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l. TIntroduction

Numerical solutions to the equations of
motion for flow through a porous windbreak have
been compared with the experimental data of
Bradley and Mulhearn (1983) for flow through a
50% porous slatted fence. The aim of this work
is to evaluate closure schemes (turbulence
models) and to provide design guidelines for
isolated windbreaks and ultimately for multiple
windbreaks (windbreak networks). The effect of
the windbreak has been parameterised by including
in the streamwise-momentum equation a momentum
sink of strength k. GTE 8(x,0) for a
fence/net, or cy a(x,z) u|u| for vegetative
shelter (where ﬂ is the pressure-loss
coefficient of the fence, u is the time average
streamwise (x) velocity, 8§(x,0) is the delta
function, cy is a drag coefficient, a(x,z) is the
vegetative area density, and z is the vertical
coordinate). A more detailed account of this
work is given by Wilson (1985).

2. Governing Equations and Closure Schemes

With the x coordinate chosen parallel
to the mean flow and the windbreak perpendicular
to the flow and of infinite crosswind extent, the
mean flow pattern 1s two—dimensional, and for
steady, neutrally-stratified flow the governing
equations are
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where p is the density, P is the pressure
departure from a hydrostatic reference state, w

is the mean vertical velocity, and u'2, w'2, u'w'
are components of the Reynold's stress tensor
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The numerical solutions discussed
herein have been obtained using one or the other
of the following closure schemes:

a) Equilibrium Closure, 'K -scheme'. The
Reynolds stresses are related to mean velocity
gradients using eddy viscosity K(x,z) = K,(z)
= 0.4 ugyz where uy, is the far upstream
friction velocity.

b) 'k-e'. The eddy viscosity is formed from the
turbulent kinetic energy (TKE) and the TKE
dissipation rate g, for which extra
(approximate) transport equations are included
(Launder and Spalding, 1974). The 'k—-g' model
was applied to windbreak flow by Hagen et al.
(1981) with some success (though in this case
the shelter effect entered via the imposition
of a measured wind profile at the fence).

¢) Launder, Reece, Rodi Second Order Closure,
'LRR20C'. The governing equations are closed
using the approximate budget equations for

u'?2, v'2, w'2, u'w' and ¢ described by
Launder, Reece, and Rodi (1975) and used by
Pope and Whitelaw (1976), who refer to the
scheme used here as Reynolds-stress Model II,
to predict a number of wake flows. No
wall-proximity effect on the pressure strain
was included.

3. Numerical Method and Boundary Conditions

The flow equations have been solved
using the SIMPLE method described by Patankar
(1980). The control volume dimensions varied in
space to provide highest resolution near the
windbreak. The boundary conditions used were:

a) Upstream: equilibrium neutral surface layer
(logarithmic wind profile).

b) Downstream: w = O, %; (all other variables) =
0

c) Top: w = 0, Reynolds stresses held at far
upstream values.

d) Ground: w = 0.

i) 'k=¢'. (TKE) = 0. A local uy, formed
using a Qwall function' from the lowest
u-velocity and the ground-level TKE,
determines the dissipation rate at ground
and at the first grid-point above
ground.

ii) Second order closure. A local uy, formed
from the lowest velocity U, determines
ground—level values of Reynolds stresses
and dissipation on the assumption of a
shallow local equilibrium layer.



The domain size used was [-60 H € x <

112 H, zO/H < z € 47 H] where zO/H is the ratio
of surface roughness length to windbreak height,
and the space was split into 23 (horizontal) x 24
(vertical) grid volumes. This domain size was
chosen after trials to ensure that further
removal of boundaries did not affect the
solution. Typically solutions (using LRR20C)
were obtained within 5 CPU minutes on an IBM 3081
(iterations ceased when a force balance performed
around the flow boundaries was correct to within
17),
4. Results and Discussion

The pressure—loss coefficient of the
Bradley and Mulhearn fence (vertical slats of
wood, 1.2 x 0.08 x 0.01 m, 507% porosity) was
evaluated in a wind tunnel. A section of the
fence was mounted so as to block the tunnel and
the ratio kr = Ap/pu2 was measured over the range
1.5 ms7! < u < 6 ms”l. This yielded k. = 1.97
(sample standard deviation 0.04) with no
discernible speed-dependence, in good agreement
with engineering correlation formulae for a sharp
edged grid. All simulations used k. = 2,0 and
H/zo = 600 (corresponding to the Bradley and
Mulhearn experiment) unless otherwise stated.
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Figure 1 compares the observed vertical
profile of u/uj, (where uj, is the far upstream
speed at z = 4 m) at x/H = 4.2 with the
predictions using 'K ', 'k-eg', and 'LRR20C'
schemes. The LRR20C prediction is the most
satisfactory, giving excellent agreement with
observation in the slow—down region. All three
predictions share a serious failure to prediect
correctly the nature of the speed—up over the
fence. The -predictions conserve the rate of mass
flow by generating a weak speed-up over a deep
volume rather than, as observed, a marked
speed-up over a shallow zone just above the
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fence. This poor prediction of the speed-over is
presumably responsible for the fact that none of
the models gives a satisfactory prediction of the
far wake. As can be seen in Fig. 2, a horizontal
profile of u/uj, at fixed heights z/H = 0.4, 1.9,
the predictions give a rate of recovery towards
upstream equilibrium which is lower than that
observed. It is of interest that the predictions
of Pope and Whitelaw (1976) for flow past a disk
mounted perpendicular to an approaching airstream
show similar features — failure to predict the
distinct speed-up in the outer layer (their Fig.
10b) and underprediction of the rate of recovery
towards upstream conditions (their Fig. 9a).
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Fig. 2. Horizontal profile of horizontal

windspeed at heights z/H=0.4, 1.9.
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Although any of the models examined
herein will give a satisfactory estimate of the
near-ground maximum velocity deficit (i.e. the
peak shelter effect) for an isolated belt, none,
at least as presently implemented, could be
applied to the problem of multiple windbreaks
because of the failure to give the correct rate
of recovery. The reason for the good agreement
near the windbreak is probably that in this
region the pressure gradients are so strong as to
dominate the momentum equations, making the
stress—gradient parameterisation of secondary
importance. Further downstream the pressure
gradients are of secondary importance, and stress
gradients restore the flow towards equilibrium.
Similar findings (best predictions in regions of
strongest pressure gradients) have been obtained
by others dealing with flows containing sharp
pressure gradients.

Mean streamline curvature may have very
large effects on shear flow turbulence. Bradshaw
(1973) argued that empirical modification of the
Reynolds stress and length scale (dissipation)
transport equation is necessary to account for
curvature effects, which are much larger than
would be expected on the basis of the magnitude
of the extra terms arising when the equations are
re—-cast in a coordinate system appropriate to
flow curvature. The convex—upwards streamline
curvature over the top of the windbreak implies a
stabilising (exchange—suppressing) influence
which perhaps brings about the shallow distinct
speed~up zone observed. The smallest value of
the radius of curvature predicted is
approximately R = 15H (at x=0, z/H=1). Though
there is no obvious choice for shear layer depth
8, using § ~ 10H gives §/R ~ 0.7, at which value
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strong curvature effects may be expected
(Bradshaw, 1969). Incorporation of the curvature
correction to the "k—&” model suggested by
Launder et al. (1977), a modification of the
g—destruction term based on a local curvature
Richardson number, yielded changes in the
numerical solution which did not substantially
improve the prediction of the flow over the
windbreak., Hanjalic and Launder (1980) described
a modification of the e-equation which they found
improved simulation of a boundary-layer with
adverse pressure gradient. When included, this
modification, which augments the effect of normal
strain relative to shear strain on the
e-production term, did not significantly alter
the prediction of the LRR20C schene.

5. A design aid for isolated windbreaks

The 'K_ ' model has been used to
generate predlctgons of the velocity deficit over
a range of values of H/z_ and k_.. Flgure 3 shows
an index of "shelter effectiveness” Sy = Au/_
where ﬁb is the approach speed at £ = 0. 4, and Ad
1s the velocity deficit relative to approach
speed at x/H = 4.4 (approximately the
'most—sheltered' location). A value of Sg =1
indicates flow reversal. As may be seen, large
variations in H/z, have little impact, and for
given kr the shelter effectiveness may be deduced
with an expectation of errors not exceeding 20%.
Values of kr may be related to screen/fence type
and porosity with the aid of engineering
correlations, such as those given by Hoerner
(1965).
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Fig. 3. Shelter effectiveness S —Au[_ as a
function of pressure—loss coegficient
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6. Conclusion

Bradshaw (1973) stated that "the most
difficult flows to predict will be those in which
a shear layer has its turbulence structure
perturbed by a short reglon of strong pressure
gradients and extra rates of strain, and then
emerges into a longer region in which its
Reynolds stress gradients are significant
compared to smaller pressure gradients”. The
windbreak problem falls into this category, and
it is 'thus not surprising that to date a wholly
satisfactory treatment of it (and the general
class of flows described above by Bradshaw) has
not been found. Nevertheless useful information
may be obtained with presently available
turbulence models (even, surprisingly, with the
crudest of models, the "K,"-scheme). For
example a fairly accurate prediction of the mean
flow pattern near an isolated windbreak has been
obtained, permitting the construction of a design
graph which relates speed reduction to fence
pressure~loss coefficient.
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