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Abstract A number of authors have reported the problem of unrealistic velocities
(“rogue trajectories”) when computing the paths of particles in a turbulent flow using
modern Lagrangian stochastic (LS) models, and have resorted to ad hoc interven-
tions. We suggest that this problem stems from two causes: (1) unstable modes that
are intrinsic to the dynamical system constituted by the generalized Langevin equa-
tions, and whose actual triggering (expression) is conditional on the fields of the mean
velocity and Reynolds stress tensor and is liable to occur in complex, disturbed flows
(which, if computational, will also be imperfect and discontinuous); and, (2) the “stiff-
ness” of the generalized Langevin equations, which implies that the simple stochastic
generalization of the Euler scheme usually used to integrate these equations is not
sufficient to keep round-off errors under control. These two causes are connected, with
the first cause (dynamical instability) exacerbating the second (numerical instability);
removing the first cause does not necessarily correct the second, and vice versa. To
overcome this problem, we introduce a fractional-step integration scheme that splits
the velocity increment into contributions that are linear (Ui) and nonlinear (UiUj) in
the Lagrangian velocity fluctuation vector U, the nonlinear contribution being further
split into its diagonal and off-diagonal parts. The linear contribution and the diagonal
part of the nonlinear contribution to the solution are computed exactly (analytically)
over a finite timestep �t, allowing any dynamical instabilities in the system to be
diagnosed and removed, and circumventing the numerical instability that can poten-
tially result in integrating stiff equations using the commonly applied explicit Euler
scheme. We contrast results using this and the primitive Euler integration scheme for
computed trajectories in a drastically inhomogeneous urban canopy flow.
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1 Introduction

On the basis of Thomson’s (1987) “well-mixed condition” we may derive a Lagrangian
stochastic (LS) model for the paths of fluid elements in a turbulent flow, and be assured
that those paths are statistically consistent with the (given) joint probability density
function (pdf) ga of the flow’s Eulerian velocity field. For relatively simple meteoro-
logical flows (e.g., the horizontally uniform surface layer and/or convective boundary
layer), such models have proven very satisfactory, and in some respects (e.g., ability
to properly handle the near field in the vicinity of sources; or, rational inclusion of the
influence of velocity skewness) markedly superior to the common Eulerian formula-
tions. For more complex flows, and in particular urban flows, the superiority of the
Lagrangian approach is harder to demonstrate, in part because the well-mixed condi-
tion does not provide a unique three-dimensional (3-D) model, and in part because
one is never able to provide the LS model with a complete and true field of the velocity
statistics. Indeed, probably in treating them one will have had recourse to an Eulerian
flow model to compute the statistics of the wind field, and (wherever so) it would
present negligible additional burden to include an Eulerian computation, on the same
domain and grid, of tracer dispersion from any number of sources. Nevertheless, the
flexibility of the Lagrangian approach (grid free; ability to be run forward or backward
in time; etc.) remains a favourable factor for these complex flows.

But there appears to be a further difficulty with the complex 3-D LS models as
applied in highly disturbed flows, albeit a problem whose existence is not always recog-
nized. The problem is that in some circumstances, along some trajectories, physically
unrealistic velocities arise (“rogue trajectories”). In exploring this problem, which we
outline below, we shall refer specifically and exclusively to a particular 3-D LS model
(i.e., all three Lagrangian velocity fluctuations included); namely, that provided by
Thomson himself for fully inhomogeneous, Gaussian turbulence (“Thomson3D-G”).
However, we believe that the principles expounded here for dealing with the problem
should apply to other LS models. We deal only with forward-time LS models, so that
the timestep, dt or (where finite) �t, is to be regarded as positive.

Chronologically, the first report that an LS model may generate unrealistic (large)
velocities was probably that of Luhar and Britter (1989), who in modelling vertical mo-
tion in the convective boundary layer with a 1-D well-mixed model (and shortly after
the enunciation of Thomson’s well-mixed criterion), found it necessary to impose an
extraneous numerical constraint (i.e., lower bound) on the magnitude of the Eulerian
velocity pdf, ga(w) ≥ gmin, in order to prevent the occurrence of unrealistic vertical
velocities (A. Luhar 1992, personal communication). It is unclear whether or not this
necessity arose from their use of a constant timestep that exceeded the decorrrelation
time scale near boundaries, or from a dynamical instability of the pertinent (gener-
alized) Langevin equation, which is given in full by Luhar and Britter.1 The fact that
a lower bound needed to be imposed on ga in order to obtain a numerically stable

1 An anonymous reviewer has indicated that the need to impose a numerical constraint in the Luhar
and Britter (1989) model to prevent occurrence of unrealistic vertical velocities is most probably
caused by the dynamical instability of the Langevin equation used here for modelling dispersion in
the convective boundary layer.
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integration would suggest that the “drift correction” φ/ga in this model produced an
explosive (diverging) behaviour possibly owing to the fact that ga → 0 much faster
than φ → 0 as the vertical velocity |W| → ∞ (even though φ in the model was
constructed so that φ → 0 as |W| → ∞).

Naslund et al. (1994) provided computed fields of mean velocity, turbulence kinetic
energy (TKE) k and its dissipation rate ε to “drive” an LS simulation (specifically,
Thomson3D-G) of the mean concentration field due to continuous point sources
upwind and downwind from an idealized, rectangular building. Their k–ε (eddy vis-
cosity, νt ∝ k2/ε) flow model used the “Boussinesq-like” eddy-viscosity approxima-
tion to provide the LS model with the following simplified Reynolds stress tensor
(R ≡ Rij ≡ u′

iu
′
j):

u′
iu

′
j = −νt

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i �= j, (1a)

u′
1

2 = u′
2

2 = u′
3

2 = 2
3

k. (1b)

It is noted that the model for the Reynolds stress tensor used by Nasland et al.
(1994) differs from the conventional Boussinesq eddy-viscosity approximation and,
as such, the closure approximation used here does not rigorously satisfy coordinate
invariance. Naslund et al. (1994) reported “a rather weak dependence of (computed
dispersion) on the off-diagonal stresses” and (of more interest to us here) that the
Thomson LS model “becomes unstable” unless the stress tensor satisfies realizability.
Although Nasland et al. appear to claim that their proposed form for the Reynolds
stress tensor satisfies realizability (for their problem), this cannot be true in general
without imposition of a limiter on the magnitude of the eddy viscosity within the k–ε

model, as discussed in Vreman et al. (1994). Furthermore, our experience suggests
that although realizability of the Reynolds stress tensor is a necessary condition for
stability of the Thomson LS model (in the sense of suppressing the existence of “rogue
trajectories”), it is certainly not sufficient.

Yet another indication of the problem of “rogue trajectories” is found in Wilson and
Yee (2000), who reported LS simulations (again, with Thomson3D-G) of trajectories
in a regular staggered array of bluff aluminum plates in a wind tunnel (the computed
3-D flow field stemmed from an eddy-viscosity closure, and the Reynolds stress matrix
would have been realizable). Wilson and Yee noted that “Thomson’s criteria for LS
models do not limit the ‘permissible’ spatial variability of flow statistics; in principle,
arbitrary profiles are accommodated, provided only that the timestep is appropri-
ately small” (note: except in the case of spectral models, numerically modelled flow
fields are spatially discontinuous, although even for the latter case, velocity statistics
at the grid nodes can be interpolated to the particle positions to give a continuous
velocity field as seen by the LS model). However, they were unable to suppress rogue
trajectories by mere reduction of the timestep, and eliminated them by re-setting
the velocity randomly whenever and wherever the following two conditions occurred
simultaneously: namely, (1) velocity deviated by more than ten standard deviations
from the local mean, and (2) the conditional mean acceleration did not act in the
direction needed to restore the velocity back towards the mean. This latter condition
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could be thought of, roughly, as equivalent to an effectively negative time scale τ

in the Langevin equation (i.e., dU = −Udt/τ + bdξ), so that the drift term, which
in the simplest situations exerts a stabilizing influence on velocity, instead causes
instability.

The above examples may suffice to convince the reader that the problem of rogue
(computational) trajectories has been encountered by many who have performed
this type of work. We have mentioned several strategies that have been invoked.
Still another has been to suppress the velocity covariances (i.e., drop the off-diagonal
terms of the Reynolds stress tensor of the flow). Practically speaking, this is accept-
able, for to date there has been no demonstration that it is crucial to retain the velocity
covariance for an accurate prediction of the mean concentration field far away from
a source. However it is patently not a cure-all, for instability can occur even in a 1-D
LS model (witness the work by Luhar and Britter, 1989). None of these strategies for
controlling instability is universally successful, and to the best of our knowledge, this
is the first attempt to identify the root cause(s) and offer a strategy to overcome the
difficulty, albeit one whose general applicability remains to be proven.

2 Generalized langevin equation for well-mixed LS model

Before we begin, we present a short note on the notation that will be used. Bold upper
case symbols will be used to denote matrices, and bold lower case symbols will be used
to denote vectors. The only exception to this rule is U which will be used to denote
the Lagrangian velocity fluctuation vector. We shall also employ the Einstein summa-
tion convention in which repeated indices are summed (unless otherwise indicated).
Roman indices such as i, j, or k can take values of 1, 2, or 3. For any flow variable φ, φ

will denote the time average and φ′ the deviation of φ from its time-averaged value.
Furthermore, x ≡ (xi) ≡ (x, y, z), with i = 1, 2, or 3 representing the streamwise x,
spanwise y, or vertical z directions, respectively. Finally, the symbol “∼” will be used
to denote “distributed as”, and N(µ, σ 2) denotes a Normal or Gaussian distribution
with mean µ and variance σ 2 (or, standard deviation σ ).

Consider first the unique, 1-D well-mixed model appropriate to the vertical motion
of a fluid element in a neutrally stratified wall shear layer (surface layer), for which
we take the approximation that velocity statistics are Gaussian. The increment in
stochastic particle velocity (W(t) = dZ(t)/dt) at time t over a small time increment dt
is given by the classical Langevin equation

dW(t) = −W(t)
TL

dt + b dξ(t), (2)

and the increment in the vertical position Z(t) of the particle at time t is

dZ(t) = W(t)dt, (3)

where dξ(t) ∼ N(0, dt) is a random Gaussian variate. Here, ξ(t) represents a
Wiener process whose increments dξ(t) = ξ(t + dt) − ξ(t) are normally distributed
with 〈dξ(t)〉 = 0 and 〈dξ2(t)〉 = dt where 〈·〉 denotes an ensemble average (expected
value); and (for suitably restricted TL, b), W(t) is an Ornstein–Uhlenbeck process.
Furthermore, TL is (loosely) a Lagrangian velocity decorrelation time scale, which is
parameterized as
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TL = 2σ 2
w

C0ε(z)
, (4)

where C0 is a “universal” constant, σ 2
w is the (Eulerian) vertical velocity variance

(which is independent of position), and ε(z) ∝ 1/z is the rate of dissipation of turbu-
lence kinetic energy (z is the Eulerian vertical coordinate).

The simplest (and most commonly used) time discrete approximation (note: in this
paper, we shall ignore boundary conditions) for this Langevin equation is the stochas-
tic generalization of the Euler approximation for ordinary differential equations:

�W(t + �t) = −W(t)
TL

�t +
(

2σ 2
w

TL

)1/2

�ξ , (5)

�Z(t + �t) = W(t)�t, (6)

where �t � TL is a finite timestep and �ξ (increment of a Wiener process) is an
independent normally distributed random variable with zero mean and variance �t.
Note that, because �t, TL > 0, the drift term (�W ∝ −W) operates in favour of
dynamical stability, for it tends to return the Lagrangian velocity fluctuation towards
zero. Most often, a simple explicit Euler integration is used over the step �t (i.e., all
properties are evaluated at the initial position

(
W(t), Z(t)

)
in phase space correspond-

ing to the beginning of the discretization time interval) and the right-hand side(s)
permit one to compute

(
�W, �Z

)
, and thus W(t + �t), Z(t + �t) at the next discreti-

zation time (t + �t). The order of operations is ambiguous but, practically, irrelevant
for sufficiently small �t. Wilson and Flesch (1993) show how the discretization algo-
rithm can be analyzed rigorously, accounting for the finite timestep and for reflection
at boundaries. A computed trajectory will comprise a sequence of finite segments,
the segments being shorter (spatially and temporally) closer to boundaries, e.g., the
ground (Eulerian coordinate z = 0).

We have run through the simple case above in order to contrast it with the far more
complex algorithm(s) that have sometimes been applied to compute particle disper-
sion in highly disturbed urban flows. In contrast to the latter case whose Lagrangian
dynamics typically involves multiple (and disparate) time scales, the dynamics embod-
ied in Eq. 2 contains only a single (relevant) time scale TL. In stationary Gaussian
turbulence, by definition, the velocity fluctuations are jointly Gaussian, and accord-
ingly the probability density function for the Eulerian velocity fluctuation is

ga
(
u′|x) =

[
det

(
R−1)]1/2

(2π)3/2 exp

(
−1

2
u′

iR
−1
ij u′

j

)
, (7)

where u′ ≡ (u′, v′, w′) and dependence on position x arises through the spatial vari-
ation of the inverse, R−1, of the Reynolds stress tensor. We note that the existence
of a Gaussian pdf for the Eulerian velocity fluctuations requires that the Reynolds
stress tensor R has full rank (viz., the rank r of R is 3) for otherwise R−1 would not
exist. Note that if r = 3, R is positive definite. A necessary and sufficient condition
for R to be positive definite is that the underlying Eulerian velocity fluctuations be a
physically realizable process. The latter requires that Rii > 0; Rij ≤ (

RiiRjj
)1/2, i �= j;

and det(Rij) > 0 (no summation over repeated indices). A mathematically equiva-
lent statement of the realizability condition is that all three eigenvalues of the stress
tensor R be positive.
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Thomson’s 3-D model for the Lagrangian velocity fluctuation2 for Gaussian turbu-
lence can be expressed

dUi =
(

T(0)
i + T(1)

ij Uj + T(2)

ijk UjUk

)
dt + (

C0ε
)1/2 dξi, (8)

where

T(0)
i ≡ 1

2
∂Ri


∂x


, (9)

T(1)
ij ≡ −1

2

(
C0ε

)
R−1

ij + 1
2

R−1

j

∂Ri


∂xk
uk

= −1
2

C0εR−1
ij + T(2)

ijk uk, (10)

T(2)

ijk ≡ 1
2

R−1

j

∂Ri


∂xk
. (11)

Here, ui is the i-th component of the mean Eulerian velocity of the flow. Finally, the
particle coordinates evolve according to

dXi = (
ui + Ui

)
dt. (12)

We note that T(1)
ij is effectively an “inverse time scale” matrix for relaxation of the

velocity fluctuations towards zero. The inverse characteristic time scales (implicit in
T(1)

ij and controlling relaxation of the velocity fluctuations towards zero, in the con-
text of Eq. 8 or more precisely, in the case that we dropped the quadratic term) are
determined by the real parts of the eigenvalues of the matrix T(1)

ij . For complicated
(computed) flow fields, there is no guarantee that the real parts of these eigenvalues are
negative,3 suggesting the existence of unstable (or, exponentially increasing) modes
that can lead to an intrinsic instability in the dynamics (so, rather than relaxing towards
the state of zero velocity fluctuations, this part of the conditional mean acceleration
might cause a rapid (exponential) divergence from this stable state in some direction
of U). There is nothing in the well-mixed criterion that would preclude the presence
of these unstable modes in the dynamics of a well-mixed model, so it is a reasonable
possibility that they are one of the causes of the observed rogue trajectories. If we
assume these unstable modes are unphysical, then upon eliminating them we should
remove the first cause for rogue velocities.

If unstable modes exist in

T(1)
ij = −1

2

(
C0ε

)
R−1

ij + 1
2

R−1

j

∂Ri


∂xk
uk, (13)

then they arise solely from the second term, since provided the Reynolds stress tensor
is physically realizable (i.e., positive definite), the first term can only give rise to neg-
ative (stabilizing) eigenvalues. As seen in Eq. 9, this second term also appears in T(2)

ijk ,
so potentially there are directions in velocity fluctuation space where the quadratic
term also will contribute unstable (explosive) modes in the dynamics.

2 The distinction between a model for the increment in Lagrangian fluctuation Ui and a model
for the increment in total velocity Ui + ui can be inferred from d (Ui + ui) ≡ dUi + dui = dUi +(
uj + Uj

) (
∂ui

/
∂xj

)
dt.

3 The significance of the sign is that only negative eigenvalues have the desirable property of returning
the velocity fluctuation towards zero.
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In view of all this, we hypothesize that there are two major causes for the observed
instabilities; namely, (1) the potential presence of unstable modes that are intrinsic
to the dynamical system (likely to be present for the complex flow fields within the
urban arrays); and, (2) even in the absence of these unstable modes, the dynamical sys-
tem for complex flow fields modelled by the stochastic differential equations (SDEs)
in this case involves multiple and disparate time scales and, hence, is stiff. Loosely
speaking, a ‘stiff’ system is one whose governing differential equations involve several
widely different rate constants or time scales (e.g., τ1, τ2 with τ1 � τ2). The difficulties
that solvers have with stiff differential equations are problems of numerical stability
(Garfinkel and Marbach 1977): for the necessity to set the timestep �t � τ1 to render
truncation errors tolerable raises the possibility of excessive round-off errors since
now �t is absurdly small relative to the time scale τ2 of the slowly varying influences.
In view of this, the simple explicit Euler scheme used to integrate potentially stiff
stochastic differential equations may not keep round-off errors under control, leading
(potentially) to a “stochastic” numerical stability problem. Indeed, using an explicit
simple Euler scheme to integrate a stochastic differential equation involving disparate
time scales will require using an unacceptably small timestep size (smaller than the
smallest time scale in the system) in order to maintain the stability of the integration.

In summary, the two mentioned causes for observed instabilities are intimately con-
nected, with the first cause (dynamical instability) exacerbating the second (numerical
instability arising from stiffness of the differential equations). Also, even if the first
cause was eliminated, the second cause can potentially still exist since multiple and
disparate time scales in a system can persist even in the absence of unstable dynamical
modes.

3 A fractional-step, semi-analytic time integration scheme

Although methods have been constructed to integrate stiff ordinary differential equa-
tions (e.g., Hu 1999; Moore and Petzold 1994), it is difficult to generalize these methods
to stiff stochastic differential equations owing to the extreme difficulty of evaluating
multiple stochastic (Wiener) integrals with non-constant integrands involving func-
tions of the drift and diffusion coefficients and their derivatives. To integrate the stiff
SDEs resulting from application of Thomson3D-G [cf. Eqs. 8 and 12] for the predic-
tion of tracer dispersion in the complex inhomogeneous flows of an urban canopy, we
propose the application of a fractional-step semi-analytical time integration scheme.
First, given the particle velocity U(t) at time t, the particle position X that evolves
according to Eq. 12 is updated using an explicit Euler step

X(t + �t) = X(t) +
(

u
(
X(t)

) + U(t)
)
�t. (14)

Next, the particle velocity that evolves in accordance with Eq. 8 is updated with the
coefficients T(0)

i , T(1)
ij , and T(2)

ijk evaluated at the newly-updated position X(t + �t)
[cf. Eq. 14] and these coefficients are then considered to be frozen during the sin-
gle timestep update of U(t) to U(t + �t). The update of the particle velocity is
implemented using a fractional-step method in which a timestep is split up into three
sub-steps, and different physical effects are accounted for separately in each sub-
step. The dynamics associated with the constant and linear in U terms as well as
the stochastic forcing term are accounted for in the first sub-step; and, the dynamics
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corresponding to the diagonal and off-diagonal components in the quadratic in U term
are accounted for in the second and third sub-steps, respectively. In consequence, the
method of fractional-steps applied to Eq. 8 to get from timestep t to t + �t would
involve the following sequence of three updates associated with the three sub-steps,
which symbolically can be expressed as follows:

U∗ = F1
(
U(t), �t

)
, (15a)

U∗∗ = F2
(
U∗, �t

)
, (15b)

U(t + �t) = F3
(
U∗∗, �t

)
. (15c)

To apply the method of fractional steps to Thomson3D-G, we begin by “splitting” the
Lagrangian velocity fluctuation increment as follows:

dUi = dU(1)
i + dU(2)

i + dU(3)
i , (16)

dU(1)
i =

(
T(0)

i + T(1)
ij Uj

)
dt + (C0ε)

1/2 dξi, (17)

dU(2)
i = T(2)

(i)(i)(i)U(i)U(i) dt, (18)

dU(3)
i = T(2)

ijk UjUk dt, {i, j, k}\{i = j = k}, (19)

where the brackets (i) indicate that there is no summation over the enclosed index.
Now, we proceed to demonstrate that the first two contributions to the fractional-step
method can be obtained analytically over a finite timestep �t (viz., there are analytical
forms for the mappings F1 and F2).

To proceed, we consider the integration scheme for updating U from t to t + �t for
each part or contribution in the velocity fluctuations as if it were the only contribution
to dU. For the first piece, the velocity increment would be the solution of (where we
use matrix notation, rather than tensor notation)

dU = a0dt + A1U dt + B dw, (20)

where dw ≡ (dξ1, dξ2, dξ3),

a0 ≡ 1
2

∂Rij

∂xj
, (21)

and

A1 ≡ −1
2

(
C0ε

)
R−1

ij + 1
2

R−1

j

∂Ri


∂xk
uk, (22)

B ≡ (
C0ε

)1/2
δij. (23)

If it happened that A1 were diagonal, then we would have three separable (i.e.,
uncoupled, independent, non-interacting4) stochastic differential equations for dU1,
dU2, dU3, of generic form

4 In fact, since the coefficients depend on vector position, and vector position of the particle does
change during the timestep, in principle this statement is false; but, it is understood that for the pur-
poses at hand, statistical properties of the flow are held fixed along each trajectory segment, taking
the values appropriate to (the gridpoint nearest) the position of the particle at the commencement of
the timestep (viz., the drift and diffusion coefficients are “frozen” at their values at the beginning of
each timestep).
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dU(t) = (a0 + A1U(t)) dt + B dξ(t), (24)

where the scalars a0, A1, and B are constants (more precisely, frozen coefficients).
Assuming the coefficient A1 < 0, this is essentially the classical Langevin equation,
the term a0 entailing an additional (constant) acceleration over the timestep. Let
U(t0) be the initial velocity at the beginning of the timestep (which corresponds
to time t0, so U(t0) ≡ U0). The velocity at the end of the timestep, U(t0 + �t),
for a finite step �t is stochastic and can be readily obtained as follows. A solu-
tion in realizations U(t) of Eq. 24 can be constructed by using the integrating fac-
tor K(t, t0) = exp

(
A1(t − t0)

)
to write the stochastic differential equation for the

transformed quantity, V(t) ≡ F
(
U(t), t

) = K−1(t, t0)U(t), which by virtue of the Ito
formula5 (or, equivalently an integration by parts) has the form

d
(K−1(t, t0)U(t)

) =
(

dK−1(t, t0)
dt

U(t) + (
a0 + A1U(t)

)K−1(t, t0)
)

dt

+BK−1(t, t0) dξ(t). (25)

Noting that

dK−1(t, t0)
dt

= −A1K−1(t, t0), (26)

it is now straightforward to integrate Eq. 25 to give

U(t) = K(t, t0)U0 +
∫ t

t0
K(t, τ)a0 dτ +

∫ t

t0
K(t, τ)B dξ(τ ). (27)

Substituting the explicit form for K(t, t0) in Eq. 27 and noting that (t − t0) = �t results
in the following solution

U(t) ≡ U(t0 + �t) = exp
(
A1�t

)
U0 − a0

A1

(
1 − exp

(
A1�t

)) + γ (t), (28)

where

γ (t) ≡ B exp
(
A1t

) ∫ t

t0
exp

(−A1τ
)

dξ(τ ). (29)

It is easy to demonstrate that γ (t) is a Gaussian random variable with zero mean and
variance

〈
γ 2(t)

〉 = B2

2A1

(
exp

(
2A1�t

) − 1
)

, (30)

5 If U(t) is an Ito process (i.e., determined as the solution of a generalized Langevin equation), then
the stochastic process f (t) = F

(
U(t), t

)
also has an Ito stochastic differential that satisfies the following

Ito formula (using matrix notation, rather than tensor notation):

df (t) = ∂F
∂t

(
U(t), t) dt + ∇UF(U(t), t) · dU(t) + 1

2
tr

{
∂2

UF(U(t), t)BBT
}

dt,

where tr(·) denotes the trace operation and superscript “T” denotes the matrix transpose operation.
Here, B refers to the diffusion matrix [cf. Eq. 20] of the generalized Langevin equation of which U(t)
is the solution. Furthermore, it is assumed that F(·, ·) is a continuous mapping with continuous partial
derivatives ∂F

/
∂t, ∇UF and ∂2

UF.
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using the fact that
〈
dξ(s)

〉 = 0 and
〈
dξ(s)dξ(s′)

〉 = δ(s − s′) ds ds′. In consequence, U(t)
in Eq. 28 is a Gaussian process with mean

〈U(t)〉 = exp
(
A1�t

)
U0 − a0

A1

(
1 − exp

(
A1�t

))
, (31)

and variance 〈(
U(t) − 〈

U(t)
〉)2〉 = 〈

γ 2(t)
〉 = B2

2A1

(
exp

(
2A1�t

) − 1
)

, (32)

recalling that t = t0 + �t and U(t0) ≡ U0.

3.1 Integration of linear term: first step

Now returning to the general case (A1 not diagonal), due to its second term A1 is not a
symmetric matrix. Accordingly, its eigenvalues are not guaranteed to be real, and A1
could have one real eigenvalue and two complex eigenvalues occurring as a complex
conjugate pair (implying the presence of a resonant or oscillatory mode in the dynam-
ical system). However, experience with a number of (computed) flows about regular
and staggered arrays of cubes and other obstacles suggests such instances do not occur,
or if they do must be extremely rare.6 The following integration scheme assumes A1
has three real eigenvalues whose associated eigenvectors form an independent basis
set for the velocity fluctuation space. In this case, A1 has the eigenvalue-eigenvector
decomposition

A1 = SS−1, (33)

where

 =

λ1 0 0

0 λ2 0
0 0 λ3


 , (34)

gives the eigenvalues of A1, and the columns of S contain the corresponding unit
eigenvectors (viz., eigenvectors normalized to have unit length). Expressed in the
eigenframe of A1, the Lagrangian velocity fluctuation vector is

Urot = S−1U (35)

(with reverse transformation U = SUrot) and Eq. 20 transforms to

dUrot = Urot dt + S−1a0 dt + S−1B dw. (36)

In this frame the velocity components are uncoupled (i.e., we have three independent
Langevin equations), but now the components of the stochastic forcing (or, “noise”)
term are correlated. Applying the technique mutatis mutandis described after Eq. 24
above, Eq. 36 can be integrated exactly over one timestep to give

Urot
i (t) ≡ Urot

i (t0 + �t)

= Urot
i,0 exp

(
λi�t

) − ki

λi

(
1 − exp

(
λi�t

)) + γi(t). (37)

6 In the unlikely case that A1 did have positive eigenvalues and/or complex eigenvalues, one might
ignore the second term in A1, rendering it symmetric, and guaranteeing its eigenvalues are real and
negative (provided R is realizable, i.e., positive definite). However, this is a rather drastic step and
would undoubtedly lead to a violation of the well-mixed condition for the LS model.
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Here, the stochastic forcing γi(t) has the form

γi(t) = (
C0ε

)1/2 ∑
j

S−1
ij exp

(
λi�t

) ∫ t

t0
exp

(−λis
)
dξj(s). (38)

Furthermore,

k ≡ ki = S−1a0, (39)

and Ui(t0) ≡ Ui,0 and Urot
i (t0) ≡ Urot

i,0 are the velocities at the start, t0, of the timestep,
in the laboratory and rotated frames, respectively. It is straightforward to show that
the stochastic forcing in Eq. 38 (i.e., γi(t)) involves Gaussian random variables with
zero mean (i.e., 〈γi(t)〉 = 0) and variance-covariance matrix

〈γi(t)γj(t)〉 =
(
C0ε

)
(λi + λj)

(∑
k

S−1
ik S−1

jk

) (
exp

(
(λi + λj)�t

) − 1
)

=
(
C0ε

)
(λi + λj)

(
exp

(
(λi + λj)�t

) − 1
)
δij, (40)

where
∑

k S−1
ik S−1

jk = δij has been used (δij is the Kronecker delta function) owing to
the fact that S is an orthonormal (eigenvector) matrix. In deriving Eq. 40, use was
made of the fact that

〈
dξi(s)dξj(s′)

〉 = δijδ(s − s′)ds ds′.
By these steps one can exactly integrate the first (linear part) of the generalized

Langevin equation. The dynamical system is intrinsically stable if and only if the ei-
genvalues of A1 are strictly negative, implying that there are no dynamically unstable
(or explosive) modes in the solution. The analytical solution given above also cir-
cumvents the potential numerical instability in a finite difference scheme arising from
the stiffness of the equations (viz., here the solution over one timestep is calculated
exactly without having to resort to a finite difference scheme such as a simple Euler
scheme). Nevertheless, it needs to be emphasized the timestep �t still must be chosen
to be smaller than the characteristic time scales of the problem in order to ensure that
the fractional change in the background velocity statistics over a timestep is small,
so that the particle does not change its position significantly in phase space in any
timestep. Eq. 37 after rotation by S explicitly defines the first update mapping F1 in
Eq. 15a.

3.2 Integration of diagonal part of nonlinear terms: second step

After the previous step accounting for the linear contributions, and using the resul-
tant intermediate estimate Ui(t) as the initial condition at time point t0 (we may call
it Ui(t0) ≡ U0∗

i ≡ U∗
0), we focus on the second piece of the fractional-step method;

namely, that associated with the diagonal part of the nonlinear terms which, by virtue
of Eqs. 11 and 18, can be written explicitly as

dUi(t) = 1
2

U(i)(t)R
−1

(i)

∂R(i)


∂x(i)
U(i)(t) dt ≡ giU2

(i)(t) dt, (41)

where the vector field g ≡ gi defined by the previous equation is not to be confused
with the Eulerian velocity pdf, ga. This differential equation is readily integrated
exactly to give
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Ui(t) ≡ Ui(t0 + �t) = U0∗
i

1 − giU0∗
i �t

. (42)

Equation 42 now explicitly defines the second update mapping F2 in Eq. 15b of
the fractional-step method (and, allows the update of the solution from U∗ to U∗∗).
In this case, F2 can be determined analytically. Note from Eq. 42 that the particle
velocity fluctuations can experience a singularity in finite time if sgn(gi) = sgn(U0∗

i ).
However, if sgn(gi) = −sgn(U0∗

i ), Eq. 42 is dynamically stable and corresponds to
a contraction of the particle velocity fluctuation vector towards zero (viz., the total
particle velocity relaxes towards the background mean velocity). The mentioned
singularity can always be avoided if one applies the second fractional step only if
sgn(gi) = −sgn(U0∗

i ). However, this is a radical process in the sense that it alters the
equations being solved and may lead to a violation of the well-mixed condition for the
LS model. An alternative to avoiding the finite-time singularity would be to restrict
the size of the timestep �t whenever sgn(gi) = sgn(U0∗

i ). For the latter case, it is seen
from Eq. 42 that the finite-time singularity can be avoided if the timestep is chosen
such that �t = f min

(
1/(g1U0∗

1 ), 1/(g2U0∗
2 ), 1/(g3U0∗

3 )
)
, where f ∈ (0, 1). This choice

of timestep implies that any component of the solution for the update from U∗ to U∗∗
can at most be amplified by the factor 1/(1 − f ) whenever sgn(gi) = sgn(U0∗

i ).

3.3 Integration of off-diagonal part of nonlinear terms: third step

Finally, we account for the “off-diagonal part” of the quadratic term in a third frac-
tional step, using the simple forward Euler method because no analytical integration
is possible. The Euler scheme is applied using the intermediate result of U obtained
in the second fractional step (we may call it U∗∗) as the initial condition for the Euler
step. Unlike the first and second fractional steps, there is no guarantee that this part of
the update of velocity fluctuations is stable (dynamically and/or numerically). In con-
sequence, the explicit Euler scheme defines the third update mapping F3 in Eq. 15c,
and this is the only mapping that cannot be analytically determined.

3.4 Choice of timestep

In the ordinary Langevin equation given earlier [cf. Eq. (24)], the effective time scale
relative to which we must limit the timestep is 1/(−A1), where A1 < 0 (for dynamical
stability). In the more general case at hand, we have three natural time scales (−1/λi)
defined by the flow statistics, of which the shortest (−1/λmax) provides the stron-
gest limit on �t (λmax is the largest, i.e., least negative eigenvalue of A1). However,
the specification TL = −1/λmax is problematical wherever λmax is nearly zero (e.g.,
in the case of the water-channel flow in the regular array of obstacles—described
later—the largest eigenvalue for any cell in the flow domain is −1.5825 × 10−5 s−1,
implying TL = 63, 187 s), and in practise there are other time scales that limit the
timestep (such as convective time scales or inhomogeneity time scales).

Consequently, in the context of the semi-analytical integration of the Langevin
equations, we consider that the effective Lagrangian decorrelation time scale is

TL = min

[
− 1

λmax
,

2σ 2
w

C0ε

]
. (43)



Boundary-Layer Meteorol (2007) 122:243–261 255

(or an appropriate generalization, if σ 2
w is not the smallest of the velocity variances).

Then the timestep is limited to be �t = µTL where µ � 1.
Finally, it is noted that the background velocity statistics do not change during the

simulation. Due to this, the drift coefficients T(0)
i , T(1)

ij , and T(2)

ijk and the diffusion

coefficient (C0ε)
1/2 in Eq. 8 can be computed at the grid nodes used in the numerical

representation of the background velocity field before the LS simulation, and hence
the cost of the re-evaluation of these coefficients is completely negligible since they
can be accessed through a look-up table. Similarly, for the semi-analytical integration
of the generalized Langevin equations, the eigenvector–eigenvalue decomposition
of Eq. 33 (which depends only on the background velocity statistics) can be com-
puted before the LS simulation, stored, and accessed efficiently through a look-up
table. In view of this, the computational effort needed to integrate the generalized
Langevin equations of Thomson3D-G using the semi-analytical scheme proposed
here is not substantially greater than the effort necessitated by the far simpler Euler
scheme.

4 Simulations using fractional-step semi-analytical scheme

The Mock Urban Setting Test (MUST) experiments (Yee and Biltoft 2004) involved
an array of shipping containers laid out to form a regular aligned obstacle array
on a salt flat at the U.S. Army Dugway Proving Grounds, in Utah. Here, we exam-
ine the performance of the fractional-step semi-analytical integration scheme for
Thomson3D-G relative to dispersion measurements carried out in a physical simula-
tion of MUST undertaken in a water channel (Fig. 1). The water channel array con-
sisted of 12 × 10 obstacles; obstacle dimensions were (Xb, Yb, Hb) = (11.8, 59.4, 12.4)

mm, where x is the direction of the mean stream, and the canyon widths were
(Xc, Yc) = (62.9, 38.5) mm. More details of this water-channel experiment can be
found in Yee et al. (2006). A k–ε turbulence flow model (Lien and Yee 2004) was used
to compute an approximate field of velocity statistics for the MUST array, with mea-
sured profiles imposed at the upstream boundary; the computational domain included
only one column of obstacles, and was continued cross-stream by the application of
a periodic boundary condition in the spanwise direction. The mesh over the com-
putational domain was defined by 202 × 42 × 44 coordinate lines along respectively
the streamwise, lateral and vertical directions. For each gridpoint, the eigenvalues
λi and the corresponding eigenvectors of A1 were computed, along with all other
needed variables (e.g., mean velocities ui, velocity variances, TKE dissipation rate ε,
etc.).

Regarding the LS trajectory modelling, we need to specify a value for the
Kolmogorov coefficient C0. To this purpose, it is noted that Thomson’s (1987) well-
mixed LS model for Gaussian turbulence implies an eddy diffusivity for vertical
dispersion in the diffusion limit as the Lagrangian decorrelation time scale TL tends
to zero (Sawford and Guest 1988). In particular, for the 2-D and 3-D versions of
Thomson’s well-mixed LS model for Gaussian turbulence in a neutrally stratified wall
shear layer (with cross-covariances between the velocity fluctuations retained), the
implied eddy diffusivity in the diffusion limit has the form

Km = 2
(
σ 4

w + u4∗
)

C0ε
, (44)
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Fig. 1 Configuration of the water-channel MUST experiments (scale of the water channel simulations
relative to the atmospheric MUST tests was 1:205). The mean flow was directed along the x-axis, and
the tracer point source was at position L for all trajectories of subsequent figures

where u∗ is the friction velocity; whereas, for the 1-D version of Thomson’s well-mixed
LS model for Gaussian turbulence or the 2-D and 3-D versions of this model with
the cross-covariances between the velocity fluctuations neglected, the implied eddy
diffusivity in the small time scale limit (or, in the far-field limit) has the form

Km = 2σ 4
w

C0ε
. (45)

But for a neutral wall shear layer Km = (
kvu∗z

)/
Sc (where K ≡ kvu∗z is the eddy

viscosity for the neutral surface layer, kv ≈ 0.4 is von Karman’s constant and Sc is the
turbulent Schmidt number) and ε = u3∗

/
kvz, so

1
Sc

= 2
C0

(
σ 4

w

u4∗
+ 1

)
. (46)

Interpretation of observations from the experiment Project Prairie Grass indicates
that Sc ≈ 0.63 and using σw/u∗ ≈ 1.3 in the neutral wall shear layer, we obtain
C0 = 4.8 for Thomson3D-G (consistent with the dimensionality of the LS model),
which we use for our subsequent simulations (Wilson et al. 2001). It is not necessary to
cover other, largely irrelevant details, such as our method for ensuring trajectories are
reflected off building “walls”. However, we do note that no extraneous interventions
were made to control rogue trajectories.
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Fig. 2 Trajectories in the MUST array, computed using Thomson’s 3-D LS model for Gaussian tur-
bulence. Euler integration with timestep �t/TL = 0.1 was used. No regularization of R−1. Note that
a smaller number of paths are shown than on subsequent figures

Figure 2 shows trajectories in the MUST array computed using the simple
Euler scheme with a timestep �t/TL = 0.1, and without any regularization7 of R−1.
Particles have been released near ground midway between the two windward-most
buildings, and their trajectories are displayed wherever particle height z/Hb ≤ 1. One
can readily identify the straight line paths (indicating excessive velocities, i.e., rogue
trajectories), some of which traverse excluded (“building”) space—though only due
to the fact that the subroutine alluded to does not anticipate that the velocity of inci-

7 When R is nearly singular, its inverse is very sensitive to numerical operations that can introduce
numerical noise such as round-off errors. Previously, we had assumed that the observed instabilities
in Thomson3D-G were due to a nearly singular R, whose inverse is ill-conditioned in the sense that its
computation is very sensitive to numerical round-off errors. In consequence, regularization methods
must be used to obtain a “stable” inverse of R in this case. To this purpose, we applied a truncated
singular value decomposition (SVD) of R to compute a pseudoinverse of R for use in Thomson3D-G
in which the contributions of small (near zero) singular values of R are discarded in the determination
of the “inverse”. Needlessly to say, using a truncated SVD to compute a pseudoinverse for R did not
solve the problem of rogue trajectories.

The singular value decomposition of a matrix X of size m × n is

X = U�VT , (47)

where U and V are m × m and n × n orthogonal matrices, respectively, � is an m × n diagonal matrix
with nonnegative singular values σj, j = 1, . . . , min(m, n), arranged in non-increasing order along the
diagonal (Golub and Van Loan 1996).
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�
Fig. 3 Trajectories in the MUST array, computed using Thomson’s 3-D LS model for Gaussian tur-
bulence. A fractional-step semi-analytical time integration with time step �t/TL = 0.1 was used.
Upper panel: all terms in generalized Langevin equation retained. Lower panel: off-diagonal part of
the nonlinear term of Eq. 19 neglected. The “plume” appears to be wider than that shown in Fig. 2,
only because (here) many more paths are shown, including, naturally, a greater number of extreme
paths

dence on a building could be so large that, upon reflection, it might proceed through
yet another building. This simulation repeatably ended in a program crash.

The upper panel of Fig. 3 shows trajectories in the MUST array, computed using the
fractional-step semi-analytical integration scheme (all terms included) and �t/TL =
0.1. Note that, although this simulation does not “freeze” due to program instability,
some excessive velocities still occurred, carrying particles across excluded building
spaces. In contrast, the trajectories of the lower panel, which differ only because
the off-diagonal components of the nonlinear terms have been dropped, show no
sign whatsoever of instability. Interestingly, trajectories computed with the full semi-
analytical integration and with �t/TL = 0.01, are equally acceptable. This would sug-
gest that the observed instability in the off-diagonal components of the nonlinear term
arises not from the presence of unstable (explosive) modes inherent in the dynamics,
but rather from the presence of multiple and disparate time scales that result in a stiff
system of differential equations that need to be integrated numerically in the third
step. In this case, use of a sufficiently small timestep (e.g., �t/TL = 0.01) in the explicit
Euler scheme would permit a numerically stable integration of the stiff equations.

If it is known a priori that no dynamical instability (explosive modes) is present in
the dynamics represented by the system of ordinary differential equations involving
the off-diagonal components of the nonlinear term [cf. Eq. 19], then presumably it
would be possible to use a specialized differential solver for the stiff system of equa-
tions (e.g., Iserles 1981; Hu 1999; Moore and Penzold 1994), but this would complicate
the proposed integration scheme significantly. Furthermore, if it is known a priori that
no dynamical instability is present in the dynamics represented by constant, linear in
U, and stochastic forcing parts of the stochastic differential equation given by Eq. 18,
then presumably the analytical solution for this equation over one timestep can be
replaced by a stochastic version of a differential solver for a stiff system of ordinary
differential equations. However, a stochastic version of a differential stiff solver for
Eq. 18 is non-trivial to develop as the solver must necessarily respect the Ito calculus
that governs the stochastic forcing term in this equation (Kloeden and Platen 1995).

5 Conclusions

From the preceding discussion we conclude that

– the problem of rogue trajectories subtly hinges on the adequacy of the integration
scheme and the dynamics of the generalized Langevin equation;

– the new scheme is guaranteed to eliminate rogue trajectories only if the off-diago-
nal terms of the nonlinear contribution are eliminated (for the new scheme offers
no alternative but the explicit Euler method, for this component), although if
the instability in this contribution arises only from the presence of multiple time
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scales in the system rather than from the presence of unstable modes intrinsic to
the dynamics, specialized stiff differential equation solvers can be utilized;

– refinement of the timestep will sometimes suffice to suppress unrealistic veloci-
ties when using only the explicit Euler scheme for integration of the system of
differential equations in the third step;

– the mean concentration field is not necessarily greatly impacted by the occurrence
of rogue trajectories.

In closing we note that one of the beauties of the simpler Lagrangian stochastic
models is their mathematical and computational simplicity, and that the necessity to
invoke the integration scheme laid out here, if necessity it is, penalizes the model in
these respects. Unless instability is so severe (in the context of the given flow statistics
and the chosen timestep) as to cause floating point errors, some may prefer to live with
(a tolerably few) rogue paths, than to program the elaborate steps outlined above,
which necessitate (too) the use of ancillary linear algebra software.
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