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Abstract. Recent papers by Wilson etal. (1981b) and Legg and Raupach (1982) give methods for the 
calculation of particle trajectories in turbulence with a gradient in vertical velocity variance a2w . However 
the two methods seem contradictory. 

This paper demonstrates that in systems in which l(da~/dz) (where l is the length scale) varies only slowly 
with height z, the two methods give similar predictions, and indicates why this is the case. For a particular 
system in which the restriction on l(dtrw/dz ) is not satisfied, it is shown that neither method is correct but 
that a simple modification of the method of Wilson et aL (198 l b) gives reasonable predictions. 

I. Introduction 

Trajectory-simulation models of  turbulent dispersion have been proven to be in precise 

agreement with analytical solutions in several simple systems, and in very good agree- 

ment with observations of  dispersion in the atmosphere and the wind tunnel (Reid, 

1979; Wilson et al., 1981a, c; Legg, 1983). They are particularly suited to cases which 

have 'flux' boundary  conditions (specified rate of  emission) and which cannot  easily be 

solved by solution of  the equation of  mass conservation. The velocity statistics proven 

by Taylor (1921) to be of  paramount  importance are correctly incorporated, and there 
is no necessity for a closure hypothesis (such as K-theory). 

The trajectory-simulation method employs detailed information on the turbulence 

statistics. It is therefore likely to prove useful for the case of  dispersion within the highly 

inhomogeneous turbulence which exists in flow through a plant or forest canopy. Within 

a canopy, there is a strong vertical gradient in the root-mean-square Eulerian vertical 
(z) velocity tr w = (w2) ~/2. Wilson etal .  (1981b; hereafter W T K )  showed that such a 

gradient in tr w implies that a particle trajectory must  be biased towards larger values of  
a w, according to their method with a velocity 

daw 
-WwTK = l - -  , 

dz  
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where l(z) = aw(Z ) ZL(Z) is the Lagrangian length scale formed from the Lagrangian time 
scale of the vertical velocity Zz(Z). In several systems, this compensation was shown to 
lead to dramatic improvement in the predicted concentration profile, but in the case of 
diffusion within a corn canopy, for example, anomalies remained. 

Legg and Raupach (1982; hereafter LR) have pointed out that a vertical gradient in 
aw in a horizontally homogeneous system is always associated with a vertical gradient 
in the pressure departure from hydrostatic equilibrium. A force must therefore be applied 
to a fluid element. By incorporating this force into the stochastic equation for the motion 
of a fluid element, Legg and Raupach derived a bias velocity 

da~ da w 
W L R  = TL - -  2l = 2 W w T  K . 

dz dz 

This paper investigates 
methods. 

the apparent contradiction between the WTK and LR 

2. The WTK and LR Methods 

The WTK method involves calculating trajectories in (x, z,, tH) coordinates, where the 
real height (z) and time (t) coordinates are related to the z, and t,~. coordinates by 

dz=  aw(Z) rL(z) dz ,  (la) 
aw(H) TL(H) 

dt ZL(Z) d tg  (lb) 
~L(H) 

and distance steps on the z, axis are calculated from 

Az, = WL(tH)AtH + ~ , A t  H . (lc) 

Here H is an arbitrary reference height, WL(tH) is a record of velocity with statistics 
appropriate to motion at z = H, tH is transformed time, and ~ ,  is the bias velocity along 
the z, axis. For further details, refer to WTK. The important point in the present context 
is that as a particle moves along the z,-axis the image motion in z corresponds to an 
instantaneous adoption by the fluid element of the local value of the standard deviation 
of vertical velocity. 

The LR method calculates trajectories in (x, z, t) coordinates using 

Az = wAt(z) (2a) 

A x  = u(z)At(z)  (2b) 

At = #ZL(Z) (2C) 

where/z <~ 1 and w is formed from a Markov chain: 

W n + 1  = ~ W  n .~ flO.nw + 1 r" § ' + ~WLR" (3) 
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Here 

= exp( - At/zL) (4a) 

fl = (1 - (x2) 1/2 (4b) 

= 1 - ~ (4c) 

WLR  = "~Z - -  
dz 

and r is a Gaussian random number with zero mean and unit variance. 
The point to note is that the LR method imposes a memory of w as a whole, including 

a memory of a w and ~LR" By averaging Equation (3) over many velocity choices at or 
near height z n, we obtain 

w n +  1 - -  O~W n e~ ~'WLR (4d) 

and if we write w ~ + l ~ w", then w" ~ W L R  = zL(d~  �9 

For a sufficiently small choice of A t / z z ,  the trajectories calculated by the WTK 
method are equivalent to trajectories calculated in ( x , z , t )  coordinates using 
Equations (2), (3'), (4) (labelled WTK'  for convenience), where 

qn+l = ~qn + flrn+l (3'a)  

w "+I = o'~+ lq n+l + l daw (3'b) 
dz 

Further, if l ( d a w / d z  ) changes only very slowly with height, WTK'  is negligibly altered 
by writing (WTK"):  

s ~ + l  = o~s ~ + f l r  €  + 7~ L _ _  
dt~w (3"a) 

dz 

w " + l  = < + a s n + l  ( 3 " b )  

There are two differences between LR and WTK".  The LR Markov chain is written 
in terms of w and uses bias velocity zz(do'Zw/dz)  while the WTK" Markov chain uses 
s = W/aw and bias velocity l ( d a w / d z ) .  The following argument indicates that these two 
differences may compensate for each other. 

Equations (3"a) and (3"b) may be combined as 

W n + 1 w n  d a  w 
_ ~ _ _  + f i r . + n  + yzL  - -  

an+ l o~ d z  

Now 

~w +l  ~ O~w + w h a t  dcrw 
d z  
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and At ~ (1 - cr ZL, SO that 

w " + 1  - o~w" ~ c~(1 - c 0 (wn)2 

W 
daw daw 
- -  + flOnw+ l rn  + l + ?o~w+ l ZL dz 

ZL dz 

Average this equation over many velocity choices at or near height z n, Assuming that 
(w") 2 ~ (O"w) 2 (i.e. that the bias velocity is small with respect to aw), 

- -  d a ~  d~_a~ 
w "+1 - ~w",~ cx(1 - O00~ZL d z  + Y:w+lzL dz 

,~ a~wZ L daw [=(1 - =) + V] 
dz 

where a term in (daw/dz) = has been neglected. Now for small At/ZL, ~ + =(1 - ~) ~ 27. 
Hence 

w" + 1 _ ~w--~ ~ y'cL - -  
dz 

This result is the same as that obtained from Equation (3), the LR method. Hence, under 
th__e restrictions of the preceding derivation, the WTK" method has the same value for 
w" as does the LR method, namely w" = zz(doaw/dz), even though the explicitly applied 
bias velocity WWTK is only half this value. The factor-of-two difference between WLR and 
~WTK is related to the distinction between formulation of the Markov chain in terms 
of w/o w or in terms of w. 

We therefore expect the results of trajectory-simulation experiments following the 
WTK, WTK' ,  WTK",  and LR methods and performed using small At/z z to be similar 

for the restricted set of turbulence systems having slowly varying l(daw/dz ) and bias 
velocity small with respect to a w. If these restrictions are not satisfied, we may expect 
markedly different predictions from each of the methods. This is confirmed in the 
following section. 

3 .  S i m u l a t i o n s  

3.1.  COMPARISON WITH ANALYTICAL SOLUTION 

The trajectory-simulation methods were used to calculate the concentration profile 
100 m downwind of a line source of strength Q = 100 particles m -  1 s - 1 a t  z = 0 in 
turbulence with 

/ \0 .15 
~(z) = 0 .50(  z ]  [m s-1]  

kZl/  

( Z ~  015 
�9 L ( 2 )  = - [s] 

\ Z l f  
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f Z'~ 0"5 
[ m s  - I  ] 

where z~ = 1 m and the ground was treated as a reflector. 
Figure 1 shows the analytical solution for the concentration profile using the diffusion 

equation with K = o~(z)zL(z) (see Pasquill, 1974) and trajectory-simulation results 
using the WTK" and LR methods. The WTK' method gave a result indistinguishable 
from WTK". The predicted profile using Equation (3) with V = 0 (no offset velocity 
included) is also shown. The LR prediction is superior to WTK" very near the ground 
but at greater heights, there is little difference between the two solutions. 
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Fig. 1. The concentration profile 100m downwind of a ground-level line source of strength 
Q = 100 m -  1 s - ~ in turbulence with power-law profiles of windspeed and eddy diffusivity. Analytical 

solution ( - - ) ;  LR method ( O ) ;  WTK" method (Fq); LR with ~ = 0 ( + ). 
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3.2.  D I F F U S I O N  FROM AN ELEVATED SOURCE IN A CORN CANOPY 

A hypothet ical  problem of  diffusion from a cont inuous area  source o f  passive t racer  at 

the top  of  a corn canopy  was d iscussed by W T K .  The ~- and aw-profiles used were an 

analytical  fit to measured  profiles, while zL was chosen so as to make  the length scale 

a l inear function o f  height above ground (in accordance  with the observed  behaviour  

of  the length scale formed from a w and the Eulerian t imescale of  w in the same 

measurements) .  

Figure 2 shows that  neither the W T K  method  nor  the L R  method  gives a physical ly 

reasonable  predict ion for this system, in which l(daw/dz ) changes rapidly with height 

and is not  everywhere small compared  with aw. On the other  hand  W T K "  gives a 

reasonable  concentra t ion profile - a small concentra t ion gradient  beneath the source 

where the vertical  flux densi ty is const ra ined to be small by the long fetch and the 

reflecting barrier  at ground. 

200 

150 

I- "l- 

"r 
100 

50  

- - s o u r c e  

/ "~WTK 

/ 
/ / 

y, 

//( 
/ ' 

, \  
I 
\ 
\ 
\ 
\ 
\ 
\ 
i \  

0.05 

WTK u 

\ 
\ 

\ 

0 I 
0 0~0 0~5 

CONCENTRATION [ cm -3  ] 

Fig. 2. The concentration profile 320 m downwind from the leading edge of an elevated area source of 
strength Q = 1 cm -2 s-  l in a corn canopy. See WTK for details of the turbulence. Below the source, the 
vertical flux and the concentration gradient may be expected to be small because the flux must vanish at 

the ground. Thus only the WTK" profile seems physically reasonable. 
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The LR model assumes that da2w/dz is constant over the duration of each distance 
step (which is strictly satisfied only in a system such as that of Section 3.1 having a2w 
a linear function of z). Modification to include a first-order correction for the height- 
dependence of da2w/dz gave very little improvement in the LR prediction. 

4. Implications for Earlier Work 

Wilson (1982) has given tables of dimensionless concentration for ground-level line and 
area sources in the atmospheric surface layer which were calculated using the WTK 
method. Because the WTK method was 'calibrated' by a comparison with experimental 
data, these tables remain valid. However the formula given by Wilson et al. (198 lc) for 
the Lagrangian length scale under unstable statification may not be the best choice for 
use with the LR method. 

5. Conclusion 

The apparent contradiction between the WTK and LR methods has been resolved. The 
factor of 2 difference in vertical velocity offset employed depends upon whether the 
Markov chain is formulated in terms of w/a w (WTK) or w (LR). In systems where 
l(daw/dz ) changes slowly with height, WTK and LR (and WTK', WTK") will give 
similar if not identical predictions. 

However, when l(daw/dz) changes rapidly with height, the methods are not equivalent. 
In the particular (and rather extreme) case examined (for which no independent solution 
is available), neither WTK nor LR yielded reasonable results, while a modification of 
WTK, here called WTK", gave physically reasonable predictions. Though we can offer 
no proof that WTK" is 'correct', it seems worthy of investigation. 
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