measure the back-
ground concentration as independently as possible from
the localized source. It is also important to place sensors so
that they are unlikely to measure similar source emissions.

3.2. Case 2: two unknown sources with known
background concentration

Figs. 4 and 5 show hypothetical cases in which two
circular area sources both emitting 100 mg m�2 s�1 of an
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arbitrary tracer are located near each other. We consider
two extremes of source–sensor geometry: in Fig. 4, the fixed
sensor is positioned so that the sources are antisymmetric
relative to its position and the wind direction; in Fig. 5, the
sources are aligned symmetrically. Our goal is to determine
their separate emission rates Q1 and Q2, assuming for
simplicity that CBG is known (100 mg m�3). Because there
are two unknowns, at least two sensors are again required;
for clarity, we use only the minimum number. As before,
one point sensor is placed 100 m downwind from the
sources and remains stationary, while the second sensor is
moved to various locations to observe the effect of its
position on k. In this case, the system becomes

�
af1 af2

am1 am2

��
Q1

Q2

�
¼
�

Cf � CBG

Cm � CBG

�
(9)
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and does not suffer in general from artificial ill-
conditioning.

Fig. 6 plots k as a function of the second or ‘‘probe’’
sensor’s position for the antisymmetric source arrange-
ment. For each placement of the fixed sensor, k grows
without bound as the second sensor is moved outside both
source plumes and the system becomes undetermined.
When the stationary sensor is placed on the axis of
symmetry between the sources (Fig. 6a), k is large along the
axis and decreases away from it, with secondary maxima
near the locations of greatest concentration. Although not
shown, the distribution remains qualitatively the same if
the second sensor’s height is increased to 3 m.

If the stationary sensor is placed directly downwind of
one source (Fig. 6b), the k distribution becomes asymmet-
rical, reaching a maximum at the position of the first sensor
(i.e. when the sensors are co-located) and a minimum
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other source. This confirms our expectation that k should
be smallest when each sensor detects emissions from only
one source. A change in wind direction (Fig. 6c) effectively
shifts the centrally located fixed sensor’s position laterally
relative to the sources and creates a similar pattern to
Fig. 6b. Clearly, changes in wind direction can affect the
system’s potential sensitivity to error with no changes to
source or sensor.

We next consider the same antisymmetric source
arrangement but with point sensors replaced by line-
averages, as shown in Fig. 4b and c. When both line sensors
are placed to intersect the full width of the source plumes
(Fig. 4b), k is calculated to be 1900. For this geometry, when
Cm is reduced by 1%, predicted emission rates Q1 and Q2

change dramatically from the correct 100 mg m�2 s�1, with
Q1 estimated as �269 mg m�2 s�1 and Q2 increasing to
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463 mg m�2 s�1. Varying the height of one or both line
sensors yielded no significant reduction in the sensitivity,
because the two source plumes are similar at all heights.

If the sensors are relocated so that each sees only one
source (Fig. 4c), k drops to just 1.66. Reducing CA by 10% now
decreases the upwind source’s estimated strength Q1 by
a similar fraction, while Q2 decreases by less than 1%. The
system now behaves like two nearly independent single-
source problems; an insignificant coupling arises because
both sensors intercept the plume edges. Of course, this
coupling will increase when the plumes widen in unstable
conditions and when the wind direction transports one
plume further into the domain of the other sensor.

Figs. 7 and 8 show the k distribution for the symmetric
source arrangement. We note first that k is relatively large
everywhere downwind of both sources, independent of
stability and the probe sensor’s height. This implies that it
might be difficult to distinguish the two sources using only
sensors placed well downwind of both. Condition number
decreases as the probe sensor is moved to where it detects
only the upwind source. Although k is smallest near the
center of the upwind source for neutral stratification
(Fig. 7a), a region with k> 5 occurs there for unstable strat-
ification (Fig. 7b). We infer that a sensor arrangement
appropriate for one stability class might be unsuitable for
another. Fortunately, k is small for all stratifications when the
sensors are both located near the downwind edges (Fig. 8).

In Fig. 7c, we note that if one sensor is placed much
higher than the other (5 m vs. 1.5 m), the region of low k is
much larger than when both sensors are at the same
height, but its minimum value is larger. Although the
source symmetry is now partially offset by the atmos-
phere’s vertical inhomogeneity, placing the sensors at
different heights does not greatly improve our ability to
distinguish the emissions from a location well downwind
of both.

Finally, we place line sensors at various locations relative
to the symmetric sources as illustrated in Fig. 5b and c and
compute k for each placement. The results for neutral
stratification are shown in Fig. 9, with the position of the
sensor initially further upwind plotted along the x axis and
the position of the other sensor along the y axis. The patterns
are found to be qualitatively similar for other stratifications.
With both sensors at the same 1.5 m height (Fig. 9a), k is at its
minimum when one sensor is placed near the downwind
edge of each source; it is impractically large for all arrange-
ments in which the sensors are both downwind of all sources
and infinite whenever they are collocated. Placing the
sensors at different heights (1 m and 3 m) shifts the pattern
somewhat (Fig. 9b), but as before, large k occurs if both
sensors are placed downwind of both sources. We conclude
that attempting to separate two sources from a downwind
location is unlikely to succeed in the symmetric case.

3.3. Including additional concentration measurements

We next briefly examine the consequences of increasing
the number n of concentration measurements beyond the
number m of unknown sources. We might expect that
sensitivity to error in the emission rate estimates will be
reduced as redundant measurements are included; the
solution becomes a best-fit to the data rather than being
constrained to exactly match all measurements.

Data can be added to the system either by deploying
more sensors or by including observations taken at
different times. As mentioned earlier, Raupach (1989b)
found that increasing the number of concentration sensors
reduced sensitivity to error in a plant canopy emission rate
study. Of course, there are practical limits to this approach
(e.g. sensor cost). Haupt (2005) augmented the system with
concentration measurements made over a period of time,
rather than concurrently. This approach requires that we
assume that the source strength is either constant or varies
predictably. Data from other times can be used even if the
wind and stratification change, provided the model relating
emission rates to concentrations remains valid. In effect, we
expect the method to reduce measurement error by
increasing the number of observations.
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In the following numerical experiments, we observe
changes in condition number k as additional sensors are
placed near unknown sources identical to those in two of
the previous experiments. In the first, we add sensors to the
vertical profile in Fig. 1c, with two sensors remaining fixed
at 0.5 m and 10 m and up to nine additional sensors being
spaced evenly between these two extremes. The profile is
positioned 100 m directly downwind of the source. The
results, seen in Fig. 10a, might be unexpected: k remains
nearly constant despite the extra sensors and actually
slightly increases as more are added. Surprisingly, we
would be better off using just two sensors placed well apart
rather than introducing more sensors between the two.

In the second scenario, a horizontal array of line sensors
is placed perpendicular to the wind from 0 m to 200 m
downwind of the two symmetrically arranged sources in
Case 2 (Fig. 5b). Again, two sensors remain fixed at the end
locations and up to nine additional line sensors are spaced
evenly in the gap between them. An experimenter,
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Fig. 8. Condition number for the sources in Fig. 5a, with the stationary sensor mov
upwind source for all stratifications.
determined to distinguish the two sources but for some
reason unable to place the sensors optimally (as in Fig. 5c),
might hope to reduce sensitivity to noise by increasing the
number of downwind measurements. Given the results
shown in Fig. 10b, we see that the attempt would not meet
with much success. Although additional sensors provide
some benefit in unstable conditions, with k decreasing from
58 to 20 as the number of sensors grows from two to 11, it
generally remains fairly large.

From these two examples, it is clear that adding more
sensors without careful consideration of their geometry is
not guaranteed to improve sensitivity to error.
4. Discussion

There are three basic means by which we can improve
our emission rate predictions in light of the observed
sensitivity to measurement and model errors:
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Fig. 9. Condition number for the area sources in Fig. 5b and c as a function of the downwind distance from source 2 of two line sensors. (a) With both sensors at
height 1.5 m, minimum k occurs when one sensor is positioned near the downwind edge of each source, as in Fig. 5c; k / N whenever the two sensors are
collocated (diagonal line at lower right.) (b) With one sensor placed 1 m above the surface and the other at 3 m, maximum k no longer occurs when the sensors
are collocated. In each case, k is large whenever both sensors are downwind of both sources.
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(1) Most obviously, we can ensure that measurement and
modeling errors are kept as small as possible.
Measurement averaging time must be sufficiently long
to minimize noise in the data, while remaining within
the order 15–60 min averaging times implicit in mete-
orological correlations underpinning the dispersion
model’s algorithms (e.g., Flesch et al., 2004). When
using LS models, coefficient error caused by the
inherent randomness in such models can be reduced by
increasing the number of particles released, to the
extent possible within available computation time. Of
course, error due to mismatch between real-world flow
and idealized model flow cannot be reduced, except
(perhaps) by selecting more physically realistic
parameterizations.
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Fig. 10. Condition number vs. number of sensors for (a) the single-source profile
sensors in Fig. 5b. In both cases, little if any benefit is provided by additional senso
(2) We can seek to reduce the condition number of the
coefficient matrix A, typically by decreasing the likeli-
hood that equations within the system will be linearly
dependent. In the present context, this implies that to
the extent possible, the concentration sensors must be
placed so as to detect only one source at a time, while
ensuring that all sources are observed; and that sensors
remain physically separated from each other, so that the
relationships between local concentrations and emis-
sion rates are dissimilar. As the real-world setup
diverges from this arrangement, the emission rate
estimates become more error-sensitive.

(3) We can invoke different solution techniques and
constraints to overcome the effects of a large condition
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geometry shown in Fig. 1c; (b) the symmetric double-source case with line
rs distributed evenly between the outer sensors.
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number. For example, the number of measurements can
be increased to exceed the minimum required, in order
to reduce the significance of particular measurements
as the solution becomes ever less constrained by them.
This can be accomplished either by adding more
sensors or by incorporating data taken over a longer
time period.

Although using more sensors and/or data may be
helpful, it is prudent to minimize condition number as
much as possible by careful sensor placement (as described
above); as we have seen, adding an arbitrary number of
poorly located sensors will be of little or no benefit. Data
sets are finite and there are practical limits on the use of
fitting procedures to obtain good solutions, particularly
when source strengths are time-varying. A smoothness or
similar constraint such as that introduced by Siqueira et al.
(2000) is not possible in general, when no such relationship
exists between independent sources.

It is sometimes advantageous that the atmospheric
surface layer has a strong vertical asymmetry. Turbulent
transport processes lead to marked changes with height in
concentration at a given location (see Fig. 3). Measure-
ments taken at different heights tend to be dissimilar and
therefore improve the condition of the system. The same
turbulent mixing causes concentration to become more
uniform with height as the downwind distance from
a source increases, decreasing the potential benefit of
vertical inhomogeneity.

Our experiments have demonstrated that condition
number for a given geometry can vary significantly with
stratification. Mixing is suppressed under stable conditions,
so that vertical concentration differences are maintained
for longer fetches and concentration at a given level falls off
less quickly with distance downwind of the source.
Unstable conditions promote vertical mixing and more
uniform profiles, while concentration decreases more
rapidly with downwind fetch. Stability changes therefore
make sensor placement more challenging, since an
arrangement suitable for one stratification state might be
less so for another.

Overall, we expect that having sensors widely spaced
and possibly at different heights is a good practice where the
background is unknown or multiple sources are present. It is
an unfortunate reality that separating multiple sources is
likely to be difficult if not impossible in some cases because
sensors will have to be frequently repositioned to accom-
modate changes in wind direction and stratification.

The use of line-averaging concentration sensors
complicates the task of isolating individual sources. Line
sensors have excellent characteristics for measuring single
sources: their concentrations provide a better average over
the source plume and are therefore less susceptible to
source variability; they reduce sensitivity to wind direction
and increase the likelihood of the sensor intercepting the
emitted plume; and they allow more frequent and accurate
measurements because the (effective) gas concentration is
amplified by the detector’s path length. These same features
can become liabilities where more than one source is
present; their wider concentration footprint makes them
more prone to intercepting multiple emissions, which will
increase k. It is likely to be more important to take advantage
of vertical and horizontal asymmetries in concentration
distribution when placing line-average instruments.

5. Conclusions

The influence on sensitivity to error from source–sensor
geometry requires that we use great care in placing sensors
when measuring multiple sources and might force us to
relocate them as conditions change. The surface layer’s
variability greatly complicates the selection of a static
sensor placement; a practical configuration under one
wind direction, surface layer stability, and roughness
length might be unworkable under different conditions.
Adding more sensors is not guaranteed to improve the
solutions, but their careful placement will do so.

Using numerical models to assess the response of
condition number to a given placement of sensors under
different atmospheric conditions might help determine
a useful arrangement. Software could be adapted to auto-
mate the process of seeking optimum sensors’ placement
to minimize condition number for a given source configu-
ration and range of wind directions and stabilities. Ideally,
models would be run in real time to determine the
expected condition number and sensors would be
dynamically placed to accommodate changes as required.
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