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Walklate (1987) has proposed that the ratio o,‘/o’ of heavy particle velocity variance 
to the driving fluid turbulent velocity variance is given by 

a&f/a’ = l/(1 + CZJZ,) ) (1) 

where zp is the particle Stokesian response time, r, is the fluid Lagrangian time-scale, 
and c is an empirical constant. We suggest that this equation is not accurate. We will 
give some background discussion, followed by a dimensional analysis indicating the 
possibility that this equation for e-,/a’ is an over-simplification. Finally, our criticism 
of the expression will be strengthened by an examination of experimental results. 

Heavy particles moving in a turbulent flow exhibit velocity statistics which differ from 
the corresponding (Lagrangian) fluid element velocity statistics because of: 

(a) Particle inertia, which reduces particle response to high-frequency forcing by the 
surrounding fluid in a manner which is well understood for the case where the driving 
velocity is position-independent and varies only in time (the infinite time-varying eddy 
case, or ‘oscillating Stokes flow’). 

(b) Particle bias motion due to the presence of a gravitational (or other body) force. 
Both particle inertia and particle response to a body force can result in a ‘crossing 

trajectories effect’ - the particle cuts across regions of correlated fluid motion (eddies). 
There are two possible Lagrangian approaches to the calculation of heavy particle 

dispersion. The first option is to calculate both the particle velocity upi and the fluid 
velocity ui in the immediate environment of the particle, these velocities being linked by 
the equation of motion for the particle. The core of the problem then lies in the 
determination of the time series of the forcing velocity ui, which is neither an Eulerian 
nor a fluid Lagrangian series since both the position of interest and the fluid element 
occupying that position are changing. An example of this approach is the work of Hunt 
and Nalpanis (1985). 

The second Lagrangian approach is to disregard the fluid: then ifthe particle velocity 
statistics are known, one may either apply Taylor’s (1921) analytical result (for the case 
of a homogeneous motion) or, in the case of inhomogeneous turbulence, carry out a 
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trajectory simulation. The recent papers by Walklate (1986, 1987) belong to this second 
Lagrangian category. 

Provided that the particle density pp is very much larger than the fluid density p, the 
equation of motion for a spherical particle may be written (Schlichting, 1968) 

(2) 

Here R, is a time-dependent slip Reynolds number R, = Iup - uI d/v, and the above 
equation is valid for R, 5 5. The particle time constant or ‘Stokesian response time’ is 

z - PPd2 

P 18~ ’ 

where d is the particle diameter and p is the dynamic viscosity. 
For a given sinusoidal variation of ui in time alone, Equation (2) may be solved for 

the oscillation in upi provided the Reynolds-number dependent correction is dropped 
(i.e., for low R,) - this is called the ‘oscillating Stokes flow problem’. The resulting 
complex frequency response function is (for simplicity of notation reducing to a one- 
dimensional motion and dropping the gravitational acceleration) 

W(f) = F{u,}/~{u} = l/(1 + jWQ, (3) 

where j = fl, F{ } d enotes the Fourier transform*, and f is the frequency of the 
oscillation in U. Then the ‘power gain’, i.e., the ratio (amplitude2 of particle velocity/am- 
plitude2 of air velocity) is 

W-1 = I Wf)l’ = ’ 
1 + (27c&)2 . 

If the particle is now considered to be driven by a spectrum of fluid motion S(f), where 
- the fluid velocity variance c? = u2 = Sr S(f) df the particle velocity spectrum S,(f) 

is related to the fluid velocity spectrum by 

$O-) = G’U-)W-)~ (5) 

where the power gain function G’(j) has been given a prime to emphasize the restricted 
validity of Equation (4) which followed from the adoption of a spatially-invariant fluid 
velocity field and a small slip Reynolds number. In general, the fluid velocity spectrum 
will imply a spatially-varying velocity pattern. 
The particle velocity variance is 

(72 = u2 = P -s P s,(f)df. 
0 

* E.g., a function u(t) has Fourier transform F{a} = 7 a(t)emJzfl dr. 
5 
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Here and elsewhere, the overbar is used to denote an average value. More explicit results 
depend on adoption of a form for S(j). H inze (1975) shows that ifs(f) is the spectrum 
corresponding to an exponential Lagrangian autocorrelation function for the fluid 
velocity 

R(t) = u(t)u(t + t)/u’ = e- ir’irL 

and if G’(f) is assumed to be given by Equation (4) in spite of the fact that the fluid 
velocity field corresponding to this spectrum may not be spatially invariant, then 

(6) 

For future reference, let us note that the spectrum and the autocovariance function 
C(t) = sR(t) are a Fourier transform pair, so Equation (5) leads to a particle auto- 
covariance function 

C'= F-'{G'(f)}*C 

where the * denotes the convolution interval. In the present case, for G’(f) given by 
Equation (4), the inverse transform of the power gain is 

g(5) = F- ’ {Kf)} = i’, exp( - I511~J. 03) 
P 

Meek and Jones (1973) gave a statistical analysis of heavy particle motion in homo- 
geneous turbulence (as distinct from a system in which the fluid velocity is spatially 
invariant) and deduced that the ratio of particle velocity variance $ to fluid velocity 
variance CT* is given by Equation (6), i.e., is controlled only by zP/zL, Walklate (1986) 
obtained an incorrect result when combining the assumptions of an exponential fluid 
autocorrelation function and the simple power gain function (Equation (4)) appropriate 
to oscillating Stokes’ flow - a factor of 2w appears multiplying z,/r, in Equation (6) (his 
Equation (14)). His analysis appears to go awry when an incorrect result is obtained for 
the inverse Fourier transform of the power gain function (his Equation (1 l)), the correct 
result being our Equation (8). In consequence, his deduced particle autocorrelation 
function and particle velocity variance (his Equations (12) and (14)) are wrong - the 
authors, in agreement with Hinze (1975), obtain for the particle autocorrelation 

and for the particle velocity variance, Equation (6). 
In his later paper, Walklate (1987) introduces a coefficient c into his particle power 

gain function (his Equation (4)) 

G(f)+&= ’ 
1 + (c27r&)2 ’ 
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‘to extend . . . [the oscillating Stokes’ flow solution having c = 11.. . beyond the Stokes’ 
law region’. His result for the particle velocity variance is then Equation (1). 

Lagrangian simulations of particle dispersion were described, and the dependence of 
the predictions on the value prescribed for the constant c in Equation (1) was shown. 
For neither of the values chosen (c = 2, c = 4) was the agreement with the diverse 
observations (for a range of particle types) very good. 

Features of Walklate’s simulations other than Equation (1) may have caused or 
compounded the discrepancies relative to observations. However, we believe that $/CT’ 
is far from being a function of r,/r, alone, and that ‘c’ is an ineffective cure-all because 
it must account for other factors in addition to the possibility that the slip Reynolds 
number is not small and constant in time - most importantly the fact that the fluid 
velocity varies in space (the crossing trajectories effect). 

A dimensional analysis is helpful. A comprehensive group of governing variables for 
heavy particle motion in homogeneous isotropic turbulence should include: 

(a) Variables of the fluid; density p, kinematic viscosity v. 
(b) Variables of the turbulence; velocity* standard deviation a, rate of dissipation of 

turbulent kinetic energy E (from which may be formed (large) length and time-scales 
L = 03/E, T = 0’1s). 

(c) Variables of the particle; density pP, diameter d, (and particle characteristic 
velocity crP, which we would like to predict). 

(d) External factors; acceleration due to gravity, g. 
Note that the above choice includes by rearrangement the (small) Kolmogorov scales 

of motion ok = (vs)‘14, qK = ( v3/~)lj4, and t, = ‘IJO,. If the above 8 variables (having 
3 dimensions) do indeed govern the problem, we may expect to find a relationship 
between 5 non-dimensional ratios (Bridgman, 1922), 

a,10 = F PJP, 
cd gtK 

&k, - 1 __ . 
V CT 

Alternative expressions based on the same 8 variables must be equivalent. Other ratios 
which may spring to mind as being relevant must be accounted for by recombination 
of the given ratios, e.g., 

and, for pP B p (so that zP = d2pp/18pv) 

* Since the driven particle moves in space and relative to the driving fluid element, the driving fluid velocity 
is neither Eulerian nor Lagrangian. 
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This Iast ratio (r,/T) is equivalent to the z,/z, of other analyses. The ratio cr/uK pertains 
to the eddy size range. Though it is not explicitly shown, a Reynolds number based on 
the magnitude of the relative velocity between particle and fluid and particle size must 
be considered to be involved through the ratios chosen; this is the R, appearing in 
Equation (2) and pertaining to the nature of the fluid drag on the particle. 

Now that a wider range of possible influences upon a,/a has been suggested, it 
remains to seek experimental support for or against the hypothesis that 0,/o depends 
upon r,/r, alone. 

Snyder and Lumley (1971; hereafter SL) and Wells and Stock (1983) have presented 
observations of heavy particle dispersion in decaying turbulence downstream of a wind 
tunnel grid. Comprehensive turbulence data are given, in addition to the particle velocity 
and dispersion data. In many respects, the two experiments were very similar, though 
Wells and Stock used laser anemometry to deduce velocities rather than photographs, 
and were able to control the effective gravitational acceleration by using charged 
particles in an electric field. 

In each case, theory suggests that the turbulence time-scales should increase linearly 
with distance from the grid. Reported values of the Kolmogoroff time-scale conformed 
closely to this expectation. Also in accordance with expectation, the fluid turbulent 
velocity scale cwas observed to vary with (X - xc,)- ‘12, while the Taylor micro (length) 
scale ,? varied with (x - x0)“’ so that aJ N constant (here x,, is a virtual origin). There 
seems little reason to doubt SL’s suggestion that the Lagrangian time-scale r, varied 
linearly with x - x0, so that from their Figure 14, and allowing for this linear variation, 
we may infer that for their experiment 

7, E 0.1(x/M - 14)/(73 - 14). 

(Here x/M is streamwise distance normalized by the grid mesh length M = 2.54 cm 
(1 inch), and x/M = 14 is our choice for the virtual origin of the decay.) 

Particle cross-stream velocity variances at different positions in the flow (and there- 
fore in environments with different zL) may be obtained from SL Figure 10 and corre- 
sponding Eulerian cross-stream velocity variances are given by SL Equation (10). 
Table I gives the values deduced for two streamwise locations, 0.1 and 0.3 s from 
station 1 (which lay at x/M = 68). The time needed for a particle to travel between these 
two positions is only of the order of 1 z, (or 4 to 10 rp, depending on the particular 
particle) which is not as large as one might wish. However, one may reasonably 
conclude: 

(i) The ratios c,‘/cr’ rank inversely with rp. 
(ii) For each particle, ~,‘/e’ is the same at both positions, while r,/z, differs from one 

position to the other by a sizeable percentage. 
Hence, the dependence of G-,‘/cr’ on zplzL alone suggested by Meek and Jones and 

Walklate is not supported by the SL experiment. The writers have been unable to isolate 
a single dimensionless ratio against which e--/~’ correlates well (pooling the SL data 
with the WS data for particles charged so as to produce zero external force). In fact, 
there is a reasonable relationship between a,‘/a’ and the dimensional ratio r,/a (or 
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TABLE I 
Ratio of particle-to-fluid velocity variances and corresponding ratio of particle time-scale to turbulence 
time-scale for two locations and three particle types: deduced from data of Snyder and Lumley (1971),x/M 

being their dimensionless streamwise location. 

Location 

0.1 s from station 1 0.3 s from station 1 
x/M z 94 x/M N 145 
T, Y 0.13 s TL z 0.22 s 

a,‘/a’ $/FL ‘Required’ c $/a’ TpbI. ‘Required’ c 

Corn pollen 
Tp = 0.020 s 

Solid glass 
TD = 0.045 s 

Copper 
Tp = 0.049 s 

0.55 0.15 5.5 0.53 0.09 9.9 

0.33 0.35 5.8 0.33 0.20 10.2 

0.30 0.38 6.1 0.27 0.22 12.3 

equally z,/u,) but no normalizing acceleration having streamwise invariance could be 
found (apart fromg, whose use would be absurd, allowing no inertia effect in the absence 
of a gravitational field). 
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