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ABSTRACT 

Wilson, J.D., Ferrandino, F.J. and Thurtell, G.W., 1989. A relationship between deposition veloc- 
ity and trajectory reflection probability for use in stochastic Langrangian dispersion models. 
Agric. For. Meteorol., 47: 139-154. 

This paper is concerned with the efficient treatment of a partially absorbing surface within 
stochastic Lagrangian dispersion models. Near and within vegetation, the Lagrangian time scale 
is small, necessitating the use of a small time step. Much computational effort is expended in 
calculating path segments into and out of the canopy, although little streamwise displacement 
occurs (because of the low velocities in the canopy). For some purposes, it may be satisfactory to 
consider the gaseous elements to be reflected or absorbed some distance away from the surface. 
Our aim is to relate the trajectory reflection probability to the deposition velocity which is widely 
used to parameterise the depositional process. A relationship between the deposition velocity and 
the trajectory reflection probability is derived, and simulations using this reflection rule are shown 
to give the correct depositional flux and surface concentration for the cases tested, a finite elevated 
area source in the neutral surface layer and an elevated area source of infinite extent in homoge- 
neous turbulence. 

INTRODUCTION 

The deposition of a gaseous substance from the atmosphere to an underlying 
reactive surface (see Fig. 1 ) is usually parameterised superficially by introduc- 
ing the notion of a deposition velocity Wd (or its reciprocal resistance, rd). The 
flux density of the substance "to the surface", Fr, is defined as the magnitude 
of the mean flux density ( wc} (where w is the Eulerian velocity normal to the 
surface and c the concentration; the angle bracket implies the average value) 
at a reference plane, Zr, lying above the surface cover. Provided lateral gra- 
dients in the horizontal fluxes are small (e.g., far downstream from the source), 

0168-1923/89/$03.50 © 1989 Elsevier Science Publishers B.V. 



140 

Plume e n v e l o p e / - - J ' "  individual . 

Site of deposition 

Fig. 1. Definitional sketch showing a reference plane at height z = zr above vegetation. A plume of 
gaseous pollutant from a distant source is being depleted by deposition to the soil and vegetation. 
An individual molecule passing across the reference plane may re-emerge or be captured. The 
deposition velocity, wd, is defined in terms of the mean concentration, Cr, and the magnitude, F,  
of the mean flux density at the reference height, F~ = wd C~. Also shown are the conditional fluxes 
Fr$ and Fr~. 

Fr  will closely approximate the absorption below z r. The depositional flux will 
in general depend on many (not necessarily independent)  variables describing 
the state of the atmosphere,  the state of the vegetation and the state of the 
underlying soil (or artificial surface where involved). The deposition velocity 
and deposition resistance are defined by 

F r .~.C r w d = C r / r  d (1) 

where Cr= ( c (zr ) )  is the mean concentration of the substance at the reference 
level Zr. All the details of the uptake process are lumped into the definition of 
Wd, whose magnitude therefore depends on the details of the process and also 
the choice of reference level z~ (Ferrandino and Aylor, 1985). The concept of 
a deposition velocity is useful only when the diffusion pathway has an endpoint 
at which the concentrat ion of the substance is zero (Chamberlain, 1966, 1967 ). 

This simple model of surface uptake is widely used in calculations of the 
long-range t ransport  of atmospheric pollutants (Smith, 1983; Fisher, 1983), 
and depends on prior determinat ion of the deposition velocity appropriate to 
the underlying surface and the prevailing micrometeorological conditions. 

Whether  the range of interest  be long or short, Lagrangian stochastic ("par- 
ticle t ra jec tory" /" random flight") models of dispersion {given the flow statis- 
tics) are in principle most  readily able to encapsulate the complexity of the 
meteorological situation, the source distribution and the underlying surface. 
In practice, application of this approach (for other than short-range problems) 
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will often be prohibited by the large computation time needed to calculate 
enough trajectories, especially if it is necessary to follow trajectories in and out 
of a plant or forest canopy where the very small Lagrangian time scale neces- 
sitates a correspondingly small time step. Furthermore, the accuracy of such 
simulations will in general be compromised by a lack of detailed knowledge of 
the velocity statistics (and perhaps by deficiency in the formulation of the 
random paths). Nevertheless, these models and the underlying theory are 
undergoing rapid development (e.g., Van Dop et al., 1985; Sawford, 1986; Saw- 
ford and Guest, 1987; Thomson, 1987). 

The purpose of this paper is to formulate and discuss methods of incorpo- 
rating surface uptake (either in bulk to a "surface" underlying a reference 
plane, or more microscopically to individual leaves or canopy layers) into La- 
grangian stochastic models. The underlying experimental input continues to 
be the effective deposition velocity. The most efficient method involves partial 
reflection of fluid element trajectories at the reference level. This is straight- 
forward to implement in a stochastic model, but some difficult theoretical 
questions must be answered. Clearly, the value of the reflection probability, R, 
must depend at least upon the specified deposition velocity. However, there 
are many possible implementations of a partial reflection strategy; for exam- 
ple, the reflection probability may or may not be allowed to depend on the 
magnitude of the downward velocity, WL, with which the particle arrives at the 
reflection site. A satisfactory theory should give an unambiguous definition of 
the reflection probability, i.e., a definition which specifies how reflection is to 
be implemented. The theory should furthermore determine whether and how 
the reflection process and probability depend upon the nature of the system of 
interest (e.g., neutral surface layer or homogeneous turbulence) and the dis- 
crete stochastic process chosen as a model for particle motion in that system. 

The reflection probability for heavy particle trajectories will not be derived 
here. Reflection strategies for that case are given by Boughton et al. (1987) 
and by Aylor and Ferrandino (1989). 

A reflection procedure and probability which we believe to have general, 
though perhaps not universal applicability is derived and discussed. An ex- 
tended-sink treatment derived earlier by Boughton et al. is given with a simple 
alternative extended-sink treatment, both of which probably have restricted 
generality. Finally, results of numerical simulations which confirm the useful- 
hess of the new reflection rule are given. 

"DIFFUSION LAYER" TREATMENT OF AN ABSORBING LOWER BOUNDARY FOR 
LAGRANGIAN MODELS 

Given the transfer resistance, r~, between the physical location zr on the 
transfer pathway and the zero-concentration "endpoint" (wherever in space 
that may be located; the concept of a physical location for the endpoint may 
not be meaningful), we may place below z = zr a layer of depth 
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d=aw 2 TL rd (2) 

with a perfectly absorbing surface at z =z , - d .  This layer is characterised by 
velocity statistics aw, TL and an effective diffusivity K=d/rd=aw 2 TL. Here, 
aw and TL are the standard deviation and the decorrelation time scale for the 
Lagrangian vertical velocity. A particle passing below z = zr continues to move 
along the vertical with appropriate statistics and eventually is either absorbed 
at z r -  d or re-emerges with z > Zr. 

This is a very inefficient t rea tment  of the absorption process, but will yield 
a relationship between flux and concentrat ion at z = zr in correspondence with 
eq. 1. 

DERIVATION OF THE TRAJECTORY REFLECTION PROBABILITY 

A reflection rule will now be derived without specification of the stochastic 
model into which the rule is to be imbedded. The rule and ways to implement 
it will then be discussed and it will be seen that  the same rule arises from a 
more rigorous derivation in which the model is specified to be a Markovian 
joint velocity-position process, with what will be called "smooth wall" reflec- 
tion. The joint velocity-position process is an appropriate model for the cal- 
culation of trajectories in both homogeneous and inhomogeneous turbulence. 

Derivation using mean fluxes conditioned on Eulerian velocity 

The mean vertical flux density along the normal to the partially absorbing 
surface ( wc ) may be decomposed as 

<wc) =F$ -FJ, (3) 

where fw is the probability density function for the Eulerian vertical velocity. 
FSand FSare conditional mean fluxes defined by 

FT= < (wclw>O) ) =~ <wclw=wl )[w(Wl) dwl (4a) 
0 

0 

F ~ = -  ( (wclw<O))  = -  J (wclw=wl)[w(Wl) dwl (4b) 
- -  o o  

Now the depositional flux is Fr= - (wc } . . . .  = Cr wd, so that  -Fr=F, t  -Fr$. 
Note that  the definitions have been arbitrarily chosen so as to yield Fr, Fr$, 
FrSall positive. 

The reflection probability, R, we wish to determine will be defined by the 
equation 

F, =(J-R)FrJ,  (5) 
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so that  

1 - R : C r W d / F r ~  (6) 

Note the analogy between eq. 5 and the definition of shortwave absorptivity 
(net shortwave radiative flux is given by the product of shortwave absorptivity 
and incoming shortwave flux density).  It is not obvious that  the reflection 
probability, as defined by eq. 5, is correct when applied to reflection of individ- 
ual trajectories, but that  does seem to be the case. 

To progress, we must  evaluate or estimate FrJ,, which must  in general depend 
on many variables: time, location relative to the source and the details of the 
turbulence. Here, we will adopt a very simple model for Fr$. Decompose w (t) 
and c (t) into their  respective mean and fluctuation values, w (t) = < w } + w' 
and c(t) = <c> +c ' .  Define a correlation coefficient 7 (7<0)  by<wc} =Tawa, 
where at is the standard deviation of the concentrat ion fluctuation. We may 
model the time dependence of w,c by 

w=w'  =(~rl (7a) 

c=  <c> +7(7c rl + ( 1 - 7 2 )  1/2acr2 (7b) 

where rl and r2 are independent  random numbers each drawn from a popula- 
tion having a Gaussian probability distribution with zero mean and unit  vari- 
ance. It is easily shown that  the correct flux < wc} and variances result from 
this model. We may now evaluate the corresponding FrL Note that  

<wclrl } =am <c>rl +Tawac rl 2 (8) 

so that  

F ~ $ = -  < (wclrl <O) > 

0 

f 1 = - [aw <c>rl + 7 ~ w a c r 1 2 1 ~  41exp[-r~2/2]drl 
-~o (9a) 

=~w <c> /(2~)~/2-0.5 7awa~ 

Similarly 

F~T =aw < c > / ( 27~)1/2 +0.5 7(~w(7c (9b) 

It follows from eq. 9a for Fr$ that  the reflection probability is given by 

l - R _  (~)1/2 Wd (10) 
I + R  "2" (~w 

The form of eq. 10 is most interesting. The magnitude of Wd is known to be 
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proportional to the friction velocity u, (and therefore aw) over a wide range of 
physical conditions and for many sink geometries (Chamberlain, 1966, 1967; 
Ferrandino and Aylor, 1985 ). Thus, the reflection probability may be relatively 
independent of the friction velocity and by implication relatively independent 
of atmospheric conditions. It will be. shown later that when eq. 10 for the re- 
flection probability is implemented in numerical simulations, the correct de- 
position rate and concentration field are obtained. 

Discussion of the reflection rule and its implementation 

The above partial reflection rule is not rigorous. The assumed relationship 
between w(t) and c (t) is surely an over-simplification since only the first and 
second moments are correctly specified. The derivation yields a result which 
makes no reference to the nature of the stochastic process within which the 
reflection rule is to be imbedded and contains only a single variable, am, per- 
taining to the nature of the turbulence. Thus, to the extent that the rule is 
valid, it should be useful for any type of stochastic model which is adopted, be 
it a crude model (such as a Markovian position process) of motion in homo- 
geneous turbulence or a relatively detailed model (such as a Markovian model 
of the joint velocity-position process) of motion in the inhomogeneous tur- 
bulence adjacent to the absorbing boundary. The reflection rule is to be applied 
only to particles whose trajectories cross the reference plane Zr {in contrast to 
an alternative rule given by Boughton et al. (1987) which will be discussed 
later ) and is in principle applied at the instant of crossing (in a discrete time 
model, of course, this cannot be exactly adhered to). The derivation of eq. 10 
as a reflection rule yields absolutely no information on how reflection should 
be implemented. 

Let us now assume that the process within which the rule is to be imbedded 
is the joint particle position-velocity process (Zk,WLk,t~), which for time incre- 
ments J t =  th--tk_l exceeding the particle acceleration time scale is Marko- 
vian. If the initial position is z (to) = h, then 

i--1 

z( t i )=h+ ~ WLhAt ( l l a )  
k = 0  

ti =iAt ( l lb )  

where WLh, the Lagrangian velocity, is obtained from a suitable model, perhaps 
a Markov chain 

WLk+ I =OLWLk-~ ~ ~w rh+ ~ (11c) 

WL~ =awrl (11d) 

Here, r~ is drawn at random from a standard normal distribution, 
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a = 1 - A t / T L  is the value of the velocity autocorrelation function for lag At, 
and f l= ( l - a 2 )  1/2. 

The state of "encounter"  at time tk (meaning that  an encounter with the 
surface Z=Zr will occur between th and t~+l) is defined to be the event 
[zk <~ Zr-- WLk 2t,WLk < O,tk ]. An "escape" is the joint event 

[ Zk q- 1 ~ Zr , W L k  + 1 ~ - -  (Zk  q- 1 - -  Zr ) / A t ,  tk + 1 ; Zk ~ Zr - -  WLkAt,WLk < 0,tk ] 

where the specified escape state must result from the intervention of a partial 
reflection rule consisting of a reflection probability and a reflection procedure; 
otherwise zk+ 1 = Zr + WLkAt ~ Zr. 

Two possible implementations of the escape state are 

(i) zk+~ = 2  z r -  (zk +WLhAt) (12a) 

W L k + I  = - -O[ .WLk"[-~I~w rk+l (12b) 

Following Thurtell  and Thurtell  (1988), we call this "smooth wall reflection" 
(because the velocity upon reflection is correlated with the arrival velocity). 

(ii) Zk+l =zr  WLk+l=aw r (13) 

where the distribution of r is 

f l ( r )  = 2 / ( 2 n ) ~ / 2 e x p [ - r 2 / 2 ]  r>~O 

= 0  r < 0  

("rough wall reflection" ). 
On first thought, Rule (ii) might be preferred because we know that, in reality, 
a particle passing below Zr usually has a "deep" layer (in the sense that  many 
local t ime scales will elapse before arrival at the sink) beneath it and that  if it 
does re-emerge its velocity will not be correlated with its entry velocity. How- 
ever, the reflection procedure under discussion is a modelling convenience 
rather than an a t tempt  to describe reality. The work of Thurtell  and Thurtell  
(1988) suggests that  Rule (ii) should not be used because in effect this means 
placing a source at z = Zr SO that  "near-field" effects will result. For example, if 
Rule (ii) is implemented with R =  1 (perfect reflection) the result will be a 
non-zero concentration gradient in a region having a depth of the order of 1 
length scale near z = z r rather than, as desired, (0 ( c ) /Oz)  ~ = O. 

A n  al ternat ive derivat ion based on the F o k k e r - P l a n c k  equation 

Let us consider the concentration field arising from an instantaneous area 
source of unit strength at height z = h, time t = 0 in a steady-state, horizontally 
homogeneous field of turbulence, with partial absorption occurring at z = zr. 
The Lagrangian description of the ensemble average concentration field re- 
sulting from an arbitrary source distribution Q(xi,ti)  is 



146 

t 

C(x,t)= f f Q(xi,ti)p(x,tlxi,ti) dx, dti (14) 
a l l  x ,  t i = - - o o  

where dxi = dxidyidzi. To use this exp.ression, we need to know the probability 
density function (pdf) p(x,tlxi,ti) for fluid element position (conditioned on 
release time and position). Lagrangian stochastic methods are commonly used 
to evaluate this pdf, and we will adopt eq. 11 for this purpose. For the specified 
source distribution Q (xi, ti ) = ~ (zi,h) ~ ( ti,O ), eq. 14 reduces to 
C(z,t)=p(z,t]h,O). 

Corresponding to the choice of eq. 11 to calculate trajectories is the Fokker-  
Planck equation ivan  Dop et al., 1985) 

0 Od~ OJw 
--O-t p(z'wL't]h'O)= Oz OWL (15) 

which gives the time evolution of the joint position-velocity pdfp  (Z,WL,t[ h,O ). 
Jz, Jw are, respectively, the fluxes of probability density along the z,w axes of 
state space and are given by 

Jz(Z,WL,t] h,O ) = WLp(Z,WL,t I h,O ) (16a) 

WLp(Z,WL,tIh,O) aw 2 0p(Z,WL,tlh,O) 
Jw(Z,WL,t] h,0) = (16b) TL TL OWL 
An initial condition and boundary conditions at z = 0,zr and WL = + oO must be 
given to completely specify the problem. 

It may be shown that  the ensemble average flux density at z,t is 

(WC} = ff WLp(Z,WL,tlh,O) dWL 
- - o o  

= i Jz(Z'WL't]h'O) dwL (17) 
--(3O 

=C(z,t) <WL(Z,tlh,O) > 
where an ensemble average Lagrangian velocity for particles which are at z at 
t ime t, having been released at h at t = 0 has been defined by 

<WL(Z,t,h,O) }= i Jz(Z,WL,t'h,O) dwL/ i P(Z,WL,t'h,O) dwL 
. . . .  (18) 

= _f WLp(Z'WL'tlh'O) dwL/C(z,t) 
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What  are the boundary conditions to be applied to eq. 15 at z = Zr? The cor- 
rect depositional flux is ensured by imposing 

i Jz(zr,wL,t[h,O) dWL= (WL(Zr,t[h,O) } Cr 

- ~  (19a) 
~_ - -  W d C r  

i.e. we must  ensure 

(WL(Z~,t[ h,O) } = -wd (19b) 

As one would expect, the ensemble mean particle velocity at z = 0 is negative 
whereas the mean Eulerian velocity is zero. 

Now it follows from the definition Of Jw and eq. 19b that  

i Jw(z~,wa,t]h,O) dWL---- --Wd C~/TL (20) 

This states that  if wd = 0 (a perfectly reflecting boundary at z = Zr), the efflux 
of probability density with wL < 0 must  be exactly balanced by an influx of 
probability density with WL > 0, and the centre of mass must  rise with increas- 
ing t. This may be achieved, for example, by reflection according to eq. 12a and 
b; a particle arriving at z=O with WL=WLI<O must leave with velocity 
W L ~ - -  W L 1 .  

The general solution to the Fokker-Planck eq. 15 may be difficult to obtain 
and, in any case, we have not yet specified the exact boundary conditions on 
p(z,wL,t[h,O) at Z=Zr (which presumably depend on the precise reflection 
strategy adopted).  Since we have only the integral condition eq. 19a, we will 
integrate the Fokker-Planck equation with respect to WL to obtain 

~tp(z,tlh,O ) = 0__[ Oz (WL(Z,t]h,O)} p(z,t]h,O)] (21) 

By further integrating with respect to z, we obtain 

of Ot p(z,tlh,O) dz= [ (wL(z,tlh,O) } p(z,tlh,O) ]~ 
zr (22) 

= <WL(Z~,t]h,O)} Cr 

which confirms the requirement  on the mean Lagrangian velocity expressed 
by eq. 19b; it may be that  this requirement  is intuitively obvious. 

We may progress further  by specifying that  smooth wall reflection will be 
implemented. Then  the reflection probability is defined by 
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p(Zr,-WL,tJh,O)=Rp(Zr,wL,t[h,O) for all W L < 0  (23) 

In words, this prescription states that  "a particle at Z=Zr having WL< 0 will 
with probability R survive at z = zr with its velocity reversed, and any particle 
which is at z = zr with WL > 0 is in a "survival" state immediately following the 
state of encounter".  

We may now evaluate < WL (Zr,t[ h,O) > = -- Wd by using eq. 23 in eq. 18. Split- 

ting any integral of the form 

obtain 

1 - R  Wd 

I + R  <WL,L> 

( ) dWL into ( ) dWL+ 
- - ~  --oo 0 

( ) dWL we 

(lOb) 

where < WL$ > is the average velocity of particles in the encounter  state 

0 0 

<WL~>~ f wLP(Zr,WL,t]h,O) dWL/ f p(Zr,WL,t[h,O) dWL (24) 
- o o  - ~  

It is easy to show that  the average velocity of the (less numerous)  particles in 
the survival state is < WLT > = -- < WL$ > and this conforms with intuition. 

We have recovered a reflection rule which is identical in form to eq. 10, but 
the pdf for the vertical velocity in the encounter  state is unknown. If it is as- 
sumed that  the encounter  velocity has a one-sided normal distribution 

2 
f (WL$) = (2n)1/2 aw e x p [ -  Wa$2/2¢Tw 2 ] WL~. < 0  

= 0  WLt>0 

we recover eq. 10. 
Aylor and Ferrandino (1989) obtained an equation very similar to eq. 10b. 

Their  equation (Alla), modified for the case of diffusive rather  than sedimen- 
tary uptake, implies a variable reflection probability R = R(Wd,WL$ ) which de- 
pends on the (variable) encounter  velocity WLt 

1 --R wd (10c) 
1 + R - WL~, 

Before progressing, it is of interest  to define conditional mean concentra- 
tions at the reflection height 

CrT = ~p(Zr,Wm,t[ h,O) dWL (25a) 
0 
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0 

C r Y :  I p(Z~,WL,tlh,O) dWL (25b) 
- - O o  

It follows from eq. 25 that  Crt = R~ ( 1 + R ) Cr and C~$ = 1 / ( 1 + R) C r. At a per- 
fectly absorbing surface (R = 0), there are no particles moving away from the 
surface, but  the mean concentrat ion is non-zero, as it must be if there is to be 
a flux to the surface. This conflicts with the common practise of applying to 
the Fickian diffusion equation a boundary condition of zero concentration at 
a perfectly absorbing wall. 

ALTERNATIVE APPROACHES 

Boughton et al. (1987; hereafter BDD)  have modelled dispersion in homo- 
geneous and inhomogeneous turbulence above a partially absorbing surface as 
a Markovian stochastic process in position. The absorbing surface was treated 
as an extended sink. Here, we will discuss their t rea tment  of absorption for a 
non-buoyant  substance in homogeneous turbulence with the nominal sink at 
z=0 .  

Let  p(z2,t21z],tl) denote the particle position probability density at time t2 
given that  at tl the particle is at z~. If at t ime ti the particle is at zi, close to the 
(absorbing) surface at z--O, then 

1 - A  = ~p(z,t~ +Atlz~,t~) dz (26) 
y .  

o 

is the probabili ty that  the particle has "survived" the succeeding interval At 
and is still therefore to be found above z = 0. This integral may be evaluated as 
the solution to the equation 

O P - K  O2P (27) 
Ot Oz 2 

subject to the lower boundary condition 

Op 
( K  ~z -W~p)z=o  =O (28) 

and the initial condition of a unit  release at z = zi, t = ti. The solution is 

i A=erfc 2(KAt)l/2 -exp L g ]encL  j (29) 

Note that  the BDD rule does contain a variable which depends on the nature 
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of the stochastic process adopted as a model, namely the time step At. The 
BDD reflection procedure is: 

(i) Add random position increment Az to the current position zi to obtain 
zi + Az. 

(ii) Evaluate eq. 29 for the given At, zi to find the likelihood, A, that  the 
particle would have been absorbed during the interval At according to the an- 
alytical solution. 

(iii) If a number chosen randomly from the uniform distribution [0,1 ] does 
not exceed A, the particle is absorbed. Otherwise, the particle is kept and if 
zi + Az < 0 the particle is reflected to - ( z~ + Az ). 
There is a non-zero (though very small for large zi) probability of absorption 
even if z~ +Az > 0, i.e., even if the calculated step in position does not take the 
particle across the absorption plane at z= O. Therefore, in principle, the BDD 
absorption decision must be made at every time step and the absorbing plane 
is in effect treated as an extended sink. The "reflection probability" R = 1 - A  
therefore has a different meaning from that  given by eq. 10 and is in reality a 
survival probability. 

Another extended sink t reatment  which has been found to yield correct de- 
positional flux and reference concentration is to absorb the particle if, at the 
end of the time step, it lies within the layer zr +_ Wd At and reflect if it lies below 
z r -  wa At. No justification will be given for this method, which has not been 
exhaustively tested. The necessary conditions are wa << aw and At << TL. 

NUMERICAL VERIFICATION OF THE REFLECTION RULE 

The new partial reflection rule eq. 10 has been implemented in simulations 
in order to verify that  it yields the correct relationship between depositional 
flux and concentration at the reference height. A particle crossing the refer- 
ence height was reflected if the ratio nr/no of all earlier reflections to all surface 
encounters did not exceed the desired ratio R. Results will be given for two 
diffusion problems. 

Elevated area source in the neutral surface layer 

The source was placed at dimensionless height hlzo= 100 (where Zo is the 
surface roughness length) and extended upstream from the "measurement 
point" a distance X/Zo = 50 000. The partially absorbing surface was placed at 
Z/Zo= 1. Trajectories were simulated essentially according to eqs. 11 and 12, 
except that  the "z. - tH" coordinate transformation described by Wilson et al. 
(1981) was employed. The Lagrangian time scale was specified as TL= 0.5 z~ 
aw and the time step as 0.2 TL. Depositional flux was averaged over a length 
dx/zo= 100 at the measurement location, and the streamwise flux (whence 
mean concentration is derived) was averaged over height intervals dz/zo which 
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were small in comparison with the local length scale. The streamwise velocity 
was calculated from the logarithmic mean wind profile. 

As the reflection probability R becomes small, it becomes difficult to esti- 
mate the surface concentration, Cr, accurately due to the strong vertical con- 
centration gradient near the surface. When necessary (in practise for R ~< 0.5), 
to avoid having this problem compromise the test of the reflection rule, the 
effective deposition velocity has been derived from the concentration at z~ 
Zo= 10 by subtracting from the effective deposition resistance rtot based on 
(c(Z/Zo) = 10 }, the aerodynamic resistance ra between Zo and z = 10Zo, i.e. 

1 (c(10)} 
: r t o  t - -  r a : r, (30) 

Wd Fr 

where 

1 0 Z  0 

I dz lnl0 
ra= 0.5 awZ-0.5aw (31} 

Z(} 

Table 1 shows the mean value and standard error of the (normalised) effec- 
tive deposition velocity w Jaw obtained from the simulations as a function of 
the nominal value wd/aw used to calculate the reflection probability R (using 
eq. 10). The standard error was evaluated from eight repetitions each of 3000 
releases. Over a range of three orders of magnitude in wJa~, there is excellent 
correspondence between the actual and desired deposition velocities. The small 
discrepancy for R < 0.5 may be due to the fact that eq. 31 underestimates the 
aerodynamic resistance because it does not account for near-field effects. Be- 
cause such large values of w Jaw are not encountered in reality, we have not 
pursued this minor point. 

T A B L E 1  

Outcome of s imulat ions of dispersion in the  neutral  a tmospher ic  surface layer wi th  part ial  ab- 
sorption a t  ground. R is the  reflection probabi l i ty  and  (w~/a~)theoretical is the corresponding nor- 
malised deposit ion velocity, calculated using eq. 10. (Wd/{~w) simulati°n is the effective normalised 
deposit ion velocity following from the  deposit ional  flux and  concentra t ion  calculated by the  nu- 
merical s imulat ion 

R wd t h e o r e t i c a l  Wd s i m u l a t i o n  

- -  - -  _+ std. error 
a,, aw 

0.99971 1.16 × 10-4 ( 1.12 + 0.15 ) )< 10-4 
0.995 2 .00× 10 -3 (1.99 + 0.03) X 10 -:~ 
0.95 2.05 X 10-  2 (2.06 + 0.03 ) X 10-  2 
0.50 2.66 X 10-1 (2.41 + 0.01 ) X 10-  
0.20 5.32 X 10-1 (4.93 + 0.04) X 10-1 
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Vertical dispersion in homogeneous turbulence 

Carslaw and Jaeger (1959; p. 358) give the following analytical solution for 
the ensemble-mean time-dependent concentration (c(z,t))  resulting from the 
release at height z = h of a unit  sheet of a neutrally buoyant species into ho- 
mogeneous turbulence characterised by eddy diffusivity K, with a partially ab- 
sorbing boundary at z = 0 causing a deposition velocity wd 

( c ( z , t ) ) -2 (nKt ) l l  2 exp 4Kt j + e x p  - 4Kt (32) 

wu Fwd(z+h)+wu2t -] f Fz+h+2wut] 
-~exp  L ~ jer c L 2 - - ( ~  J 

In reality, the presence of a sink would imply a solid boundary at z--= 0 and 
therefore homogeneous turbulence bounded by a sink is not realisable. Fur- 
thermore, eq. 32 is incorrect for small t due to near-field effects. However, 
simulations using a stochastic joint position-velocity process (with appropri- 
ate position-independent velocity statistics) should agree with eq. 32 provided 
t is not too small (a stochastic process in position alone should agree at all 
times provided reflection is treated in a manner consistent with the analytical 
t reatment) .  

Figure 2 shows the result of a simulation of this system using exactly the 
position-velocity process specified by eqs. 11 and 12. The turbulence was spec- 
ified as aw=l, TL=I ( K = I )  and the "particles" (actually sheets) were re- 
leased at h = 10. Ensemble mean concentration was estimated in height-t ime 
windows of depth Az-- 1 and short duration (relative to time since release) for 
simulations with R= (0.95, 0.5, 0.2). The analytical solutions were obtained 
by integration of eq. 32 

z t  

1 f z t - h  h -erft2(Kt),i2)J+erfI2(Kt),i2 ) 
0 

F w h+ wd2tG ol- h + 2wdtG 
+ xp / jer,LT   j (33) 

[wa(zt+h) +wd2t~ . [ z t+h+ 2wdt-] 
-exp i ~ jer~c i 2-7-K7),-~ J 

with zt= 1. The deposition velocity, wa, corresponding to the reflection prob- 
ability, R, used in each simulation follows from the reflection rule (eq. 10). 

As expected, the joint position-velocity process gives a (presumably correct ) 
solution differing from the diffusion equation solution at small t. The excellent 
agreement at large t for all R suggests that  the reflection rule (eq. 10) is useful. 
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Fig. 2. Ensemble mean concentration versus time for an instantaneous elevated area source in 
homogeneous turbulence bounded at z = 0 by a partially absorbing surface. The velocity, time and 
length scales of the turbulence are all unity and the source lies at z = h = 10. The analytical solution 
(eq. 33 ) for the concentration integral f~ (c (z,t) } dz is plotted against estimates derived by nu- 
merical simulation of the process. 

CONCLUSION 

T h e  s imple  ref lec t ion  rule (eq. 10) has  been  shown  to give the  cor rec t  de- 
pos i t iona l  f lux a n d  re fe rence  c o n c e n t r a t i o n  over  a wide range  of  va lues  of  the  
ref lec t ion  p robab i l i t y  (i.e., over  a wide range  in depos i t ion  ve loc i ty ) .  T h o u g h  
the  de r iva t ion  of  the  rule is no t  r igorous,  the  successful  ou t come  of  s imu la t ions  
sugges ts  t h a t  it c a n n o t  di f fer  g rea t ly  f r o m  the  " c o r r e c t "  rule. T h e  ear l ier  rule, 
eq. 10c due to Aylor  a n d  F e r r a n d i n o  (1989),  is p r o b a b l y  equal ly  sa t i s fac tory .  
We have  given no p r o o f  t h a t  the  a p p r o p r i a t e  i m p l e m e n t a t i o n  of  ref lec t ion is 
s m o o t h  wall  re f lec t ion  (ve loc i ty  reversa l  upon  re f lec t ion) ,  bu t  we bel ieve th is  
to be the  case. 
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