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Abstract. It is well known that if turbulent mass convection is modelled as diffusion, errors result 
unless trajectories from the source (at h) to the point of observation (Zp) comprise many statistically- 
independent  segments (Taylor, 1921). We show that this is not guaranteed merely by the Lagrangian 
timescale (r) at the source being small (e.g., source at ground), but that a better criterion is 
t >> max[r(h), ~Zp)], where t is a typical travel time to zp. 

1. Introduction 

This note concerns the validity of the gradient-diffusion closure method (K-theory) 
for calculating vertical (z) dispersion from near-ground sources. It has usually 
been considered that if the Lagrangian timescale ~-(h) at the source height (h) is 
very small (i.e., the source is near or at the ground), diffusive solutions (K-theory) 
should be adequate because one expects that travel times (t) from the source to 
any realisable observation point should satisfy t/r(h) ~> 1 (e.g., Durbin, 1983). We 
show here, however, that even in such a case, predictions of K-theory are incorrect, 
our criterion being that they differ from the prediction of the corresponding 
Lagrangian statistical model (we do not claim that the Lagrangian model is correct, 
but simply that it is a better model than K-theory). Near the ground, both models 
give predictions in good agreement with observations, and differences between 
them are a small fraction of the mean concentration. But in the upper region of 
the plume (where the concentration is admittedly small), the fractional difference 
is large. Thus apparently it is necessary to impose a more stringent criterion for 
the acceptability of K-theory, namely that t/~-(zp) >> 1, where t is a typical travel 
time to the observation point (P) and ~'(Zp) is the timescale at that observation 
point. 

To show that K-theory is inadequate, we compare an analytical eddy-diffusion 
solution with the corresponding Lagrangian stochastic (LS) solution. The LS model 
implements the same wind profile and boundary conditions as the eddy-diffusion 
solution, and a vertical velocity variance o-2w and a Lagrangian timescale profile 
that together satisfy O-2wr(Z) = K. Any number of earlier-provided K-theory solu- 
tions (for arbitrary wind and diffusivity) would suffice for our purpose. But for 
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the sake of novelty, we present a simple series solution for a continuous elevated 
line source in the neutral surface layer which treats correctly the non-diffusive 
near field, and therefore overcomes what is usually regarded as the most serious 
flaw of K-theory. 

2. Eddy-Dispersion and Lagrangian Stochastic Models 

2.1. ~ A N A L Y T I C "  E D D Y - D I S P E R S I O N  M O D E L  

The "advection-diffusion" equation 

0 (K 0Q 
Ox - Oz \ Oz/  

is a simplification of the (averaged) mass conservation equation. We specify wind 
and diffusivity profiles 

ft = , K = b u , z  

and ensure correct windspeed and shear at the arbitrary reference height H by 
choosing m = 1 / ln (H / zo ) ,  where Zo is the surface roughness length. We choose 
b = 0.65 as the "von Karman constant for mass." This is controversial, but has 
been shown by Wilson (1982) and others to yield best agreement with dispersion 
experiments (in any case, the choice does not affect our conclusions). 

Let  a continuous line source of strength Q lie at (x, z) = (0, h). We wish to 
solve the advection-diffusion equation for x ~> 0 under the inflow condition: 

a(z)a(O, z)  = Q S ( z  - h)  

with reflection or absorption at z = z0. We treat near-field effects (Taylor, 1921) 
by writing a corrected diffusivity 

K ' ( x ,  z) = K(z)(1 - e x p ( - x / L ) )  

where L = a(h)  "c(h) is the alongwind lengthscale across which the diffusivity 
achieves its "far-field" value. (Implicitly we are assuming the equivalence x = 
f t(h)t  for the displacement of the scalar at short times after release; this method 

has been used previously by Raupach and Legg (1983) and Sullivan and Yip (1989), 
and is readily shown to yield Taylor 's solution for dispersion in homogeneous 
turbulence.) 

The differential operator  

Z m ~ Z  ~ZZ 
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has eigenfunctions 

corresponding to eigenvalues A 2 (Gradshteyn and Ryzhik, 1980) where y =  
(1 + m)/2, and Jo and No are zeroth-order Bessel functions of the first and second 
kind (for which simple polynomial formulae are available (Abramowitz and Ste- 
gun, 1970)). /x~ can be chosen to enforce a reflection or an absorption boundary 
condition at z0. With suitable specification of the normalising constant In (for 
which an expression is given by Abramowitz and Stegun), these eigenfunctions 
are orthonormal on the range (z0, 6) and form a basis for continuous functions of 
z on that range. 3 is a depth chosen to be large with respect to plume depth. We 
select a discrete spectrum of eigenvalues by enforcing 0,(6) = 0. The solution to 
this transcendental equation may be found by a simple numerical search, which 
produces a monotonically increasing set of A's. 

By substituting into the governing equation the assumed solution 

e(x, z) = Z R.(x)On(z) 

then multiplying through by z m Op(z) and integrating across the range (Zo, 8), we 
obtain with the aid of our inflow condition the specification: 

R~(x) = (QhmOn(h)~ F/-A2I-I~bu*\ + Le-X/L)l a(h) /exPLl )(x-L 

2.2. L A G R A N G I A N  S T O C H A S T I C  M O D E L  

We compare the above analytical solution with the prediction of a Lagrangian 
stochastic (LS) model of the vertical motion that, for inhomogeneous turbulence 
having Gaussian velocity distribution ga(Z, W) with height-independent variance 
o-~, uniquely satisfies Thomson's (1987) "well-mixed" criterion. The fluctuating 
horizontal velocity u' is neglected relative to the mean (which is consistent with 
the K-theory model), and the LS model is defined by: 

dw dt x2~w = - - - w  + d~w 
"/'L ~ "l-L 

dz = w dt 

rn 

dt 

d t - -  �9 

Here dsCw is a random variate chosen from a Gaussian distribution with mean zero 
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Fig. 1. Comparison of models with the Project Prairie Grass observations of cross-wind integrated 
concentration at distance x = 100 m downstream from a continuous source, and inset, the ratio of mean 
travel time to the Lagrangian timescale at the point of arrival. - . . . .  Eddy-diffusion solution. 

- -  Lagrangian stochastic solution. �9 Observations, Lmo < - 30 m. �9 Observations, ]Lmol > 60. 

a n d  v a r i a n c e  dt, a n d  ~ is r e q u i r e d  to  sat isfy /x ~ 1. T r a j e c t o r i e s  a r e  c o n f i n e d  to 

z ~> Zo by  p e r f e c t  r e f l ec t ion .  

3. C o m p a r i s o n  of  M o d e l s  a n d  O b s e r v a t i o n s  

In  F i g u r e  1, o u r  K - t h e o r y  a n d  LS s o l u t i o n s  a r e  c o m p a r e d  w i t h  P r o j e c t  P r a i r i e  

G r a s s  o b s e r v a t i o n s  ( P P G ;  B a r a d ,  1958) o f  t h e  v e r t i c a l  p ro f i l e  o f  n o r m a l i s e d  m e a n  

c r o s s w i n d - i n t e g r a t e d  c o n c e n t r a t i o n  aHE/Q at a d i s t a n c e  100 m d o w n s t r e a m  f r o m  

a c o n t i n u o u s  s o u r c e  at  h e i g h t  h = 0 .46 m .  O u r  s i m u l a t i o n s  u s e d  z0 = 0.006 m ,  and  

w e  se t  t h e  r e f e r e n c e  h e i g h t  H = 10 m (so b o t h  m o d e l s  h a v e  c o r r e c t  w i n d  a n d  s h e a r  
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at z = 10 m). As the PPG tracer (SO2) was not absorbed at the ground, we used 
the reflection boundary condition. 

The K-theory and LS solutions both predict well the observed concentration, 
except at large heights where concentration is anyway small (compared to its value 
at ground level). At those large heights the two solutions differ by a large factor 
(though by a small amount in absolute terms), with the K-theory concentration 
being the higher. If the source is placed at the ground, the differences persist. 
Both solutions necessarily conserve mass. 

Before commenting on the discrepancy between the solutions aloft, and the 
issue of which is "superior," we need to discuss our representation of the "neutral" 
PPG data. We have plotted both the average of 10 runs that were all performed 
in slightly unstable stratification (runs 33, 57, 20, 30, 61, 26, 62, 49, 44, 48) and 
satisfy the criterion on the Monin-Obukhov length that LMo < - 3 0  m; and the 
average of nine runs (33, 57, 20, 21, 42, 37, 24, 38, 45) that, regardless of 
stratification, satisfy ILMoI > 60 m. The latter representation of "neutral" PPG 
data yields smaller concentrations far aloft, presumably because a given magnitude 
for LMo on the stable side more strongly reduces the eddy diffusivity than the 
same magnitude on the unstable side increases it. Probably the "unstable runs 
only" selection is more justifiable. We mention the point because such ambiguity 
makes it hazardous to try to judge, by the sole criterion of agreement with available 
atmospheric tracer experiments, which is the more correct of the theoretical 
solutions. 

As can be deduced from the mean travel times (~) inset on Figure 1, the diffusion 
and LS solutions agree well only at heights z sufficiently small that t/'r(z) is large. 
Despite its apparently worse agreement with the (LMo < - 3 0 m )  observations 
aloft, we regard our LS solution as the more correct of the two (though certainly 
not as absolutely correct). It derives from clear (but not exactly-correct) assump- 
tions (that the Eulerian velocity probability density function ga(z, w) is Gaussian, 
and that the particle state (z, w) evolves as a Markov process), and has the weight 
of Thomson's criteria behind it. 

The LS model would have a stronger claim to represent reality if the streamwise 
velocity fluctuation u' and its correlation with w had been included. But the 
formulation of an unambiguous multi-dimensional LS model, with proper consider- 
ation of the implications of (for instance) non-Gaussian velocity distributions and 
incompressibility, is not at present possible. Furthermore, even when better LS 
models do become available, the particular model here used will remain the logical 
standard of comparison for the present K-theory solution. It is appropriate because 
(like the K-theory model that it judges) it is one-dimensional, and because it 
implements trajectories subjected to the minimum restrictions implied by K-theory. 
K-theory in its simplest form is but a parameterisation of the net result of stochastic 
trajectories with velocity scale crw and timescale rL. (In the same vein, Fick's law 
of molecular diffusion is only a useful macroscopic law for the outcome of a 
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microscopic  process whose  details are hidden.)  There  is no r o o m  in K- theory  to 

address finer points  such as the actuality of  the velocity pdf ' s .  

4. Conclusion 

The case of  a p lume dispersing f rom a nea r -g round  source over  a smooth  surface 

(by " s m o o t h "  we do not  mean  that  the surface is aerodynamica l ly  smooth ,  but  

that  the p lume is observed  at heights great ly exceeding the roughness  length z0) 

has been  regarded  as one  of  the few where  K- theory  is adequate .  It  will p robab ly  

not  be a surprise to those familiar with the limitations of  K- theory  that  even in this 

" forgiving"  case, deficiencies remain  - and manifest  themselves most  not iceably at 

the upper  edge of  the p lume,  where  extremal  trajectories contr ibute .  
M a n y  solutions a l ready exist that  adequate ly  predict  the mean  concent ra t ion  

near  the g round  due to sources in the surface layer. A l though  there  is no  practical  

need  for  be t te r  models  of  m e a n  concent ra t ion ,  there  is always justification for 

greater  rigour.  It  will be difficult to judge fur ther  improvements  by the cri terion 

of  ag reement  with the available field observat ions.  
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