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Abstract. We review the theoretical basis for, and the advantages of, random flight models for the 
trajectories of tracer particles in turbulence. We then survey their application to calculate dispersion 
in the principal types of atmospheric turbulence (stratified, vertically-inhomogeneous, Gaussian or 
non-Gaussian turbulence in the surface layer and above), and show that they are especially suitable 
for some problems (e.g., quantifying ground emissions). 

1. Introduction 

The purpose of this brief review is to survey up-to-date Lagrangian models for 
transport and mixing in atmospheric turbulence. A “Lagrangian stochastic” model 
describes the paths of particles in a turbulent flow, given a knowledge (i.e., statistical 
description) of the random velocity field. It is the natural and most powerful means 
to describe many interesting atmospheric processes (e.g., the dispersion of pollen, 
or of air pollutants), and with the aid of such models we can expect eventually to 
develop better strategies for, as an example, the application of aerial sprays. 

That said, we will restrict this review to models of “passive” material, neutrally- 
buoyant, and non-reactive tracer “particles,” or marked fluid elements. We exclude 
buoyant particles, because their treatment is more difficult, and lacks the guidance 
recently provided for models of passive tracer transport. We consider then, the 
short range transport (order 100 km or less) of passive tracer in the atmospheric 
boundary layer (ABL), where the turbulence is inhomogeneous (in the vertical 
direction 2, if not in x and y), possibly non-stationary, and characterised by having 
a large Reynolds number, Re = UD/v (where U is a characteristic velocity, D is 
the ABL depth, and v is the kinematic viscosity of air). We shall avoid duplicating 
Sawford’s (1985) review, much of which might usefully be read in parallel with 
this one, and concentrate on subsequent developments. Sawford (1993) has given 
a selective overview of some modem developments, and a more detailed review 
which emphasises mathematical developments is forthcoming (Rodean, 1996). 

Taylor (1921) initiated the Lagrangian description of turbulent transport, but 
considered only homogeneous turbulence. Early attempts (in the computer age) to 
mimic the far more complex case of atmospheric turbulence (e.g., Wilson et al., 

198 I a,b) were heuristic, but much clarification has recently occurred. In particular, 
Thomson (1987) provided extremely helpful criteria for models of neutral tracer, 
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resolving many of the difficulties with preceding models. Eulerian (and therefore 
measurable) information, on the velocity probability distribution function (pdf! 
of the background flow, can now be rigorously exploited to build a Lagrungian 
velocity time series. A Lagrangian Stochastic (LS) model for a given atmospheric 
flow can therefore be derived from an economical set of principles, the assumptions 
being few and explicit (we do not say “the LS model”, for in many cases we have as 
yet no unique model). Such trajectory models have already been shown to capture 
in impressive detail many, even most, features of the mean concentration field from 
atmospheric tracer experiments. 

2. Theory of Lagrangian Stochastic Models 

2.1. LAGRANGIAN VERSUS EULERIAN 

Most fluid dynamicists are used to treating fluid flow and the transport of scalar 
material in an Eulerian reference frame in which properties such as the fluid 
velocity, u(x, t), and the concentration of scalar material, c(x, t), are defined at 
a fixed point at time t. The evolution of the velocity and concentration are then 
described by the Navier-Stokes equations and the scalar conservation equation: 

(1) 

where pi is the molecular diffusivity (we have ignored internal source terms). 
For turbulent flows usually we are interested in statistics of the velocity and 

concentration fields. The problem with these Eulerian equations is that they contain 
nonlinear advection terms and so the evolution equations for the mean velocity (u) 
and mean concentration (e) are not closed; i.e., they involve unknown higher order 
statistics such as the Reynolds stresses (u~u~) and scalar flux densities, (uic’) 
(note: ( ) denotes mean values, and primes fluctuations about the mean). Closure 
approximations introduced to overcome this insuperable problem depend on the 
concentration field itself, and so are not uniformly valid. For example, the gradient 
transfer hypothesis, in which the flux density (u~c’) is assumed a linear function 
of the mean gradient 8, (c), leads to the diffusion equation, but requires that the 
length scale of the turbulence be small compared with that of the contaminant 
distribution. Thus, as is well known, the diffusion equation breaks down close to 
point sources. For more detail on fundamental limitations of Eulerian methods, see 
Deardorff (1978). 

The mass conservation Equation (1) has a simpler Lagrangian form 

de 
- = KV2C 
dt (2) 

which suggests an alternative approach: to describe the concentration (and flow) 
fields in a reference frame which follows a point moving with the fluid. The 
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position X and velocity U of that point, at any time t, are in general functions of 
its position xc at some earlier labelling time to and of the labelling time itself. At 
each instant of time the “fluid point” or “fluid particle” moves with the Eulerian 
velocity at the point at which it is located, U = u[X( x0( to), to), t]; capitals denote 
Lagrangian velocity and position. The main advantage of working in a Lagrangian 
framework is that the time derivative following the motion includes the non-linear 
advection terms implicitly, without approximation. Thus in the case of the velocity, 
the closure approximations we will introduce do not involve these non-linear terms. 
For the scalar concentration, in the limit of infinite Reynolds number, molecular 
diffusion can be neglected. The conservation equation for scalar concentration is 
then trivial, and merely states that the fluid particle retains its original concentration 
as it moves through the fluid; i.e., dc/dt = 0. This leads to the idea of “marked fluid 
particles”. Since these marked particles conserve their concentration, changes in 
the concentration field occur solely due to their redistribution throughout the fluid. 
In particular, concentration statistics of the tracer material are directly related to 
displacement statistics of the marked particles. For example, the ensemble mean 
concentration is (e.g., Tennekes and Lumley, 1972). 

(4xJ)) = t J J P(x, t; x’, t’)S(x’, t’) dx’dt’ 
-cc v 

where: V denotes the entire volume of the fluid; P(x, t; x’, t’) is the probability 
density for the position X at time t of those particles which were at x’ at time t’; 
and S( x’, t’) is the source distribution of the material in question. 

In this Lagrangian approach, P(x, t; x’, t’) is usually determined by modelling 
the Lagrangian velocity. In general this does not avoid the need for approximations 
- the closure problem still remains. However, any approximations made now 
involve only the velocity field. The calculation of the concentration field through 
(3) is a completely separate and essentially exact process. The assumptions made 
in Lagrangian modelling are thus independent of the concentration field. 

2.2. MARKOV ASSUMPTION 

Lagrangian methods are now perhaps most often associated with stochastic models 
of dispersion in which fluid particle trajectories are generated numerically (“Ran- 
dom Flights”), in order to estimate concentration statistics such as those in (3). We 
assume the Eulerian flow statistics are known; indeed, for our purposes these Eule- 
rian velocity statistics define the type of flow with which we deal. The problem is to 
generate particle trajectories, and hence displacement statistics and concentration 
statistics, in a physically realistic and self-consistent way. 

The starting point for a modern Random Flight model is the postulate that the 
“state” of a particle evolves as a Markov process. In a “zeroth-order” RF model the 
“state” is simply the particle position X while in a first-order model the position 
and velocity jointly (X, U) are presumed Markovian. In the high Reynolds number 
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turbulence of the atmosphere, the acceleration of fluid particles is autocorrelated 
only over times of order of the Kolmogorov time scale t,, which is characteristic of 
the scales on which viscous processes convert turbulence kinetic energy (TKE) into 
heat (see e.g., Borgas and Sawford, 1991), and much smaller than the time scale 
of the energy containing eddies, TL. Thus although the hypothesis of a Markovian 
process for the (joint) evolution of (X, U) can not be rigorously justified, it is a 
reasonable modelling assumption. Given the Markov assumption for (X, U), the 
most general equation which can be used to describe the velocity is the stochastic 
differential equation (SDE) 

dU; = a;(X, U, t) + bij(X, U, t) dwj (4) 

where dwj is a component of Gaussian white noise, which is uncorrelated with 
other components and is uncorrelated in time; i.e., 

@‘Jj(t) dw;(t t T)) = &S(r) dt dr. (5) 

Particle position is obtained by integrating the velocity. 
As a point of detail here, we note that the use of a stochastic differential equation 

is only appropriate if the Markov process for the velocity is continuous; i.e. if the 
velocity along a trajectory is a continuous function of time. Discontinuous or step 
Markov processes have also been used to model dispersion in turbulence (Smith, 
1982; Smith andThomson, 1984; Underwood, 1991; Wang and Stock, 1992). How- 
ever, Sawford and Borgas (1994) have shown that such discontinuous processes 
are inconsistent with Kolmogorov’s theory and with experimental observations in 
homogeneous turbulence. 

The problem now is to determine the functions a and b, known as the drift 
and diffusion terms respectively, for a particular turbulent flow field for which the 
Eulerian flow statistics are given. Following Thomson (1987), we achieve this by 
implementing two fundamental consistency conditions. 

2.3. CONSISTENCY WITH KOLMOGOROV'S SIMILARITY THEORY 

The SDE (4) prescribes the Lagrangian velocity increment dUi over an infinitesimal 
time increment dt in terms of a deterministic component and a random component. 
According to Kolmogorov’s similarity theory for locally isotropic turbulence, for 
time increments within the inertial sub-range, the statistics of this velocity incre- 
ment have a universal form, which depends only on the time increment and the 
mean rate of dissipation of turbulence kinetic energy, E. In particular, the Lagrangian 
velocity structure function is of the form 

(dUi dUj) = SijCo& dt (6) 
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where CO is a universal constant (Monin and Yaglom, 1975, p. 358). This structure 
function can be evaluated directly for small times from (4, 5) and is consistent to 
O(dt) with (6) provided we choose 

bij = JE$E S;j. (7) 

Thus the coefficient of the random term in (4) is determined by the universal small- 
scale properties of turbulent flows, and is independent of the large-scale properties 
which determine the nature of the flow (i.e., boundary layer, jet etc.). 

2.4. EULERIAN CONSISTENCY 

The difference between Eulerian and Lagrangian statistics is merely one of sam- 
pling. Eulerian statistics at (x, t) are determined from an unbiased sample of all 
trajectories passing through x at time t. On the other hand Lagrangian statistics 
at some time t are determined from all trajectories which emanate from some 
reference point. In principle it is possible to calculate both sorts of statistics from 
trajectories generated from the SDE (4). Thus, since we assume that the Eulerian 
statistics are known, they represent a constraint on the form of the SDE. This 
constraint is most easily implemented through the Fokker-Planck equation which 
is implied by (and equivalent to) the SDE (Gardiner, 1983). Details are given in 
Thomson (1987) and Sawford and Guest (1988). The outcome is a condition on 
the divergence in u-space of the drift term a, 

&J; PE apE auiPE 1 a2P~ 
--=---az;+pO’-$---& dlLi at z 2 

(8) 

where PE is the Eulerian velocity probability density function, which we have 
assumed is known (or can be approximated). In general this equation does not have 
a unique solution for a; an arbitrary rotational vector function 4(u) can be added to 
aPE without altering the constraint equation (8). For complex flows there may be 
many Markov models consistent with the specified Eulerian velocity pdf. Specific 
solutions illustrating this non-uniqueness for Gaussian inhomogeneous turbulence 
are given by Sawford and Guest (1988), and Borgas et al. (1995) have shown that 
information in addition to PE is in general required to resolve non-uniqueness 
(Section 3.1.3). 

3. LS Models for Particular Flows 

3 .l. HOMOGENEOUS TURBULENCE 

Much of the established theory of turbulence is restricted in its applicability to 
an idealised region of stationary, homogeneous and isotropic turbulence. Such 
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turbulence is never observed (consideration of the mechanisms of turbulent kinetic 
energy generation and decay explain this), nevertheless approximations to it, e.g., 
decaying homogeneous turbulence in the wake of a wind-tunnel or water-channel 
grid, remain the simplest realisable turbulence in which to test developing theories. 
Observations show that the Eulerian velocity pdf in such simple flows is close to 
Gaussian. 

3.1.1. Isotropic Case 
If the turbulence is isotropic, then it can be shown that there is a unique solution 
to (8); i.e., 4 = 0 (Borgas and Sawford, 1994a, b). In the special case of Gaussian 
turbulence (i.e., PE (u; x, t) is a Gaussian) this unique solution is a Langevin 
equation for each of three independent, (i.e., uncoupled) velocity components, 

where flu. is the standard deviation of the velocity fluctuations. In this case, the 
Lagrangian time scale 

(10) 

can be identified with the (Lagrangian) integral time scale (defined from the velocity 
autocorrelation; Tennekes, 1979). Note that uniqueness is a consequence of isotropy 
and the linearity (in u) is a consequence of the Gaussian form of PE. 

For non-stationary but isotropic and homogeneous turbulence, an approximation 
which is often applied in theoretical treatments of grid turbulence (Sawford and 
Borgas, 1994), the solution is still unique. It was given by Sawford and Guest 
(19fw, 

( 1 Co& 1 &r, a;= -----__ 
2 u; CT, dt ui- 1 

(11) 

Anand and Pope (1983) have given an analytical solution to (11) for the decaying 
turbulence analogue of grid turbulence; i.e., grid turbulence for which the Taylor 
transformation z = Ut, where U is the mean wind speed, is used to replace the 
downstream coordinate by time, thus transforming the stationary inhomogeneous 
turbulence of measurement to the decaying homogeneous turbulence of theory. 
Details of the solution for both the velocity statistics and the dispersion are also 
given by Sawford and Borgas (1994). The solution has been compared with wind- 
tunnel data for the dispersion of heat downstream of a line source. For the data of 
Warhaft (1984) and Stapountzis et al. (1986), Anand and Pope find good agreement 
in the far field using Co = 2.1, while for the data of Sawford and Tivendale (1992), 
Sawford and Borgas (1994) find Co = 3 gives the best fit. 
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3.1.2. Uniform Mean Shear 
Wilson et al. (1993; WFS) constructed an analytical, well-mixed, 2-D LS model for 
trajectories in non-isotropic, stationary, Gaussian homogeneous turbulence having 
uniformly-sheared mean velocity field (U)(Z) = Ua( 1 + cyz). Their model was a 
heuristic generalisation of the Langevin equation; conditional mean acceleration 
a; was assumed to be a; = -(U; - (ui))/T~. The b;j were constrained by the 
well-mixed condition, such that inter-component velocity correlations were forced 
to arise through the random accelerations. In consequence, the model did not have 
the correct small time Lagrangian structure function (did not satisfy Equation (6)). 
WFS showed that at large times from release, streamwise spread is dominated not 
by alongwind “diffusion,” which would involve the streamwise velocity variance 
Q:, but by the joint action of vertical turbulent convection and differential advection 
in the mean shear. This result had been given much earlier, but is overlooked by 
those who would parameterise alongwind or crosswind spread by means of an eddy 
diffusivity. In the atmosphere, crosswind (y) spread may be largely due to turning 
of the mean wind with height, rather than to the fluctuations v’ alone. 

The WFS solution is of course invalid in inhomogeneous turbulence. However 
the near-source plume in complex turbulence can be regarded (approximately, and 
only sufficiently close to the source) as occupying a region of locally-homogeneous 
turbulence. WFS showed that their model will (sometimes) give a better prediction 
of the near field in inhomogeneous turbulence than does Taylor’s (1921) solution. 

3.1.3. Skew Dispersion in an Idealised Anisotropic Turbulence 
Borgas et al. (1995; BFS) considered dispersion in homogeneous turbulence in the 
state of minimal departure from isotropy. Turbulence properties are taken to involve 
a special direction (C?), with respect to which the turbulence is axisymmetric: 
statistics are symmetric when reflected in planes containing 0, but reflections in the 
plane to which R is normal are not symmetric, so that when a mirror is held normal 
to s1 a change in flow screw-sense properties is observed. BFS gave a (non-unique) 
well-mixed LS model for this flow, and derived the implied Lagrangian velocity 
covariance function (U, (t ) U, (0)) and the pattern of dispersion (X;( t )Xj( t)). They 
revealed a remarkable suppression of the rate of dispersion in directions normal 
to the axis of symmetry, qualitatively explained by the tendency of trajectories to 
spiral around that axis. It is an implication of this work that non-uniqueness within 
a class of models that are well-mixed within Thomson’s criteria can not be resolved 
unless flow properties in addition to PE are respected. 

3.2. GAUSSIANINHOMOGENEOLJS TURBULENCE 

With the exception of canopy turbulence and turbulence in the convective boundary 
layer, it is usual to treat boundary-layer turbulence in the atmosphere (which here 
and elsewhere we will assume to be horizontally homogeneous) as Gaussian, 
but vertically-inhomogeneous. And except very close to the ground (or within a 
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canopy; a case we consider later), the mean velocity is large with respect to the 
typical fluctuations (r?): thus dispersion in the streamwise direction is frequently 
ignored, or at least U is treated as independent of W. This leads to a focus on 
l-component models for the vertical velocity, W. 

3.2.1. The Atmospheric Surface Layer 
The (unique) well-mixed, l-component (here IV) model for stationary Gaussian 
turbulence (Thomson, 1987) is given by (4, 5, 7) with at = a2 = 0, a3 = a,, 
bll = b22 = 0 and b33 = b, where 

a - ----w+ ;z CO@) 
w - 2a$(z) ( i 

$1 
w 

and 

b, = (CO~(~))112. 

(12) 

(13) 

A Lagrangian timescale TL (2) can still be defined through (10) for inhomogeneous 
turbulence, but can no longer be interpreted as an integral time scale. In the neutral 
surface layer, where g’w = 1.3u,, inhomogeneity arises solely through the TKE 
dissipation rate. 

It can be shown that the model compared in detail with the Project Prairie 
Grass (PPG) field observations by Wilson et al. (198 1 a; WTK) is the discrete-time 
implementation of (12, 13). Wilson and Plesch (1993) studied the consequences 
of boundary treatment and time discretisation: any demixing of an initially well- 
mixed tracer field was attributed to the “At-bias error” that inevitably arises when 
trajectories in an inhomogeneous system are simulated with discrete time steps At. 
Using a time scale parameterisation equivalent to Co = 3.1, which value accords 
with latest estimates from simpler flows (Du et al., 1995), WTK showed this LS 
model to be in excellent agreement with the observations. 

They also obtained good agreement with unstable and stable PPG runs, using 
the parameterisations (which are consistent with CO = 3.1 in neutral conditions): 

2a2 
e = TL(z) = ,,‘;z (1 t 5;) 

-1 
, L>O 

0 

(14) 

(15) 

where L is the Obukhov length. These formulae can be used to parameterise the 
compound variable COE in (modern) LS models of the equilibrium atmospheric 
surface layer. 

We have focused here on vertical dispersion, and ignored the important question 
of the impact of the fluctuating alongwind component u’, which is correlated with 
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the vertical velocity, and of the lateral turbulence component. The inclusion of 
u’ and/or v’ presents a difficult problem. There is firstly the difficulty that as yet 
we do not have a unique well-mixed 2- or 3-dimensional LS model, even if we 
are prepared to accept Gaussian velocity pdfs. Particular 3-D solutions for a in 
Gaussian inhomogeneous turbulence, well-mixed (i.e., satisfying 8), have been 
given by Thomson (1987) and by Borgas (see Sawford and Guest, 1988), who 
compared calculations for a neutral surface layer with the wind-tunnel dispersion 
data of Legg (1983). 

The second difficulty of including U, V, a difficulty not peculiar to LS mod- 
elling, is that U’ and v’ contain energy at much lower frequencies than w’ - wind 
direction and speed change on a continuous range of scales, from the almost- 
microscopic (Kolmogorov) scale, up through scales of order 10 min (cloud/mesa 
scale), to hourly and daily scales (changing large-scale pressure patterns). There- 
fore no matter what our choice of averaging time, there is always the likelihood of 
an irregular and possibly multi-modal distribution of material along the horizontal 
direction(s). In general the (mean) mass distribution in X, y cannot be sharply pre- 
dicted unless we can forecast the mesoscale fluctuations in wind direction. Practical 
means of accomplishing this involve prediction of the mesoscale wind variations 
with a prognostic mesoscale wind-field model and coupling these to a LS model 
for the turbulence. Such models are discussed in Section 5.1. 

3.2.2. Neutral Planetary Boundary Layer 
Davis (1983) used an LS model to study vertical dispersion in the neutral planetary 
boundary layer (NBL). Lagrangian vertical velocity was calculated using the algo- 
rithm of Legg and Raupach (1982), subsequently proven not to be a well-mixed 
model - however its application to the NBL was probably not seriously in error, 
since away from the ground, vertical inhomogeneity in cW is weak (inhomogeneity 
index 1, = (~;~T~&r$/dz<<l). 

Davis specified an effective Lagrangian timescale TLw for the vertical velocity 
above the surface layer, from published estimates derived from dispersion data, 
and specified Tz by considering the (observed) longitudinal velocity spectrum 
(inclusion of the correlated alongwind fluctuation U’ had less than a 5% effect 
on the mean plume height and plume width). He calculated the effective plume 
width a,(z), knowledge of which (usually empirical) parameter is critical to the 
ubiquitous Gaussian Plume Model. Results were in reasonable agreement with 
earlier-published a,(z) curves for neutral stratification, that originated from tun- 
ing the Gaussian Plume model to the observed concentration field in dispersion 
experiments. 

3.2.3. The Stable Boundary Layer 
LS models, along with other aspects of turbulence and dispersion, are less well 
developed under strongly stable conditions. Luhar and Rao (1993) developed and 
tested three LS models for dispersion in katabatic flows assuming the turbulence to 
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be Gaussian and inhomogeneous. One was the 1 -D model (12); they also considered 
a 2-D model in which stream-wise dispersion was modelled explicitly, and a random 
displacement model (position of the particle modelled as a Markov process) was 
used to model vertical displacement. This latter model was chosen as the diffusion 
limit of (12) see Durbin (1983): vertical displacement Z(t) is given by 

dZ= ((w)+%) dl:+dGdw(t) (16) 

where, to be consistent with (12) in the diffusion limit, the vertical diffusivity is 

(17) 

Eulerian turbulence statistics required to drive the LS models were derived from 
the 2-D katabatic flow model of Nappo and Rao (1987), which is based on a TKE 
closure. For example, both the TKE dissipation rate and the velocity variances 
are diagnosed from the TKE and shear-production terms. Minor differences in the 
predictions of the three models were found. 

3.3. NON-GAUSSIAN TURBULENCE 

3.3.1. The Convective Boundary Layer 
The convective boundary layer (CBL) can be considered as comprising a fractional 
area (A) of “updrafts” (wherein the mean velocity is upward, but the instantaneous 
velocity need not be) and a complementary fractional area (B = 1 - A), considered 
the (predominantly) subsiding environmental region. In uniform terrain and under 
suitable restrictions, it is possible to define a “horizontally homogeneous” CBL 
and to again focus on vertical dispersion. The pdf PE( w; Z) of the Eulerian vertical 
velocity in the CBL is non-Gaussian (as well as vertically inhomogeneous). Over 
much of the CBL, the skewness Sk(z) = (~‘~)/gi is roughly l/2. 

Baerentsen and Berkowitz (1984; hereafter BB) constructed a skewed pdf 
PE(WU; z) for the CBL as a linear combination of Gauss&is for the updraft and 
downdraft regions, 

PE(WW; z) = AG( WA, go) + BG(wB, DB) (18) 

where G( w, 0) represents a Gaussian pdf with mean w, and standard deviation 0. 
This form of pdf has been used in all subsequent LS studies of the CBL, except Du 
et al. (1994a; discussed later). 

BB recognised their model should have the property that a well-mixed con- 
centration field remains well-mixed. However the mathematical implications as 
expounded by Thomson (1984,1987) were unknown: they constructed a heuristic 
LS algorithm which we will not detail, except to say that the random forcing was 
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Gaussian, and an effort was made to correct the algorithm for the effects of vertical 
inhomogeneity in the velocity statistics. They obtained good agreement with the 
laboratory data of Willis and Deardorff (1976,1978,198 I), successfully simulating 
the “lift-off” from ground of the locus of maximum concentration downstream from 
a ground-level source, and the near-source decline (with increasing X) downstream 
from an elevated source (effects that are a consequence of the skewed velocity 
pdf). 

Thomson (1984) examined a generalised Langevin model, 

(19) 

He posed the question, “What is the probability density (for p) required to ensure 
that the steady-state distribution of particles in (z, w) space has the same density 
function as the density function PJJ( w, 2) of the air?” By determining that density 
function f(p), Thomson showed for the first time how to obtain an exactly well- 
mixed model. However, as he put it, “it is not possible in practise to generate 
a random variable with all its moments specified in advance,” and “in cases of 
strong inhomogeneity . . . the values of higher moments of p become important, 
making the model difficult to apply.” Thomson showed that p (if properly tailored 
to ensure the well-mixed property) must have a skew distribution even in Gaussian 
(but inhomogeneous) turbulence; but that if one formulates a stochastic equation 

dr=-+dt+p (20) 

for the ratio T = l&‘/~~( z), a procedure introduced by Wilson et al. (198 lb, 1983), 
then the correct forcing (p) in Gaussian inhomogeneous turbulence is Gaussian. 

de Baas et al. (1986) formulated an LS model (in IV) with non-Gaussian 
forcing for the CBL. Guided by Thomson (1984) they attempted to tailor p so as 
to account for the mean, variance, and skewness of the Eulerian velocity field (to 
do so necessitated some juggling in the choice of parameterisations for the vertical 
profiles of the Eulerian statistics). Generally good agreement was obtained with the 
available measurements, but despite its derivation from criteria designed to ensure 
the well-mixed property, this model seriously failed that condition. It is uncertain 
whether this was due to the use of perfect reflection at the boundaries, or to failure to 
exactly meet Thomson’s specification for the statistics of the non-Gaussian forcing 
CPU>. 

Noting that the moments of any practicable non-Gaussian forcing can only 
be approximately those that guarantee the asymptotic well-mixed state, and that 
Thomson’s stochastic equation in T//‘/o~ gave a better simulation of Gaussian 
inhomogeneous turbulence than did the corresponding model for IV, Sawford and 
Guest (1987) formulated a stochastic equation in W/a,(z), with non-Gaussian 
forcing. As hoped, their model was much closer to being “well-mixed” than that 
of de Baas et al. They obtained excellent agreement with the Willis-Deardorff 
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observations, and by calculating tracer fluxes, revealed regions of counter-gradient 
transport (negative effective eddy diffusivity). 

Subsequently Thomson (1987) showed that non-Gaussian forcing is incorrect. 
Following his provision of a general basis and selection criteria for LS models, it 
was natural to derive a well-mixed model (with Gaussian forcing) for the CBL. Giv- 
en the Eulerian pdf, the well-mixed condition (as newly-enunciated and exploited 
mathematically) selects a unique 1-D model, and so l-dimensional models were 
promptly formulated by Luhar and Britter (1989; LB) and by Weil (1990). In both 
cases the BB pdf (superposition of Gaussians) was retained, with minor differences 
in the specification of the fitting coefficients; and perfect reflection was applied at 
z = 0, and at the top of the boundary layer z = z;. Parameterisations for the 
Eulerian velocity statistics differed markedly near the boundaries. 

Wilson and Flesch (1993) studied these (very similar) models with an interest in 
the means by which particle containment was achieved, calculating the evolution 
of an initially well-mixed distribution of particles. In both cases, the well-mixed 
distribution was retained for a sufficiently small choice of the timestep. In the LB 
simulation, Wilson and Flesch noted that (for small enough timestep) the boundaries 
were unattainable (reflection never occurred). On the other hand Weil’s simulation 
required the reflection algorithm, no matter how small At (reducing At/T did not 
reduce the frequency of occurrence of reflection). 

3.3.2. Non-Gaussian Turbulence: Canopy Dispersion 
Turbulent velocity statistics within a crop or forest canopy are non-Gaussian, and 
extremely vertically inhomogeneous (inhomogeneity scale 1, = 0 [ 11). Much of 
the vertical exchange is accomplished by intermittent large eddies, whose origin 
possibly owes to an instability with respect to the inflexion point in the wind profile. 
The pdf of the vertical velocity PE( .w ) is highly skewed, Sk, x - 1, and in much 
of the canopy space, turbulence intensity is large ( gu+ > U). 

We expect K-theory to be useful when the turbulence is “fine-grained” relative 
to the length scale over which there is curvature in the concentration distribution 
(Corrsin, 1974; for an extended explanation of the failure of K-theory in a canopy 
- see Wilson, 1989). Such is not (usually) the case in a canopy - a dramatic 
demonstration (that K-closure is unworkable) was given by Denmead and Bradley 
(1985), who by simultaneous measurement of mean profiles and eddy fluxes, 
demonstrated the routine occurrence of counter-gradient heat and vapour fluxes in 
a pine forest. Using a Lagrangian model, Raupach (1987) showed that in a canopy a 
substantial proportion of the scalar concentration (of heat or vapour) is contributed 
by the non-diffusive “near field’ wakes of the nearby leaves, shedding heat and 
vapour to the airstream. It is natural, then, to turn to a Lagrangian description - 
irrespective of any wish to account for the highly non-Gaussian turbulence. 

The first LS models were heuristic, not linked to the form of PE(uI), and 
accounted only for the variance g:(z). When applied to the extremely vertically- 
inhomogeneous canopy flow, these failed miserably the (as yet not clearly stated) 
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well-mixed constraint: particles were found to spuriously accumulate in regions of 
small turbulent velocity scale (Wilson et al., 1981b). These difficulties spurred ad 
hoc “drift corrections,” until the clarification provided by Thomson (1984, 1987). 

Since w-skewness is the signature of the intermittent large gusts, and since 
those gusts have been proven by quadrant analysis (e.g., Shaw et al., 1983) to 
dominate the transport process, and furthermore since accounting for skewness had 
improved LS predictions of the CBL, one naturally expected an LS model properly 
derived from the skew Eulerian pdf ought to best handle canopy dispersion. Flesch 
and Wilson (1992) constructed such a model. Of course, if this was to simulate 
dispersion in a canopy well, it must include both the vertical and the alongwind 
fluctuations. Two problems then arise: (a) even given the joint pdf PE(u, w), 
Thomson’s criteria do not provide a unique multi-dimensional LS model; and (b) 
given only the lower-order moments of u and 20, what is the p.d.f.? Concerning 
(a), non-uniqueness was resolved by postulating that 4 (as defined in Section 
2.4) should act to conserve the direction of the Lagrangian velocity Jluctuation 
vector. Concerning (b), following the idea of Baerentsen and Berkowizc, Flesch 
and Wilson (1992) superposed two joint Gaussians. Means and covariances of the 
individual joint-Gaussians were tailored to reproduce the lowest five moments of w, 
the lowest four moments of ‘u, and the covariance ( u’w’). This was quite arbitrary, 
and entailed the hazard that correctly fitting the low moments might constrain other 
moments to unrealistic values. 

Flesch and Wilson simulated experiments (Legg et al., 1986; Coppin et al., 
1986) in which heat was released as a tracer, from line and area sources, within 
a model crop in a turbulent wind-tunnel boundary layer. The surprising outcome 
of the work was that the more complex LS model which accounted for the known 
skewness and kurtosis of the canopy velocity statistics performed worse than 
Thomson’s (1987) multi-dimensional model based on Gaussian Eulerian statistics! 
The authors suspected the cause was their adoption of an ad hoc pdfi the “best” 
(or least biased) choice would have been the maximum missing information pdf 
(see Section 4.3). However it may also be that the extreme vertical inhomogeneity 
of canopy flow (Is order 1) in contrast to CBL flow (I,<< 1) implies a less critical 
dependence (of canopy dispersion) on the velocity skewness. It is pertinent here to 
quote Dr. J. Hunt*: “ I believe that inhomogeneity will dominate over the niceties 
of third and fourth moments.” 

* Informal comment, 3.5th Oholo Conference,Israel Institute for Biological Research,Eliat, Israel, 
1991. 
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4. Details of Numerical Implementation 

4.1. DISCRETENESS OFTIMEANDIMFQSITION OFBOUNDARIES 

Except in cases that permit analytic solution, an LS model will be implemented with 
finite timestep At (tv <Atc<TL), and it is usual to tack onto the model an algorithm 
that ensures particles remain in the computational domain (not necessarily only 
because the timestep is finite). The best available criterion remains the well-mixed 
condition, whose satisfaction may be checked simply by calculating (numerically) 
the evolution of an initially well-mixed tracer distribution. 

Proceeding more formally to investigate these numerical “issues,” Wilson and 
Flesch (1993) showed how to write a discrete-time LS model that is “complete” 
(contains reflection; unambiguous order of operations) and how to deduce the 
implied transition probability density P(z2, ~2, t2; zt , wt, tl), the (z, w) phase 
space analogue of the displacement pdf in (3). By that means they proved that 
perfect reflection is exactly valid, if applied to bound Gaussian homogeneous tur- 
bulence (multi-dimensional models that include velocity covariance need to reverse 
both normal velocity W and the correlated alongwind velocity fluctuation U’ upon 
reflection.) But (according to Wilson and Flesch) IZO reflection scheme can exactly 
satisfy the well-mixed condition when applied at a location where the pdf for the 
normal velocity is asymmetric, or locally-inhomogeneous. Since near a boundary 
there will usually be a region where the statistical character of the flow is anyway 
unknown, one is free to choose profiles of the flow statistics at the boundary that 
rebound to the success of a reflection algorithm. 

The fact that there is no rigorous reflection algorithm to bound skew and/or 
inhomogeneous turbulence does not prohibit the existence of reflection algorithms 
that, for suitably small (but finite) At, are acceptable in practise. Suppose a particle 
crosses z = 0 with “incoming” velocity W- . We wish to determine what outgoing 
velocity W+ = W+( W-) is correct, or at least, optimal. We require a l-l mapping 
from W- to IV+, assumed continuous variables with pdf’s Pi, Pg that satisfy 
Pi(W-) dW- = PE+(W+) dW+. S ince W- 5 0, and Wf 2 0, we may require 

PEW- I= PdW-)/ J”, h(W) dW ( an d a similar expression for Pi). This 
implies that the W+( W- ) functional relationship must solve: 

PE( W+) dW+ PE(W-)dW- 
so” PE(W)dfir = ~:,P,(~‘)dl;Tr’ 

(21) 

Weil (1990) gave a (different) relationship W+( W-) that, though not “correct,” 
may better retain the proper pdf asymmetry in skew turbulence at the wall than does 
perfect reflection. Hurley and Physick (1993) reported an anonymous suggestion 
that the correct reflection scheme is 

s W- 
WP,(W)dW = 

J’ 
O3 w&(w) dW 

-cc W-f 
(22) 
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4.2. PARTIALLY-ABSORBING BOUNDARIES 

Uptake at the ground is usually parameterised in terms of a “deposition velocity”, 
defined as the ratio Wd = F/Co of the flux density at the surface to a mean 
concentration ca measured at an arbitrary reference location (Wd is not necessarily 
independent of the choice of that location). Wilson et al. (1989) derived and tested 
an approximate means to achieve the correct effective deposition velocity, by 
partial reflection at the sink. For given Wd, the corresponding reflection probability 
R (they found) is: 

(23) 

The discrete-time statistical formalism (e.g., Wilson and Flesch, 1993) has yet 
to be applied to examine this strategy of partial absorption. 

4.3. IMPLICATION 0~ PARTIAL KN~WLEDGEOFTHEFLOW 

Since Thomson’s (1987) provision of selection criteria for LS models, “known 
flow” has come to mean that the single-point pdf (PE) of the Eulerian velocity field 
is a mathematically-prescribed function of position. But for any real flow, one has 
available only partial information, usually in the form of a few low-order velocity 
moments: the LS model must be built from partial information. 

Du et al. (1994a) took the view that from the available information, the most 
rational course of action is to form what is called the “maximum missing infor- 
mation” (mmi) pdf (Jaynes, 1957). If the information given is an ordered set of 
moments puj(j = 1,2 , . . ., N), the mmi pdf is 

p(x) = exp (-f$kxk) (24) 

where the X’s are determined by the given moments. Du et al. constructed an 
mmi pdf for vertical velocity in the CBL, and derived the implied l-D, well- 
mixed model for vertical dispersion. Differences from predictions of the earlier 
LS models based on a pdf formed by superposition of Gaussians were slight, and 
not unambiguously attributable to the alternate pdf. However, elsewhere Du et al. 
(1994b) demonstrated that forming the well-mixed model derived from an mmi 
pdf is the best solution yet provided to the problem of building an LS model from 
partial flow specification. And it is possible that the non-Gaussian 2-D LS model 
of Flesch and Wilson (1992) for dispersion in a canopy, which we discussed in 
Section 3.3.2, and which the authors showed to be inferior to an LS model based on 
a Gaussian pdf (even though the canopy turbulence was strongly non-Gaussian), 
failed for precisely the reason that the arbitrary pdf built to conformance with the 
specified flow moments was a “bad” choice. 
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5. Applications 

From the foregoing it will be clear that for some applications the LS model is 
uniquely suited: alternative models are either inapplicable or inefficient (e.g., dis- 
persion problems involving the near field of sources; or complex, recirculating 
windflows). We give two examples. 

5.1. TRANSPORTANDDISPERSION ONTHEMESOSCALE 

Recently several groups have coupled 3-D LS models with a mesoscale wind 
model, to address air quality problems - CSIRO in Australia (Physick et al., 1993; 
Manins, 1995); and Colorado State University (Pielke et al., 1992; Uliasz, 1993; 
McNider et al., 1988). Strengths of combining a mesoscale wind field model and an 
LS model in this way include the ability to handle complex terrain, and to readily 
display the transport of pollutants using 2- or 3-D still and animated displays. 

These models typically are applied over a domain of 50-500 km, with a res- 
olution for the mean wind field of l-10 km. Particle velocity consists of two 
components; that due to the resolved mean wind field (from the mesoscale model), 
and the turbulent fluctuation from the LS model. The mesoscale model provides 
parameters needed by the LS model, such as boundary-layer depth, and the surface 
fluxes of momentum and heat, and from these, turbulence variables (e.g., (T,,,,,, TL 
or E, etc.) are diagnosed. 

To reduce computation time, it may be necessary to simplify the LS model. 
The CSIRO model assumes (local) homogeneity in all three directions (permitting 
use of a long timestep), but under convective conditions includes the effect of 
skewness in W. Hurley and Physick (1993) showed that neglecting inhomogeneity 
in W near the ground (and inversion) is a reasonable approximation, but that 
skewness cannot be neglected. Hurley (1994) also proposed a technique (“PART- 
PUFF”) in which horizontal dispersion is treated analytically, essentially modelling 
the vertical dispersion of puffs with a Gaussian distribution in the horizontal. 

5.2. SOURCE-RECEPTOR APPLICATIONS 

“Backward” LS models calculate an ensemble of trajectories that are distinguished 
by each passing through a specified observation point, and are especially suitable 
for quantification of “source-receptor relationships.” Consider, for example, the 
dimensionless ratio UC/Q(= n), relating the strength (Q) of an extensive source 
(chemical spill; field emitting pesticide residue; etc.) to the mean concentration 
(C) at a nearby point (U is a reference windspeed). If n is known (e.g., from an 
LS model), Q can be inferred from the simpler measurements U, C. This approach 
was introduced for circular sources by Wilson et al. (1982). 

In a horizontally-uniform atmosphere, this source-receptor relationship can be 
conveniently determined using a backward LS model. We firstly generate, for a 
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given observation height h and atmospheric state (u,, L, . . .), a catalog of “touch- 
down points”: the locations (GUI, yu;) where the (backward) trajectories from z = h 
reflect off ground. We store these points, and the associated (vertical) touchdown 
velocities ( Wu;); i labels touchdowns (not particles). Then the flux-concentration 
relationship is (Flesch and Wilson, 1995): 

(25) 

where L (zgi, VJ~/O;) is an indicator function, with value unity if (XC,;, yu;) lies within 
the (eventual) source region, zero otherwise; N is the number of backward trajec- 
tories in the archive; and i runs over all touchdowns (i may exceed N). The beauty 
of this approach is that the source need not be known or specified in advance; it 
may be of any shape, and in any position and orientation with respect to the mean 
wind vector and the observation point. A similar (and equally flexible) method 
(Flesch, 1996) determines the “footprint,” i.e., the ground area contributing to the 
vertical flux at a given point. 

6. Conclusion 

Although continuing investigations of fundamental aspects of the single-particle 
LS model remain necessary (e.g., to resolve the non-uniqueness problem for models 
in multiple dimensions), most of the groundwork has been done. The modem l- 
particle LS model is soundly-based in scientific principle, and provides an excellent 
description of absolute dispersion in the ABL, as judged by agreement with field 
observations. It is a simple and natural model of the process, and elegantly employs 
the available Eulerian information on a flow. In contrast Eulerian models, no 
matter the level of closure, are flawed through the need for assumptions on the 
joint concentration-velocity field, a crucial disadvantage for the description of the 
near field of a source (travel time not large with respect to turbulence timescale). 
For “far field” calculations, a simpler zeroth-order (i.e., “random displacement”) 
Lagrangian model is legitimate, and Eulerian closure may be acceptable (an LS 
model can be used to provide guidance for Eulerian closure: e.g., van Dop et al., 
1985; Pope, 1994). 

Our confidence in the single-tracer LS model stems from unambiguous criteria 
identifying those particular models (among all that intuition may throw up) that 
accord with established ideas regarding turbulence. Interesting challenges remain 
before we can have equal confidence in treating the simultaneous motion of multi- 
ple tracer particles (necessary to describe concentration fluctuation statistics), the 
motion of heavy particles and buoyant gases, or, cases in which the source itself 
significantly perturbs the flow (e.g., a buoyant industrial stack, or, a helicopter 
spraying pellets of insecticide). Such types of models, purporting validity of use 
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in the atmosphere, already exist, but all are to some degree heurstic. In modelling 
some of these processes (e.g., the correlation in the driving fluid velocity along 
the path of a heavy particle) it seems doubtful that criteria might exist that will 
entirely dismiss need for guesswork! But then, the extent of the implications of the 
well-mixed criterion was unsuspected a decade ago, so an optimist may hope for 
further surprising discoveries. 
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