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Abstract This paper explores the utility of specifying the eddy viscosity for the horizon-
tally uniform boundary layer as the product K = σ 2

wτw of the variance of vertical velocity
and an empirical time scale τw , as opposed to the more usual formulation K = √

αkλk

where k is the turbulent kinetic energy (TKE), λk is a length scale and α is a dimensionless
coefficient. Simulations were compared with the observations on Day 33 of the Wangara
experiment, and with a plausible specification of τw (or λk) each model simulated convective
boundary-layer development reasonably well, although the K = √

αkλk closure produced a
more realistic width for the entrainment layer. Under the light winds of Day 33, and with the
onset of evening cooling, an excessively shallow and strongly-stratified nocturnal inversion
developed, and limited its own further deepening. Boundary-layer models that neglect radia-
tive heat transport and parametrize convective transport by eddy viscosity closure are prone
to this runaway (unstable) feedback when forced by a negative (i.e. downward) surface flux
of sensible heat.

Keywords Atmospheric boundary layer · Boundary-layer modelling ·
Eddy-viscosity closure · First-order closure · Nocturnal boundary layer

1 Introduction

As early as the 1970s it was anticipated that higher-order closure would soon provide a
better basis for the practical modelling of the atmospheric boundary layer (ABL) than had
eddy-viscosity closure, which for a long time had been understood to be wrong in princi-
ple. Nevertheless the eddy-viscosity approach remains very much in evidence to this day,
and not only in the present generation of numerical weather forecast models (e.g. the Cana-
dian Meteorological Centre’s “Global Environmental Multiscale” model, GEM) where it
serves in the parametrization of subgrid transport in the ABL, but also in numerical studies
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166 J. D. Wilson

(e.g. of the Martian boundary layer: Savijärvi and Kauhanen 2008; Davy et al. 2009) that
focus on the meteorology per se (as opposed to fundamentals of closure). The durability
of eddy-viscosity/diffusivity closure despite its known naïvety surely has much to do with
the quest for computational speed and robustness (i.e. reliably obtaining the flux–gradient
relationship approximately correctly, and rarely getting it excessively wrong), whereas the
higher-order closure approach continues to attack special cases, and in its latest guise offers
a daunting number of tuning constants (e.g. Cheng et al. 2005). Furthermore in practise the
performance of higher-order closure models for the ABL has not been regarded as superior
to that of the simpler models in terms of overall practicality and fidelity (e.g. Manins 1982;
Hess and Garratt 2002).

Readers will probably be familiar with the variety of eddy-viscosity (K ) closures, and
the dominance of those in which the square root of the turbulent kinetic energy (TKE, k) is
assigned the role of a velocity scale in the prescription K = √

αkλk of the eddy viscosity (λk

being the accompanying length scale, and α a closure constant). Departing from that pattern,
and with a view to improving the treatment of “wall-blocking” at the base of the inner region
of the wall shear layer, Durbin (1991) suggested instead equating the velocity scale to the
standard deviation of the velocity component normal to the wall, so that K = σ 2

wτw where
τw is a turbulence time scale1 (Pope 2000, Sec. 11.7.2). Although Durbin invoked consid-
erations of tensor invariance as confirming this choice, a more intuitive justification lies in
Taylor’s (1921) Lagrangian theory of dispersion, and Batchelor’s (1949) reconciliation of it
with the eddy diffusion paradigm (e.g. Wyngaard 2010, Sec. 4.3.2). Furthermore a suggestive
insight that emerges from connecting the needed closure for K with Taylor’s theory is that
both the velocity scale and the associated length scale are (or should be) properties of the
vertical motion field,2 which perhaps explains the paradox that while most eddy viscosity
parametrizations tune the ABL length scale to the local gradient Richardson number, which
responds to the mean wind shear as well as the thermal stratification, some authors (e.g.
Galperin et al. 1988) have reported ABL simulations using a non-local closure (Bougeault
and Lacarrère 1989) that sensitizes the outer-layer length scale to the profile of mean potential
temperature alone.3 Then is the Richardson number (Ri , defined below as Eq. 47) a primary
influence on K in the outer layer? The proper velocity and time scales for the eddy viscosity
being statistics of the vertical motion, perhaps not—given that the variance σ 2

w is driven by
buoyant production, and sensitive to wind shear (and shear production of TKE) only via the
redistribution term. And if (hypothetically) it is a false turn to consider Ri a primary factor
influencing K in the outer layer, that false turn entrains the conundrum that in general there
is no definitive or simple pattern to the velocity shear in the outer layer, so that tuning K to
Ri may entail a misguided and fruitless search for pattern.

Setting aside those speculations and turning to fact, with only a few exceptions (e.g. Karcz
and Badur 2005) Durbin’s plausible suggestion for modelling the eddy viscosity is scarcely
reflected in the vast body of work using K closures. The purpose of this paper, then, is to
suggest that the K = σwλw(≡ σ 2

wτw) closure for the ABL ought to perform no less well
than the more familiar choices based on

√
k as a velocity scale, and conceivably (although

this is a speculation, and certainly not proven here) might perform better. The motivation

1 This is the pattern used in second-order closure models (e.g. Rao et al. 1974; Launder et al. 1975), which
model the vertical transport of Reynolds stresses (and other needed quantities) using an effective diffusivity
σ 2
wτw .

2 It is implicit here that the eddy viscosity is applied to model vertical fluxes in a horizontally-uniform ABL.
As Durbin (1993) notes, this eddy viscosity would be “inappropriate to complex geometries.”
3 Such calculations have also been performed by the author but those results will not be shown here; they are
not categorically outside the span of the results that are shown.
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Alternative Eddy Viscosity Closure 167

and perspective here differ from Durbin’s, in that the focus is the outer layer of the ABL,
for the eddy viscosity in the surface layer is given by Monin–Obukhov similarity theory
(MOST). However there is no inconsistency relative to Durbin’s reasoning, and probably the
main distinction is that here the TKE dissipation rate ε is prescribed by the simplistic but
robustly popular formulation ε ∝ k/τk rather than by solving the conventional “black box”
epsilon equation. The utility of the latter is subject to scepticism (e.g. Cheng et al. 2002), and
from their survey of K models for the stratified ABL Weng and Taylor (2003) concluded that
“models with TKE and a diagnostic equation for (length scale) are quite good, while closures
with TKE and a prognostic equation for (length scale) do not guarantee success although
these models do carry more physical processes.”

2 Overview of Eddy-Viscosity Models for the ABL

Numerous authors (e.g. Holt and Raman 1988; Alapaty et al. 1997; Hess and Garratt 2002;
Weng and Taylor 2003) have reviewed eddy-viscosity treatments of the ABL. “K -profile”
schemes (e.g. Troen and Mahrt 1986; Noh et al. 2003) specify a profile of K directly, but
entail the difficulty that ABL depth (δ) must be prescribed. The Prandtl class of schemes
uses an algebraic specification of the length scale λ and diagnoses the velocity scale (say,
“q”) from the cross-stream mean velocity shear, symbolically q = λ∂zU . Another class of
schemes associated (Launder and Spalding 1972) with Prandtl and Kolmorogov also specifies
λ algebraically, but sets q = √

k (Bradshaw et al. (1967) are often credited with originating
the numerical implementation of this idea; Delage (1974) is a meteorological example that
will feature later), and there are many variants of the two-equation scheme where both q and
λ are in effect computed interactively with the main flow properties (meteorological appli-
cations of the k − ε scheme to the ABL include Detering and Etling 1985; Duynkerke and
Driedonks 1987; Apsley and Castro 1997). As to the relative merits of these schemes, Holt
and Raman (1988) concluded “TKE closure is preferable to first-order closure in predict-
ing the overall turbulence structure of the boundary layer,” while Apsley and Castro (1997)
“make no claim that solving a conservation-type equation for the length-scale-determining
variable (ε) is necessarily better than an algebraic specification of the length scale for flow
over homogeneous terrain” (italicized by Apsley and Castro).

Making sense of the vast literature on eddy-viscosity modelling of the ABL—or more
specifically, attempting to learn what is the most suitable eddy-viscosity closure for a given
purpose—is complicated by these several factors:

1. Differing specifications for closure constants and/or uncertain meteorological parameters
map each of the above four primary schemes into a multitude of particular calculations,
some of whose inter-variability could doubtless be categorized as owing to the “noise”
originating in these arbitrary choices. Without attempting to be all-inclusive as to sources
of flexibility in the models, one easily observes varied choices for constants (and even
functional forms) appearing in the “universal” Monin–Obukhov functions, which not
infrequently, for application in the outer layer, are adjusted away from consensus values
appropriate to the surface layer; for the ratios of eddy diffusivities to the eddy viscosity
(turbulent Prandtl number and Schmidt number); and for the limiting length scale λ∞
for the ABL, often attributed to Blackadar (1962).

2. Although it is known that grid-independent solutions for the ABL demand high vertical
resolution (Delage 1997), many authors have studied solutions that were known not to be
grid-independent—the context having been application of the closure within numerical
weather forecast models, wherein the luxury of high resolution is unavailable.
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168 J. D. Wilson

3. The focus of authors has ranged widely, e.g. identification of a workable scheme for ABL
parametrization in numerical weather prediction (Benoit et al. 1989; Bélair et al. 1999);
numerical issues, e.g. computational instability of Prandtl-type (and other) K -closures
(Davies 1983; Girard and Delage 1990; Deleersnijder et al. 2003); analysis/interpreta-
tion of terrestrial boundary-layer experiments; and exploratory simulations of Martian
micrometeorology (e.g. Savijärvi and Kauhanen 2008; Davy et al. 2009).

One might form the impression that the field of enquiry has been saturated with effort,
and that further research on the eddy viscosity for one-dimensional ABL models would be
futile. One very justifiably might assume that one or several or even all of the existing treat-
ments is/are good enough, and that any further objective refinement (as opposed to tinkering
with coefficients to procure better agreement with some particular case) is unlikely to be
possible. Alternatively, and without entertaining the delusion that there exists an “ultimately
correct” eddy-viscosity model, perhaps one may usefully ask whether there is a more rational
model, or simply a less arbitrary (better behaved or constrained) model. That present day
treatments of the ABL could bear improvement is implicit in the fact that it may be necessary
to place bounds on ABL depth to circumvent unrealistic calculations; e.g. GEM’s daytime
ABL depth is limited to δ ≤ δmx, and instances where the limiting value prevails are common
(R. d’Amours, pers. comm., 2011).

The following sections will demonstrate a straightforward application of K = σ 2
wτw(≡

σwλw) closure to the uniform ABL. Solutions, which will be compared with the observa-
tions of Wangara Day 33, are to all practical purposes grid- (and timestep-)independent, and
resolve the surface layer.

3 The Numerical Model

Under eddy diffusion closure the horizontal momentum equations in the horizontally-uniform
ABL simplify to

∂U

∂t
= ∂

∂z

[
K

∂U

∂z

]
+ f

(
V − Vg

)
, (1)

∂V

∂t
= ∂

∂z

[
K

∂V

∂z

]
− f

(
U − Ug

)
, (2)

where Ug, Vg parametrize the synoptic scale horizontal pressure gradient. Similarly the
conservation equations for potential temperature and for specific humidity are

∂θ

∂t
= ∂

∂z

[
P−1

r K
∂θ

∂z

]
, (3)

∂ Q

∂t
= ∂

∂z

[
S−1

c K
∂ Q

∂z

]
, (4)

where Pr , Sc are the turbulent Prandtl and Schmidt numbers, here assumed here to be
unity4 (the distinction between the eddy viscosity and eddy diffusivities will be sustained by

4 This is in the spirit of a rough approximation; why should these ratios not only be independent of position
and of particulars of the flow and of the distribution of sources and sinks of heat and water vapour, but even
contrive to be unity?
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retaining these symbolic factors). The parametrized TKE and variance (σ 2
w) equations are

∂k

∂t
= K

[(
∂U

∂z

)2

+
(

∂V

∂z

)2
]

− g

θ0 Pr
K

∂θ

∂z
− ε + ∂

∂z

[
1

γ
K

∂k

∂z

]
, (5)

∂σ 2
w

∂t
= −2

g

θ0 Pr
K

∂θ

∂z
− εww + Rww + ∂

∂z

[
1

γ
K

∂σ 2
w

∂z

]
, (6)

where the terms on the right-hand sides respectively represent shear and/or buoyant produc-
tion, dissipation (ε or εww), redistribution (Rww), and turbulent plus pressure transport (θ0 is
the mean Kelvin temperature; simulations used γ = 1). The eddy viscosity/diffusivity and
the dissipation rates were modelled algebraically as

K = σ 2
wτw(≡ σwλw), (7)

εww = c2
σ 2

w

τw

, (8)

ε = 3

2
εww, (9)

where τw is the needed empirical time scale and c2 is a constant. The redistribution term in
Eq. 6 was modelled as

Rww = c1
�2

w − σ 2
w

τw

, (10)

(Rotta’s model; Pope 2000, Sec. 11) where �2
w represents the level of σ 2

w for which redis-
tribution would vanish, specified as �2

w = 2k/3. As computational speed was of no interest
here, both the k- and the σ 2

w-equations were solved. A speedier alternative would be to solve
for σ 2

w alone, adopting a plausible profile for the ratio k/σ 2
w (as noted by a reviewer, however,

this would mean that the influence of mean wind shear on σ 2
w via its influence on k, however

important or unimportant that should be, would be neglected). With these specifications the
model equation for σ 2

w may be written

∂σ 2
w

∂t
= −2

g

θ0 Pr
σ 2

wτw

∂θ

∂z
− c2

σ 2
w

τw

+ c1
2k/3 − σ 2

w

τw

+ ∂

∂z

[
γ −1σ 2

wτw

∂σ 2
w

∂z

]
. (11)

More elaborate treatments were examined, but results did not differ qualitatively from those
shown below.

3.1 Requirement that the Model Reproduce a Reference Flow

It is useful to think in terms of a calibration of the above equations, such that they
should exactly reproduce analytically (and, to within the level of error caused by discret-
ization, numerically) the structure of the horizontally-homogeneous and neutrally-strati-
fied atmospheric surface layer (hh_NSL). Regarding this reference flow, it is legitimate to
assume steady state, to neglect the Coriolis terms as well as vertical gradients of mean
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fluxes, and to assume the TKE and σ 2
w budgets are in local equilibrium. Then with the

specifications

τw = kvu∗z

σ 2
w

, (12)

σu,v,w = cu,v,wu∗, (13)

k = α−1u2∗, (14)

α = 2

c2
u + c2

v + c2
w

, (15)

c1 = 2c−2
w

c2
u + c2

v + c2
w

, (16)

c2 = 2

3
c−4
w (17)

(where kv is the von Karman constant, here assumed to be 0.4, and u∗ is the friction veloc-
ity), Eqs. 1–9 reduce to a set of simultaneous algebraic equations whose solution repro-
duces the idealized paradigm of the constant-stress layer (inner region of a wall shear layer),
viz.

U = u∗
kv

ln
z

z0
, (18)

ε = u3∗
kvz

, (19)

u′w′ = −K
∂U

∂z
= −u2∗, (20)

K = kvu∗z ≡ σ 2
wτw. (21)

(Note: depending on whether one considers the eddy viscosity of the ideal hh_NSL as
being formed with u∗ or with σw the corresponding length scale is kvz or kvu∗z/σw).
The value prescribed for α corresponds to one’s choice of the values of normalized
velocity standard deviations σu/u∗ = cu , etc in the reference flow. Here (except where
noted in Sect. 4.5) α = 1/4.84, corresponding to σu/u∗ = σv/u∗ = 2, σw/u∗ =
1.3.

It may occur to readers that the model coefficients could have been calibrated relative to a
stratified reference state, for example invoking local equilibrium (in the spirit of an approx-
imation) and obtaining α = α(z/L) etc., where L is the Obukhov length. There are logical
difficulties with that approach: whether L be chosen as the surface value or as a local scale, it
is not apparent why Monin–Obukhov scaling should apply outside the surface layer. In any
case no promising progress was made by pursuing this idea.

3.2 Formulation for the ABL Time Scale

Holt and Raman (1988) tabulated many previous authors’ formulations for the needed length
scale in K = √

αkλk schemes, and it is useful to emphasize the critical role of this choice:
having surveyed many K closures Weng and Taylor (2003) stated that “differences in model
results with different turbulence closures are primarily caused by the way the turbulent length
scales are modelled.”

123



Alternative Eddy Viscosity Closure 171

Following common practice5 here the time scale has been parametrized by inverse sum-
mation,

1

τw

= 1

τw,SL
+ cBV N + 1

τ∞
. (22)

The first term on the right-hand side is (the reciprocal of) the surface-layer time scale, and its
value is given by MOST. According to MOST the mean wind shear and the eddy viscosity
in the surface layer are

∂U

∂z
≡ u∗

kvz
φm

( z

L

)
, (23)

K = u∗
kvz

φm (z/L)
= σ 2

w(z)τw(z), (24)

where L is the Obukhov length6

L = −θ0u3∗
kvgw′θ ′ (25)

and φm(z/L) is a universal dimensionless function. Hence

τw,SL = kvu∗z

σ 2
wφm(z/L)

. (26)

The present calculations use

φm = (1 − 28z/L)−1/4, L < 0, (27)

= (1 + 5z/L), L ≥ 0, (28)

(cf. Dyer and Bradley 1982). The second term in Eq. 22 invokes a buoyancy frequency

N = 0, ∂θ/∂z ≤ 0 (29a)

N = NBV ≡
(

g

θ0

∂θ

∂z

)1/2

, ∂θ/∂z > 0, (29b)

i.e. the time scale of any stably-stratified sublayer of the ABL is (potentially) determined by
the Brunt–Vaisala frequency NBV (cf. Galperin et al. 1988). Finally the time scale τ∞ serves
to limit the integral scale in a neutral or unstable outer layer (cf. the λ∞ invoked as maximum
length scale in the

√
αkλk closure, a value that may be assigned an auspicious constant value,

or prescribed by one of Blackadar’s (1962) relations relating λ∞ alternatively to G/ f or to
u∗/ f , where G is the geostrophic wind speed).

It is interesting to note that in the stable case the rate of buoyant production of TKE may
be written

g

θ0
w′θ ′ = − g

θ0
σ 2

wτw P−1
r

∂θ

∂z
= −σ 2

wτw P−1
r N 2

BV. (30)

The same term (multiplied by 2) appears in the σ 2
w equation, and results in a σ 2

w destruction
term that is linearly proportional to σ 2

w.

5 Gryning et al. (2007) briefly survey the origins of common heuristic formulae for the ABL length scale.
The inverse summation approach ensures asymptotically correct behaviour of the length scale in two or more
layers.
6 Except in Sect. 4.5, L is based on surface fluxes and is height independent.
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3.3 Numerical Method

3.3.1 Grid

Variance/TKE (σ 2
w, k) gridpoints were staggered relative to U gridpoints, at which not only

U but also V, θ, Q were stored. The lowest TKE node lay at the roughness height z = z0,
the lowest U node at zP (above z0), and the highest U node at the upper boundary z = Zmx.
U nodes (at heights labelled zu) were centrally placed between their neighbouring k nodes
(zk).

The grid was built by stepping upward from zk(1) ≡ z0 in steps 
zk that were uniform
below a specified height z1 and, above that level, were stretched by a factor of 1.2 in each
successive layer until attaining a limiting maximum value 
zk,mx. The grid can be repro-
duced from the specified values of z0 and (
zk,min, z1, 
zk,mx, Zmx) and for simulations
shown here the values used were (0.05, 1, 10, 2000), resulting in 244 grid levels.

3.3.2 Discretization

Prior to discretization the governing equations were integrated analytically across the “control
layer” surrounding the node. Taking the U -momentum equation for example, and supposing
the J th control layer spans z1 ≤ z ≤ z2 ≡ z1 + 
zu , a Crank–Nicolson method was used,
viz.


zu(J )
U n+1

J − U n
J


t
= 1

2

[
K

∂U n+1

∂z

]z2

z1

+ 1

2

[
K

∂U n

∂z

]z2

z1

+ f

2

[
V n+1

J − V n+1
g

]

+ f

2

[
V n

J − V n
g

]
(31)

where the profile of geostrophic wind speed is provided (known). The momentum fluxes
across the control-layer faces were specified according to the pattern

(
K

∂U

∂z

)
z1

= K (z1)
UJ − UJ−1


zk(J )
, (32)

such that the solution at the “new” time level n + 1 was obtained as

M Un+1 = B, (33)

where the coefficient matrix M is tridiagonal, and B depends only on the known solution
at the earlier time n. In practice, due to the coupling of the equations with each other and
with the evolving profile of eddy viscosity, a solution update n → n + 1 (i.e. timestep)
progressed by iteration through trial solutions (symbolically mUn+1) and the matrices M,
B also evolved from iteration to iteration along with the evolving eddy viscosity, etc. To
facilitate convergence, relaxation was applied when iterating through trial solutions and as a
precaution physical eddy viscosities/diffusivities were augmented by an artificial diffusivity

K ∗(= 10−5m2 s
−1

). For simulations reported here the timestep 
t = 5 s, but results differed
negligibly with δt = 45 s.

123



Alternative Eddy Viscosity Closure 173

3.3.3 Boundary Conditions and the Treatment of Surface Drag

As the lowest gridpoint for (U, V, θ, Q) at “zP ” lay above ground, the lower face of the
corresponding control layer was at ground level, and the surface fluxes were supplied.
The heat and vapour fluxes were prescribed by the measurements and the usual wall-layer
method was used to infer a surface friction velocity u∗ from the velocities UP , VP at zP

using the measured value of the roughness length, viz.

u2∗ = CD
(
U 2

P + V 2
P

)
(34)

where

CD =
[

kv

ln(zP/z0)

]2

. (35)

The lowest gridpoints for k, σ 2
w lay on the ground, and boundary values were supplied as

k = [φuu + φvv + φww] u2∗/2, (36)

σ 2
w = φwwu2∗, (37)

where φuu, etc are the universal MO functions for the velocity variances.
In the case that z1 ≡ z0, surface drag in the x-direction features within Eq. 31 through a

term having the form (−K ∂U/∂z)z1
. This was parametrized as

−
(

K
∂U

∂z

)
z0

= −CDUP

√
U 2

P + V 2
P (38)

and split into the two contributions, i.e. those at time levels (n, n +1). A treatment (of source
terms) given by Patankar (1980) ensured that the drag would oppose the flow, whatever the
orientation of the latest iterative guess mU n+1

P . Analogous steps were taken for drag in the
y-direction.

At the upper boundary, placed high enough to exceed the ultimate depth of the ABL,
(U, V, θ, Q) were assigned their measured “free stream” values, while vertical gradients in
k, σ 2

w were zeroed.

4 Simulations: Wangara Day 33

The Wangara boundary-layer experiment (Clarke et al. 1971; Hess et al. 1981) was performed
in July and August 1967 at Hay, New South Wales (34◦30′S, 144◦56′E). Innumerable investi-
gators (e.g. Deardorff 1974; Wyngaard and Coté 1974; André et al. 1978; Yamada and Mellor
1975; Chen and Cotton 1983; Alapaty et al. 1997) have tested numerical models of the ABL
against the observations of Wangara Day 33, this particular day being chosen due to its sim-
plicity—there being (Deardorff 1974) “clear skies, very little horizontal advection of heat or
moisture, and lack of any frontal activity within 1000 km.” The season being (late) south-
ern hemisphere winter, radiative forcing was of modest strength, and the available energy
Q∗ − QG (net radiation less the soil heat flux density) peaked at a little over 200 W m−2

around noon local time (EST). Winds were relatively light, such that the Blackadar length
scale

λ∞ = 0.00027
G

f
(39)

was only about 10 m.
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4.1 Forcing—Boundary Conditions and Pressure Gradient

In view of the decision to resolve the surface layer, the approach taken was to use the measured
time series of the available energy Q∗ − QG and to partition this assuming a fixed value for
the Bowen ratio (for Day 33 it was assumed that Q H0/QE0 = 10). In contrast, many authors
have “driven” simulations of Day 33 by using measured near-ground properties: for example
Yamada and Mellor (1975) imposed the observed screen height time series of virtual temper-
ature as their lower boundary condition on that property. Drag at the ground (i.e. momentum
flux) was computed using the wall-layer approach documented earlier, with z0 = 0.0037 m
(as used by previous authors). At the upper boundary the time-dependent measured values
of (U, V, θ, Q) were imposed, with linear interpolation between measurement times.

Following Deardorff the “x-component (eastward pointing) of the geostrophic wind…was
taken to vary linearly from −5.5 m s−1 at the surface to −2.6 m s−1 at 1 km to −1.2 m s−1 at
2 km,” i.e. UG was taken as height-dependent, but constant in time. Conversely, and departing
from Deardorff by whom it was taken as zero at all heights and times, Vg was here treated as
height-independent but varying in time with linear interpolation on the 3-h interval. Deardorff
had noted that (with his choices) “both components are in rough agreement with the Wangara
data for this day,” and his choice for the profile of the geostrophic wind has been adopted
by several subsequent authors (e.g. Wyngaard and Coté 1974; Chen and Cotton 1983). On
the other hand Hess et al. (1981) deprecated the accuracy of the Wangara estimates for the
thermal wind.

4.2 Initialization

Following the precedent of other authors whose focus has been the daytime, fairweather
boundary layer, here the simulation was initialized from the profiles at 0900 EST. More
specifically, piecewise-linear initial profiles of U, V, θ, Q were constructed, and the conser-
vation equations solved in steady state mode with these profiles fixed, to extract consistent
initial profiles of σ 2

w, k. The starting profiles are shown on the diagrams to follow; it is note-
worthy that the initial profile of potential temperature reveals a residual adiabatic (mixed)
layer sandwiched between the ground-based nocturnal inversion and a capping inversion
aloft (e.g. Fig. 2).

4.3 Results: K = σ 2
wτw Closure

Figure 1 indicates that the K = σ 2
wτw closure yields qualitatively reasonable daytime evo-

lution of the scalar profiles θ, Q even when implemented with a naïve specification of the
empirical time scale, viz. an unamended extrapolation to all heights of the surface-layer
formulation implied by MOST,

τw = kvu∗z

φm(z/L)σ 2
w

(40)

(the Obukhov length L being based on the surface fluxes). A more critical inspection reveals
that at 1200 EST the modelled mixed layer (whether judged by the θ or the Q profiles) is
too shallow whereas at 1500 EST it is too deep,7 and that in general the entrainment layer is

7 Although the surface sensible heat input has been prescribed by the measurements, the entrainment heat
flux is computed subject to the inaccuracy that stems (a) from the use of eddy-diffusion closure in this type
of flow (large eddies; possible counter-gradient transport); and (b) from the parametrization of K , which is
unlikely to be accurate in the entrainment layer.
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Fig. 1 Numerical simulation of Wangara Day 33, using the K = σ 2
2 τw closure with τw = kvu∗z/

(σ 2
wφm (z/L)), i.e. the MOST-based surface-layer formulation applied without amendment at all heights

(L being the Obukhov length based on surface fluxes)

too thin (i.e. abrupt and shallow). Given that the mixed layer and the entrainment layer are
defined and identified in contradistinction to each other, perhaps these flaws of the computed
scalar profiles share the same cause; e.g. a thicker entrainment layer at 1500 EST might (ipso
facto) improve the depth of the mixed layer. The fact of the entrainment zone being too thin
presumably signifies inadequate mixing in that region, where strongly stable stratification
suppresses σ 2

w , and one cannot attribute that lack of mixing to a too small τw , for Eq. 40
surely overestimates its value far aloft. If σ 2

w is being too severely attenuated at the top of
the mixed layer, potential adjustments to the computational scheme might include imposi-
tion of a minimum value (for σ 2

w, perhaps as a function of the surface heat flux); increasing
the transport term by reducing the dimensionless factor γ (in Eqs. 5, 11); or adopting more
complex formulations for redistribution and/or dissipation. No such tuning is attempted here.

Had the initial temperature profile (on Wangara Day 33) not featured a capping inversion,
Eq. 40 in conjunction with the σ 2

wτw closure would have permitted sensible heat injected
at the surface to be mixed through a deeper layer. If the scheme is to be capable of general
application the time scale τw cannot be permitted to increase ad infinitum with increasing
height. Figure 2 was computed using

1

τw

= φm

kvz

σ 2
w

u∗
+ cBV N + 1

τ∞
(41)

with τ∞ = 10 min and cBV = 1 (the Brunt–Vaisala frequency in the capping inversion was
NBV ≈ 0.17 Hz; the fitted surface inversion at 0900 EST has NBV = 0.24 Hz). Outcomes
(not shown) differing almost negligibly from Fig. 2 were obtained with (cBV = 0, τ∞ = 10–
15 min) and with (cBV = 1, τ∞ = ∞), i.e. it is redundant (in this case) to have included two
terms in Eq. 41 limiting the growth of τw with height (however, had the initial θ profile been
neutral, the term in N would have been ineffective). This (more justifiable) parametrization
for τw has modestly improved the simulation of the scalar profiles, and if the 1200 EST mixed
layer remains too shallow it must be noted that the same deficiency features with

√
αkλk
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Fig. 2 Day 33, using the K = σ 2
wτw closure with 1/τw = σ 2

wφm/(kvu∗z) + cBV NBV + 1/τ∞ (cBV = 1,
τ∞ = 10 min). Note although its exact value is unknown, certainly the surface humidity flux was small, so
that the daytime evolution in Q(z) essentially reflects re-mixing throughout a deepening mixed layer
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Fig. 3 Modelled wind profiles corresponding to simulation of Figure 2 for Wangara Day 33, in comparison
with observed winds from the Wangara pilot balloon network

closure (see Fig. 6). Outside the entrainment layer the computed daytime θ profiles from
the K = σ 2

wτw closure scheme are in satisfactory agreement with the soundings (potential
temperature discrepancies do not exceed about 1–2 K), particularly since the latter cannot
be expected to have properly resolved the surface layer (note the stronger lapse rate of the
model near the ground than is reflected by the lowest pair of observations).
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Fig. 4 Modelled profiles of the vertical velocity variance and TKE corresponding to simulation of Fig. 2.
Open circles designate the profile of k at initialization, featuring a turbulent surface layer and a residual mixed
layer aloft

Not surprisingly, however, the simplistic K closure is less skillful in its prediction of the
wind profiles (Fig. 3), which were by no means uniform in the “mixed layer.” Unlike the
(θ , Q) profiles, model wind profiles are extremely sensitive to prescription of the mean
pressure gradient ∇ P (equivalently, the profiles of the geostrophic velocity components),
i.e. the essential forcing. In view of the several possibilities afforded by the Wangara obser-
vations, alternative prescriptions of UG(z), VG(z) were tried before settling on that given
in Sect. 4.1. Irrespective of the choice of turbulence closure, one finds that the quality of
computed wind profiles hinges on how realistically (or otherwise) ∇ P(z) is prescribed and
whether the assumption of horizontal homogeneity was legitimate.

Turning now to the computed profiles of vertical velocity variance and TKE, Fig. 4 shows
that their overall form is plausible (the Wangara experiment did not provide observations).
Focusing on the profile of σ 2

w at 1500 EST when the ABL depth was δ ≈ 1250 m, the maxi-

mum variance (about 1.6 m2 s
−2

) occurs at z ≈ 350 m, i.e. at a normalized height z/δ ≈ 0.3.
This is consistent with the pattern from aircraft observations (in the convective boundary
layer) as summarized by

σ 2
w

w2∗
= 1.8

( z

δ

)2/3 (
1 − 0.8

z

δ

)2
, (42)

(Hunt et al. 1988, Eq. 2.13a; Kaimal and Finnigan 1994, Eq. 1.51), which equation gives
maximum variance at z/δ = 0.31. As to the magnitude of the peak, again focusing on 1500
EST8 the convective velocity scale evaluates to

w∗ ≡
(

g

θ0
δ

Q H0

ρcp

)1/3

≈ 1.7 m s−1 (43)

8 θ0 ≈ 287 K, Q H0 ≈ (10/11) × 164 W m−2, ρ0 ≈ 1.25 kg m−3.
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Fig. 5 Evening cooling on Day 33, simulated using the K = σ 2
wτw closure with 1/τw = σ 2

wφm/(kvu∗z) +
cBV N + 1/τ∞ (cBV = 1, τ∞ = 10 min)

so that the model profile of σ 2
w/w2∗ peaks with a maximum value of about 0.6, this too being

in acceptable agreement with aircraft observations (e.g. Hunt et al. 1988, Fig. 7a).

4.3.1 Simulation of the Cooling Phase

Figure 5, a continuation of the simulation giving the daytime phase shown by Fig. 2, reveals
a persistent flaw of simulations of nocturnal cooling during light winds: evening heat loss is
restricted to an excessively shallow layer, resulting in an excessively strong inversion. This
peculiarity results not only when using the K = σ 2

wτw closure, but also with every variant
of K = √

αkλk closure here examined.9

How is this to be interpreted? One can intuit (from the conservation equations for k,
σ 2

w) that there is a positive feedback in operation in any inversion layer (stable stratifica-
tion suppresses k, σ 2

w in turn limiting the depth of the layer participating in cooling), but
these simulations fly in the face of observation. One is left with two possible explanations:
either this behaviour is inherent in the equations solved, or, it is a (false) consequence of
the discretization and numerical procedure. Regarding the latter possibility, many variations
of the scheme have been tested, closely following the recommendations of Patankar (1980),
without any significantly different outcome (Patankar 1981, notes “source-term linearization
is often a very crucial operation; it is responsible for computational success in many com-
plex situations”). This peculiar outcome for nocturnal cooling in light winds appears to be
inherent to the model equations. Truly drastic and unacceptable interventions were needed to
prevent it, namely, removal of the buoyant production terms in the k, σ 2

w equations and setting
βs = 0 in the MOST function φm = 1 + βs(z/L) for stable stratification (cf. Eq. 28). More
complex model equations for σ 2

w were investigated, for example adding the “isotropization
of production” contribution to the redistribution term in the σ 2

w budget. The character of
the nocturnal inversions was unaltered. We return to this idiosyncracy of the eddy-viscosity
model(s) below.

9 A reviewer stated “this kind of problem has been observed for quite some time at operational Numerical
Weather Prediction centres” and “often occurs for weak winds, clear-sky conditions with strong radiative
cooling and weak turbulent exchange.”
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4.4 Results: K = √
αkλk Closure

It was suggested earlier that the K = σ 2
wτw closure should be no less useful than the (almost

universally preferred) K = √
αkλk closure, and the results of the previous section are now

compared with a calculation that typifies results from the latter. The TKE was computed (as
before) from Eq. 5, and the length scale, following one of the prescriptions of Bélair et al.
(1999), as

1

λk
= φm(z)

[
1

kvz
+ 1

λ∞

]
, (44)

with λ∞ = 200 m and

φm = (1 − 40Ri )
−1/6, Ri < 0, (45)

= (1 + 12Ri ), Ri > 0, (46)

where Ri is the gradient Richardson number

Ri =
(

g

θ0

)
∂θ/∂z

(∂U/∂z)2 + (∂V/∂z)2 . (47)

Figure 6 was computed with a limiting value Ri ≤ 0.5 imposed in Eq. 46, a step that
increased the penetration of the mixed layer into the capping inversion. As with the σ 2

wτw

closure, the depth of the mixed layer at 1200 EST is underestimated and when the simulation
of Fig. 6 is continued into the evening cooling phase an unrealistically sharp and shallow
nocturnal inversion occurs—again, just as with the σ 2

wτw closure. The simulated wind profiles
from this scheme (not shown) were qualitatively similar to (and no better or worse than) those
of the σ 2

wτw scheme, i.e. they were highly sensitive to the geostrophic wind components and
did not exhibit the undulations with height (“unmixed” profiles) seen in the observations.
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Fig. 6 Day 33 simulated using the Bélair et al. (1999) K = √
αkλk closure, with a limit (Ri ≤ 0.5) imposed

in the calculation of φm (Ri )

123



180 J. D. Wilson

It is however noticeable that the humidity profile of Fig. 6 features a broader entrainment
layer than produced by the σ 2

wτw closure (Fig. 2). This may reflect the fact that, within the
capping inversion layer, the TKE is sustained by shear production, counterbalancing (to some
extent) the buoyant suppression that dominates the σ 2

w budget.10 If so, this implies a better
formulation is needed for the redistribution and dissipation terms in the σ 2

w equation, if the
σ 2

wτw closure is to better simulate the entrainment zone.

4.5 Evening Cooling Phase: Comparison with Delage’s Variant of the K = √
αkλk Closure

In this section we divert temporarily from our main objective, viz. to establish the potential
usefulness of K = σ 2

wτw closure, in order to determine whether the (unexpected) outcome of
the present simulations of nocturnal cooling is or is not consistent with earlier work. Delage
(1974) reported simulations of the development of the nocturnal boundary layer from an
initially neutral state, driven by an imposed rate of cooling of the surface temperature and
with the length scale prescribed as

1

λk
= 1

kv(z + z0)
+ βs

kv L(z)
+ 1

λ∞
(48)

where βs = 5, λ∞ = 0.0004G/ f (cf. Eq. 39), and L(z) is a local Obukhov length. Delage
stated his “model is characterized by the use of local quantities in the determination of the
eddy exchange coefficient. Radiative heat transfer is neglected for simplicity—to restrict
the number of external parameters—on the basis that it plays a minor part in the formation
of the inversion in moderate and strong winds, except close to the ground.” Accordingly
many of Delage’s results, presented in dimensionless form, correspond to rather a strong
geostrophic wind such that the Rossby number

Ro ≡ G

z0 f
= 107. (49)

Figure 7, which corresponds to (and agrees closely with) Delage’s Figure 3, was computed
using a domain depth Zmx = 1000 m, roughness length z0 = 0.01 m, Coriolis parameter
f = 10−4 s−1 and geostrophic wind speed G = 10 m s−1. These choices exactly replicate
Delage’s Ro = 107 and the rate of surface cooling exactly matches that given by his Eqs. 10,
11 (with D = 200). As in Delage’s calculation, the depth of the inversion does not ascend
above f z/G ≈ 15 × 10−4 or z ≈ 150 m. The friction velocity, which is not imposed, sta-
bilized at 0.31 m s−1 across all the profiles shown—and this sufficed to sustain mixing and
stave off the outcomes reported above for evening cooling of Wangara Day 33, a day with
much lighter winds aloft.

Here for application to Wangara Day 33 the Delage closure was initialized with a uniform
potential temperature of 287 K (corresponding roughly to the observation at 1800 h), and
driven by an imposed surface heat flux. Irrespective of the magnitude of the latter, if the
geostrophic wind was reduced below about 9 m s−1 numerical instability resulted—whereas
there is no indication Delage’s implementation exhibited this phenomenon. Figure 8 shows
that when G = 10 m s−1 and (w′θ ′)0 = −0.02 K m s−1 the inversion grows to a depth of
order z = 100 m, but that the stronger cooling rate actually observed at 1800 on Day 33
results in a much shallower inversion. This is consistent with Delage’s remark that (depend-
ing on the Rossby number) “the final depth of the inversion (h) increases by 45–80% when
the cooling rate is reduced by a factor 2.” The trend of these simulations, viz. atmospheric

10 However simulations reported by Witek et al. (2011) using K = √
αkλk closure also show a very shallow

entrainment zone.
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Fig. 7 Nocturnal cooling from
an initially neutral state,
computed using Delage’s variant
of the K = √

αkλk scheme with
Ro = 107, D = 200, f = 10−4,
G = 10 m s−1, z0 = 0.01 m, and
using Delage’s value (0.16) for
the equilibrium coefficient u2∗/k
(his “c”). Driven by Delage’s
prescribed rate of cooling of the
surface, and plotted at time
intervals 1/ f . (For this case,
equivalent to that of Delage’s
Figure 3, the Delage scaling
temperature is θs = 6.116 K)
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Fig. 8 Nocturnal cooling,
starting from an initially neutral
state, with geostrophic wind
speed G = 10 m s−1. Prescribed
surface kinematic heat flux:
upper panel −0.02 K m s−1,
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heat loss being confined to an increasingly shallower layer as G decreases and/or surface
cooling increases, is broadly consistent with the findings of earlier sections.

5 Conclusion

To the extent that σw and
√

k are roughly proportional, the suggestion of using the former
instead of the latter as the needed velocity scale in forming the eddy viscosity may appear
trivial. However it seems worthwhile to reserve judgement, in case making the distinction
should offer a greater payoff than expected. As noted earlier, in general a K = σ 2

wτw closure
should result in a reduced sensitivity of the outer-layer eddy viscosity to the shear of the
horizontal wind components, an element that is far from being a universal aspect of the ABL
and not well simulated even by higher-order closures.
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Daytime simulations with the K = σ 2
wτw closure have proven comparable to those with

the K = √
αkλk closure, albeit with an underestimated width for the entrainment zone that

suggests the need for a refinement of the σ 2
w equation. One might remark that reasonable

agreement with the daytime observations has been procured (only) by virtue of tuning (of
the formulation for τw), but this is no more the case in reference to the σ 2

wτw closure than
in reference to the alternatives (notably the many published variants of K = √

αkλk clo-
sure). The author does not claim of Eq. 22 that it is the optimal parametrization for τw (nor
of Eq. 44 that it is the optimal formulation for λk). Only by comparing the model(s) with
many observed cases might one hope to extract such a recommendation, but a survey of the
literature suggests that decades of work using K = √

αkλk closure have not culminated in
an unambiguously best prescription for λk . Thus for the time being interest in K = σ 2

wτw

closure more appropriately centres on its rationality than on any question of its practical
superiority.

The physically unrealistic outcomes computed for evening cooling, viz. an excessively
strong but shallow nocturnal inversion, raised an interesting question: did this happen merely
as an artifice of numerical procedure, or was it a genuine implication of the mathemati-
cal models investigated? Prolonged investigation suggests this behaviour is intrinsic to the
equations. The mechanism is not mysterious. Stable stratification certainly does suppress to
some extent the fluctuating vertical motion, and the notion that boundary-layer turbulence
can be sustained only if the Richardson number remains below some critical (albeit not very
well defined) value is surely sound. Radiative divergence, long since known to be important
during evenings with light winds (e.g. Schaller 1977; André et al. 1978; Garratt and Brost
1981; André and Mahrt 1982; Ha and Mahrt 2003; Siqueira and Katul 2010), is without
doubt the essential physical and (in models of this type) mathematical element that, during
light winds and strong surface cooling, enables sensible heat to be drawn from a layer of
macroscopic depth (say, order some 100 m), rather than from the almost infinitesimal chilled
layer produced by convection-only treatments.
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