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Abstract. An easily-evaluated expression for the dimensionless concentration profile x(z/zO, x/zO, 2,/L) = 
= cu./kQ (or z,cu./kQ) downwind of a continuous ground-level area (or line) source in the stable surface 
layer is obtained by integrating the diffusion equation using the Shwetz approximation method (c = concen- 
tration, Q = source strength, k = von Kknan’s constant). The analytical solution compares closely with 
concentration profiles obtained using a trajectory-simulation model over a useful range of heights, the 
important discrepancies occurring at the upper edge ofthe plume. The analytical solution is used to generate 
predictions of ground-level concentration for the Project Prairie Grass experiments; good agreement with 
the observations is obtained at all downwind distances (50 to 800 m). 

1. Introduction 

This paper is concerned with short-range dispersion of a passive admixture from a 
continuous ground-level source in the horizontally homogeneous neutrally or stably 
stratified atmospheric surface layer. An approximate analytical solution to the diffusion 
equation (derived below) is obtained and shown to be in good agreement both with 
solutions obtained using a trajectory-simulation (Lagrangian) model and with experi- 
mental data. The analytical solution is composed of elementary functions and is easily 
evaluated. 

Let u, c, and F be respectively the time-averaged windspeed in the horizontal (x) 
direction, the admixture concentration, and the turbulent flux density along the vertical 
(z) direction. Assuming the motion to be two-dimensional and neglecting the divergence 
in the horizontal of the horizontal turbulent flux density, conservation of the mass of 
admixture may be expressed by 

dc aF 
U-=---. 

ax aZ (1) 

Under the restriction that at all points the mean concentration gradient &/az does not 
change significantly over a distance of the order of the local turbulent length scale, one 
may relate the vertical flux to the mean concentration gradient by 
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where K is the eddy diffusivity for the admixture. For a ground-level line source, one 
expects the largest values of c?c/~Z~ at very short downwind distances near the ground, 
where the turbulent length scale is very small. For a ground-level plane source, 8*c/8z2 
will be largest near the leading edge, again close to ground. Therefore in either case it 
is reasonable to expect the flux-mean gradient closure scheme (K-theory) to be valid. 
Equation (1) becomes 

(3) 

The wind profile in the atmospheric surface layer is described by 

kz du Z 

us dz -@ 0 “’ L 

where L = - d/(k .g/7’,, . H/PC,,), C& is the Monin-Obukhov universal function for 
momentum, U* is the friction velocity, k is von Karman’s constant (0.4 used herein), g 
the acceleration due to gravity, r,, a reference temperature, H the sensible heat flux 
density (negative in stable stratification), /, the density of the air, and c,, the specific heat 
at constant pressure. In stable stratification & = 1 + &z/L with & z 5 (Dyer, 1974). 
Therefore 

(4) 

where z(, is the roughness length. The logarithmic neutral wind profile follows by writing 
L= x. 

The admixture diffusivity will be assumed to have the form 

K=orhu./(l +& ;) 

where az = A:, the Lagrangian length scale of the turbulence in neutral stratification, and 
b = ~J,~/u* = 1.25, where a,. is the root-mean-square vertical velocity. Wilson et ul. 
(1981~) deduced that a 2: 0.5 by comparing predictions of a Lagrangian trajectory- 
simulation model of dispersion with atmospheric measurements. One may estimate 
IJ, 21 5 given the findings of Webb (1970) for the relationship between vapour fluxes and 
vapour-pressure gradients. Note that the eddy viscosity by definition obeys 
K,, = ku,z/@,,,. With k = 0.4 it follows that x = K/K, 2~ 1.6. 

In neutral stratification, Equation (3) becomes 

To date no exact analytical solution to this equation has been obtained. Numerical 
solutions have been given by Yamamoto and Shimanuki (196 l), using K = K,,, and by 
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Nieuwstadt and van Ulden (1978), using K = K, (the eddy-diffusivity for heat) and 
K = 1.35K, ‘. Lebedeff and Hameed (1976) gave an approximate analytical solution for 
ground-level concentration, again with K = K,,, . Several authors have obtained analytical 
solutions by replacing the logarithmic wind profile with a power-law profile (for example, 
Philip, 1959; van Ulden, 1978). 

Sections 2 and 3 will describe an approximate analytical solution to Equation (3) with 
wind and diffusivity profiles (4) and (5) and ‘flux’ (i.e., specified rate of emission) 
boundary conditions appropriate to ground-level area and line sources. In Section 4 it 
will be shown that the analytical solutions are in close agreement with the predictions 
of a trajectory-simulation (Lagrangian) model of turbulent dispersion, and in Section 5 
the analytical solutions will be compared with experimental data. 

2. Solution of Diffusion Equation for a Ground-level Area Source 

The first step in the solution is a transformation of Equation (3). Define I = In (z/zO), 
5 = x/zO, Sz = zO/L, N = abk, and ~(5, A) = cu,/kQ, where Q is the source strength 
[cm -* s-l]. Note that a/az = (l/z) a/an. Then Equation (3) becomes 

e’[l + BJ2(eA - l)] - = N ” ax 
[ 

1 ax 
x an 1 + &ReA iii 1 * (6) 

Symbolising Equation (6) by f(k) = g(x), where the dot denotes differentiation with 
respect to 5, an approximate solution is sought by writing 

x = Ilo + XI + ... 

where 

dxo) = 0 9 &I) = fclo) 9 g(X*)=.f-t~,)~~~~ 

This approximation method was first suggested by Shwetz (1949) and was briefly 
summarised by Panchev et al. (1971). Only the first two terms will be retained in this 
analysis. 

Define ~~(5) to be the upper edge of the plume of emitted material, and let 
6(t) = In (zd/zg). The chosen boundary conditions are 

x0(4, 6) = x,(h 6) = 0 (7) 

-4 + BKQ) 
N ' 

( ) 
f& -0 - 4 (1 + PKW 
an A/ N @b) 

+ With van Karman’s constant set at 0.35. 
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ii(O) = 0 
6 

l 
~(5, A) [A t /?$(eA - l)]e” dl = 5. 

0 

Boundary conditions (8) are derived from the expression 

(9) 

(10) 

01) 

_I 
- K OC 

( > cl% = = =,, =Q 

by assuming Q may be partitioned into a contribution rQ to I,,, with remainder (1 - Y)Q 
to x, . The partitioning factor Y is independent of& and will be discussed later. Boundary 
condition (11) expresses the fact that at x the integral of the horizontal flux density up 
to the plume depth must have value Qx, equal to the total rate of emission upstream. 

From 

and boundary condition (8a) it follows that 

8x,, -r 

di, N 
(1 t flK!Ae”). 

Integration and application of boundary condition (7) gives 

x,, = a [/?$(e’ - e”) + (6 - A)] 

Differentiating, one obtains 

Substituting (14) into the expression g(x,) = f(&) and integrating: 

+ 13,n e2i. + x 

2 I 

(12) 

(13) 

(14) 

(15) 
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Application of boundary condition (8b) gives 

2 6~(1 + &$e”) ’ 
(16) 

Integration of (15) gives 

+ le’ + (x,fl,R - 2 - fl,Cl)e” + a,1 + x2. (17) 

Using boundary condition (7) 

cI2 = -r,6-W e3&- 

6 

_ D”Q 3&Q _ PJW2 e2d- 

( 4 4 2 > 

- @ 6e2” - &” - (r,lJKR - 2 - fl,Q)e” . 
2 

(18) 

Although combinations of Equations 13, 16, 17, 18 gives the solution for ~(5, IL), the 
functien S(c) has not been determined. Substituting Equations 12, 15, 16 into boundary 
condition (9) which specifies that the total concentration gradient vanishes at 1 = 6, one 
obtains 

$= N/r 

(1 + /?,Qe”) 
[ 

e6(6 - 1 - p,Q) + “;” e2& t 1 t y 1 
Integration 01‘ tquation (19) gives 

+ p,n he26 + 

2 

(19) 

the”+ I+@ 6 
( ) 2 . (20) 
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Using boundary condition (lo), 

(y) 1 = -2+~J~a2+L!&-38,22=-2 
6 44. 

Equation (20) is implicit in 6, and may be solved for given r, 2, N by Newton’s Method 
of Successive Approximations (Abramowitz and Stegun, 1970). 

Because of the large number of terms involved, the equations will now be simplified 
by writing /3,, = & = /?. Equations 13, 17, 18 become 

x = $3Q(e”- e”) + (6- A)] + 

+ 
6r(l t BQed) P2R2 

N2 [ 7 (e32 - e36) - 

where 

+(Ae"-~?e~)+(a,~R-2-~Q)(e~-e~)t~1~(A-66) 1 (21) 

jj=- N/r 

(1 + j?Qe”) e”(6 - 1 - go) t “y e2’ t 1 t ‘F 1 

(22) 

(23) 

and 

Nt/r - 2 = P2R2 6 e=‘m(~+$)e2h+ 

e” + 

(24) 

In neutral stratification L = x so that R = 0 and the solution becomes 

: 
t s [(le” - he”) - 2(eA - e”) + %(,(A - 6)] (21N) 
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where 

Lx, = 1 + (r- 1) [e”(6 - 1) + l] (2W 

i= N/r 
eb(b - 1) + 1 

(23~) 

(6 - 2)e” + 6 = N(/r - 2. (24~) 

Although it is straightforward to determine Y using boundary condition Equation (1 l), 
the integration involves many terms, particularly for 0 # 0, and will not be performed 
here. For several values of Q and 5, the value of r which satisfies Equation (11) with 
N = 0.25 has been evaluated, and is plotted in Figure 1. These curves are neglibly altered 
by the alternative choice (corresponding to K = K,,,) of N = 0.16. 

0 38 I I I I I I I I 
10' 104 10'3 106 10' 

Dlmerrslonk?ss fetch X’I 

Fig. 1. Flux-partitioning factor r as a function of x/z,, for several values of q,/L 

In practise it was found that incorporation of the precise value of r which satisfies 
Equation (11) is disadvantageous-the total horizontal mass flux becomes correct at the 
expense of introducing a small error in ground-level concentration (as compared with 
the trajectory-simulation model described in Section 4). Rather than improving the 
prediction near 1 = 6, the optimisation with respect to r deteriorates the accuracy near 
ground, presumably because there are constraints on both x and ax/~?L at 2 = 6, but on 
ax/an alone at 1 = 0. It is therefore recommended that a value of 0.5 is used for r. All 
concentration profiles presented here use r = 0.5 unless otherwise noted. 

Figure 2 shows the dimensionless concentration profiles a distance < = lo4 downwind 
of the leading edge of an area source at ground. The contributions from x0 and 2, are 
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Fig. 2. The contributions z,, and x, to the total dimensionless concentration 1 at a distance 5 = IO“ from 
the leading edge of an area source in the neutral surface layer. 

separately shown, and it may be seen how the component profiles are consistent with 
the boundary conditions. 

3. Ground-level Line Source 

The concentration profile at x due to a line source of unit source strength at x = 0 may 
be obtained from the profile for an area source of unit strength extending from x = 0 to 
x = x by writing 

C"(X + AX) - C"(X) aC" CI = lim _-~--I---.-.--.- = ~- 

Ax -+ 0 Ax ax 
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from which it follows that 

I 
zgc u* a 

)I’= kQ - - 
c‘b* ax 

at kQ = ai (H 

where z,c’u,/kQ is the dimensionless concentration due to a line source of strength Q 
[cm-’ so’ ] and (as before) c”u,/kQ is the dimensionless concentration due to an area 
source of strength Q [cm ’ s ‘1. 

Therefore the solution for a line source may be obtained by differentiating 
Equation (21). Define 

G(& 6) = l?g @31- e38) - (p” + I!?) @2A - ,2”) + 
2 2 

+ p (A?22 - be’“) + (Ae’ - 6e6) + 
2 

+ (ci,/Xl - 2 - /%2) (e” - e”) + x,(1 - 6). (25) 

Then 

+ (a,/%2 - 1 - /?fl)e” + a, + 6dr, - (e’- e6)/?Rk, 1 . (26) 

From (22) 

ti, = &r - 1) [(6 - bn)e6 + fiRe*“] . (27) 

From (23) 

ii'= -62 
(6 - /Kl)e" t /Kle2" /?Qe" 

e”(6-1-gn)+pne26+1+~tl+PRe6 . 1 (28) 

2 2 

The line-source solution is obtained by substituting Equations (22-28) into the 
derivative of Equation (2 l), 

x’ = $ (1 + /?12es) + + [S(l + /?fie”)G] t 

+ $ [(l + j?ne6)$ t /?Oe’6’]. 

Under neutral stratification, Equation (29) simplifies to 

. . . 
f = $ [(le” - 6e6) - 2(e” - e6) + (A - S)] 

(29) 

(29~) 
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where 

and 6 and 6 are obtained from Equations (23N, 24N). 
By differentiating (29N) it may be shown that 

(2W 

The concentration gradient vanishes at ground, as required downwind of a line source 
emitting an admixture which is not absorbed by the ground. However the concentration 
gradient does not vanish at A: = 6. It is not possible to obtain a line-source solution 
including only the first two terms (x0 + 1,) which satisfies zero total concentration 
gradient at both 3. = 0 and 1 = 6. 

In order to determine Y, the line source solution may be forced to obey 

s ~‘(5,)~) [;I + @(d - 1)] e’ dil = 1 . (1 IL) 

Because xl is given by ax/a& Equation (11L) is simply the derivative of Equation (11): 
that value of r which ensures that the plane-source solution satisfies Equation (11) also 
ensures that the line-source solution satisfies Equation (11L). 

Equation (29) may also be interpreted as giving the cross-wind integrated (arc-inte- 
grated, equivalent two-dimensional) concentration at a distance (radius) r from a 
continuous ground-level point source if u is interpreted as the cup windspeed. In 
Section 5.2 solutions given by Equation (29) will be compared with measurements of 
dispersion from a ground-level point source. 

4. Comparison of Analytical Solutions with Trajectory-simulation Model 

Wilson et al. (198 la, b, c) have described a Lagrangian model of turbulent dispersion in 
inhomogeneous turbulence. Particle trajectories are numerically simulated by assuming 
that the important statistics of the fluctuating vertical velocity which must be incor- 
porated are the standard deviation a,,. and the Lagrangian timescale r[.(z) which is a 
measure of the temporal persistence of the Lagrangian vertical velocity. Horizontal 
motion occurs at a steady height-dependent velocity (no fluctuation in the horizontal 
windspeed). The trajectory-simulation (TS) model was shown to be in excellent agree- 
ment both with analytical solutions for homogeneous turbulence and turbulence with 
power-law wind and diffusivity profiles, and with observations of dispersion in the 
atmospheric surface layer. For further details the reader is referred to the reports above. 
The predictions of the TS model to be given here were obtained following the method 
of Wilson et al. (1981~). The vertical velocity record was obtained using a Markhov 
chain, with o,,, = 1.25u, and A, = cr,z, = 0.5z/( 1 + 5z/L). The horizontal velocity was 
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given by Equation (4) with j-I, = 5. In the following comparisons the TS model should 
be regarded as the correct solution, and the approximate analytical solution as being 
satisfactory only to the extent that it agrees with the TS model. 

10" 

IO: 

L 
20 

10: 

10’ 

10 - 

Fig. 3. Dimensionless concentration profiles at a distance 5 = (lo’, 104, 105) from the leading edge of an 
area source in the neutral surface layer, according to the trajectory-simulation model and the approximate 

analytical solution to the diffusion equation. 

Figure 3 compares the TS solution and the analytical solution for the dimensionless 
concentration profile at a distance 5 = ( 103, 104, 105) downwind of the leading edge of 
a continuous area source at z = z, in the neutral surface layer. The two solutions are in 
very good agreement out to well above the height ,&, whereconcentration falls to l/lOth 
of the surface value. It appears from Figure 3 that the analytical solution does not 
conserve mass. The explanation is that there is a difference between the solutions at lower 
height which is so small as to disappear on a logarithmic concentration axis. Figure 4 
shows the solutions for the concentration profile at < = lo4 due to an area source at z, 
for values of z,/L ranging from neutral to very stable stratitication. On a linear concen- 
tration axis the small percentage differences between the TS model and the analytical 
solution at low levels are visible. 
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Fig. 4. Dimensionless concentration profiles at a distance 5 = lo5 from the leading edge of an area source 
for 2,/L (0, 10m3, 4 x lo-‘). 

Figure 5 compares the TS solution and the analytical solution for the concentration 
profile at a dimensionless distance < = (103, 104, 105) downwind of a continuous line 
source at z = z0 in the neutral surface layer. There is excellent agreement between the 
two solutions up to a dimensionless height of z/z0 2: t/100, so that for many purposes 
the analytical solutions should be adequate. Figure 6 shows the profiles at 5 = lo5 for 
a line source at z0 with several values of z,,/L. Again there is good agreement with the 
TS model at heights well below 6. For z,JL = 4 x 10e3, the ground-level concentration 
according to the analytical solution with r = 0.4 is also plotted, to demonstrate the 
adverse effect of forcing the analytical solution to conserve mass. 

The profile for 5 = lo3 in Figure 5 may be compared with that obtained by Yamamoto 
and Shimanuki (196 1) by numerical integration of the diffusion equation. Yamamoto and 
Shimanuki give a higher value of z,cu,/kQ at ground (4.1 x 10m3 as opposed to 
2.8 x lop3 for the present estimate) in consequence of having set the mass diffusivity 
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Fig. 5. Dimensionless concentration profiles at a distance < = ( 103, IO“, 10s) downwind of a line source in 
the neutral surface layer. 

91 

5 

L 

equal to the eddy viscosity. At a longer fetch, 5 = 5 x 103, the solutions given by the 
numerical integration and the analytical solution are respectively lop3 and 6.0 x 10m4. 

5. Comparison of Analytical Solutions with Experimental Data 

5.1. AREA SOURCE 

Consider a disc of radius R over which the source strength is constant, and a tower at 
the axis of the disc. Assuming that there is no correlation between the instantaneous wind 
direction and the field of total horizontal and vertical velocity, and that the temporal and 
spatial persistence of the wind field is sufficient to ensure that trajectories across the disc 
exhibit little lateral meandering, dispersion from the source may be regarded as a 
two-dimensional process with horizontal speed ,/m. Therefore the analytical 
solution for the concentration profile at the downwind edge of an area source of length 
R may be applied to this situation, if u is interpreted as the cup windspeed. 

Denmead (personal communication) has performed experiments to determine the rate 
of loss of nitrogen as ammonia gas (NH,) to the atmosphere from a small fertilised plot 
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Fig. 6. Dimensionless concentration profiles at a distance 5 = 10’ downwind of a line source for 
z,,/L = (0, IO 1, 4 x 10 ‘). 

of pasture with circular boundary. Observations for an experiment with R = 25 m, 
Z o = 2.32 cm, d = 15 cm (displacement height) and U* = 14.5 cm SK’ are compared in 
Figure 7 with the analytical solutions with N = 0.25 and N = 0.16. Note that the source 
strength, which is required in order to form the observed dimensionless concentration, 
was obtained by integrating the observed profile of UC from z = z0 to z = r;, for this 
experiment having the value Q = 13.9 ug mm2 s ‘. The solution with N = 0.25 is cer- 
tainly a better fit to the data than N = 0.16 (corresponding to K = K,n). If the discrepancy 
at the lowest level is real, it indicates that the source strength was probably decreasing 
towards the centre of the plot, a possibility which can not be accounted for in the 
analytical solution. 
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I II 1 I I I 
AREA SOURCE 0 Observallons 

~ EqnZlN.N=,025 

--- Eqn21N.N=016 

Fig. 7. Comparison of the observed profile of dimensionless concentration at the centre of a source 
disc of dimensionless radius < = 1.08 x lo3 with the approximate analytical solution to the diffu- 

sion equation. 

5.2. LINE SOURCE 

The Project Prairie Grass (PPG) experiments are described in reports by Barad (1958) 
and Haugen (1959). The time-averaged concentration at z = 150 cm downwind of a 
continuous point source of sulphur dioxide (SO,) was measured along arcs of radius 50, 
100,200,400, and 800 m. The vertical concentration profile was measured at the 100 m 
arc. For comparison with a two-dimensional model, equivalent two-dimensional concen- 
trations may be obtained by integrating the concentration around each arc, and the 
vertical profile of crosswind-integrated concentration at x = 100 m may be obtained by 
using the profile shape observed to scale the value of cross-wind integrated concentration 
atz= 150cm. 

Run 33 was performed in near neutral stratification. Figure 8 compares the observa- 
tions with the prediction of the TS model and the analytical solution, Equation (29N). 
The TS model prediction (obtained using o,,, = 1.25u,, AL = 0.52, u = (u,/O.4) In (z/z,,))+ 
agrees very closely with the observations at all levels, and is therefore superior to the 
analytical solution. However the TS solution used 2000 s of computer time, the analytical 
solution much less than 1 s. With N = 0.25 the prediction of the analytical solution for 
the near-ground concentration is satisfactory. 

+ And z,, = 0.75 cm, which with U. = 59 cm SK’ gives a good fit to the observed wind profile. 
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Fig. 8. Comparison ofthe observations of Project Prairie Grass run 33 (near neutral stratification) with the 
trajectory-simulation model and with the approximate solution to the diffusion equation. 

TABLE 1 

Values of L and U. derived for the Project Prairie Grass runs (1.0, ~2 implies 1.0 x 10 ‘) 

Run AT/Au u+ Run AT/Au L u* 
(‘Kscm ‘) (cm s- ‘) (“Kscm ‘) (m) (cm s ’ ) 

17= 2.2, -3 17 22 37 1.8, -3 127 30 
18 4.8, ~3 31 20 38 1.4, -3 150 28 
21 1.3. -3 240 40 41 3.2, -3 54 23 
22 1.1, -3 330 49 42 2.0, -3 152 41 
23 1.3, -3 240 42 46 1.9, -3 160 39 
24 7.4, -4 420 41 53 1.5, -2 5.1 10.1 
28 4.0, -3 31 17 54 4.4, -3 45 27 
29 4.5, -3 43 26 55 1.7, -3 170 40 
32 1.1, -2 8.1 11.5 56 2.5, -3 94 32 
35 1.5, -2 3.5 6.8 58 1.1, -2 1.2 10.8 
35s 2.6, -3 72 2s 59 8.3, ~3 12.9 14.1 
36 6.6, -3 11.4 9.9 60 3.3, -3 73 32 
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As a comprehensive test of the ability of the analytical solution to predict near-ground 
concentration, values of z,p~/kQ (dimensionless crosswind-integrated concentration) 
have been calculated for each arc of each of the stable Project Prairie Grass runs 
summarised in Table I. In order to determine u+ and L, for each run a graph of observed 
u(z) versus observed temperature T(z) was plotted to obtain an estimate of the slope 
AT/Au, which should be independent of height, and is related to u,/L by 

AT Tu, -=-- 
Au kg L’ 

This relationship follows from the recommendation of Dyer (1974) that in stable 
stratification & = &, (where &, is the Monin-Obukhov function for heat). The value 
of u,/L thus obtained was substituted into the linear term of the log/linear wind profile, 
Equation (4) 

5(z - z()) u. u(z) = 1 In z + ~ - 
Zo k L 

with k = 0.4 and z0 = 0.6. The value of u* was then determined from this equation by 
substituting the observed windspeed at the lowest height where u > 80 cm s- I. 

83 - 
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Fig. 9. Observed and predicted @ues of the dimensionless crosswind-integrated concentration at 
z = 150 cm and x = (50, 100, 200, 400, 800 m) for Project Prairie Grass runs occurring in stable stratifi- 

cation. 



In Figure 9 the observed values of crosswind-integrated concentration are compared 
with predictions obtained using N = 0.25. The agreement is reasonably good. On the 
right-hand side of the graph, the horizontal lines give the analytical solution without any 
stability correction (Equation (29N)). The effect of the stability correction is to move the 
plotted points upward to higher values of predicted concentration, and it appears that 
the stability correction is satisfactory. 

Table II gives the average values of the ratio of observed to predicted concentration 
at each of the 5 downwind distances, for N = 0.25 and N = 0.16. The improvement 
resulting from using K = 1.56 K,,, rather than K = K,,, is large. 

TABLE II 

Average ratios of observed/predicted concentration 

N = 0.25 (K = 1.56K,,,) N = 0.16 (K = K,,,) 

Fetch (w) 50 100 200 400 800 50 100 200 400 800 

observed 
Average ~ 0.98 I .05 1.04 0.99 1.02 0.84 0.78 0.74 0.70 0.73 

predicted 

Sample standard 
deviation 0.16 0.14 0.15 0.15 0.23 0.13 0.10 0.10 0.1 1 0.16 

Nieuwstadt and van Ulden (1978) compared numerical solutions with the PPG data, 
for two choices of the (stable) eddy diffusivity, 

1:; 
K = 0.47u,z/(l + 6.4(z/L)) 
K = 0.47u,z/(l + 4.7(z/L)) . 

They concluded that in stable conditions there was ‘comparable agreement between 
calculated results and measurements for both alternatives’. This is not surprising in view 
of the close similarity between the two K-profiles. Nieuwstadt and van Ulden used 
k = 0.35, so that the value of N corresponding to their formulations for K is 
N = 0.47 x 0.35 = 0.16. According to Table I this is not the best choice. 

6. Conclusion 

The near-ground concentration profile due to a ground-level area or line source in the 
stable or neutral surface layer is adequately described by a simple approximate solution 
to the diffusion equation. The close agreement between the analytical (Eulerian) solution 
and the trajectory-simulation (Lagrangian) solution confirms the validity of the relation- 
ship K = cr,,,A, (where AL is the Lagrangian length scale) for a ground-level source in 
inhomogeneous turbulence. Best agreement with observations is obtained using 
AL = 0.5z/(l + 5z/L) which implies K = 0.63u,z/(l + 5z/L), or K = 1.56K,, where 
K,,, = 0.4u,z/(l + 5z/L) is the eddy viscosity. 

To date, an effort to obtain an analogous solution for the case of unstable stratification 
has been unsuccessful. 
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