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Abstract. By integrating the Fokker-Planck equation corresponding to a Lagrangian stochastic trajec- 
tory model, which is consistent with the selection criterion of Thomson (1987), an analytical solution 
is given for the joint probability density function p(x~, u~, t) for the position (x~) and velocity (u~) 
at time t of a neutral particle released into linearly-sheared, homogeneous turbulence. The solution is 
compared with dispersion experiments conforming to the restrictions of the model and with a short- 
range experiment performed in highly inhomogeneous turbulence within and above a model crop 
canopy. When the turbulence intensity, wind shear and covariance are strong, the present solution is 
better than simpler solutions (Taylor, 1921; Durbin, 1983) and as good as any numerical Lagrangian 
stochastic model yet reported. 

1. Introduction 

Counter-gradient fluxes are often observed in crop canopies (Denmead and Bradley, 
1985), a consequence of non-diffusive contributions from nearby sources ("near 
field" effects). To relate scalar concentrations to source distributions in canopies, 
Raupach (1989) applied Taylor's (1921) Lagrangian solution to calculate the "near 
field" contributions. His necessary (and justified) assumption of local homogene- 
ity highlights the paucity of analytical Lagrangian solutions more flexible than 
Taylor's. 

Durbin (1983) gave a Gaussian solution for cross-stream diffusion in uniformly- 
sheared homogeneous turbulence. The cross-stream velocity was modeled by the 
Langevin equation, while the along-stream velocity fluctuation was omitted. We 
have extended that solution by including the along-stream fluctuation and its covari- 
ance with cross-stream velocity (these additions were recognised as straightforward 
by Durbin). 

2. Solution for Shear Dispersion 

Consideration of scalar dispersion in uniformly sheared homogeneous turbulence 
goes back at least as far as Corrsin (1952). The diffusion solution has been provided 
(e.g. Okubo and Karweit, 1969) but of course fails in the near field. 

Our solution is two-dimensional. Motion along the (x, z) axes takes place with 
instantaneous total velocities (u(t),w(t)) that have mean values (U(z),O). The 
fluctuating velocities (u ~, w t) = (u - U, w) may have distinct time scales ~-~,, T~ 
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and velocity scales a~,, a~, and have covariance - u  2. The mean velocity field is 
U(z) = Uo(1 + az), and the Eulerian velocity pdf is: 

ga = 27rcrl exp( (u -- U)2cr 2 + w2cr 22o_ 2 + 2(u - V)wu 2 ) 

where cr 2 2 2 U4.  o- u o w - -  

We assume modified Langevin equations for the increments in velocity 1" 

du - (u - U).dt + b~,~d~ + bmod{~, 
"ru 

w 
dw = - - - d r  + bw~d~ + b ~ d ~  

Tw 

where the d~i are Gaussian, with vanishing mean and variance dr, and have van- 
ishing expectation < d~i(tl)d~j(t2) > for distinct (i , j)  and/or distinct (t l , t2).  
Shear stress is forced to arise through the random accelerations, and our model is 
therefore inconsistent with Kohnogorov's theory of local isotropy (the covariance 
< dudw > does not vanish for time intervals dt lying in the inertial subrange). We 
are not interested in times so short. 

The joint position-velocity probability density function p(x, z, u, w, t) evolves 
according to the Fokker-Planck equation corresponding to our Langevin model: 

op o o o u)v ] 

~--~ -~  02P 02p 02p 
[- pJ + B,,~-~-~u2 + (B~o + B ~ ) ~  + B ~  ow 2. 

By enforcing Thomson's  (1987) well-mixed constraint (i.e. insisting that 9~ be 
a steady-state solution to this Fokker-Planck equation) we obtain for the model 
coefficients B i j  = ( 1 / 2 )  bik bj k t h e  prescription: 

2 OU 2 
Buu  Cru 2 B w  w = crw - -  7 1 ~ ,  

7-~ O z 7-w 

(• • o v  
2 + + ffw �9 Buw § Bwu = - u ,  ru rw Oz 

Solution of the Fokker-Planck equation for the time evolution of the mean 
state has been performed along the lines suggested by Risken (1985). For particles 

1 W e  also solved the Fokker-Planck  equat ion cor responding  to an alternative t rea tment  o f  the 

a longs t ream veloci ty  du' = -7-ddt + b~ud~u + b~wd(~o, dx = (U(z) + u')dt for which  case  the 

b~s are independen t  o f  the  m e a n  shear. Predicted m e a n  concenlra t ions  were as good  as those  g iven  
here,  bu t  the  predic ted a longs t ream fluxes were  less  satisfactory. 
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released at the origin with a random velocity from the Eulerian pdf, the initial value 
of the joint pdf is 

~o) ~ + w ~ + 2(~ - v o ) ~ 2 ,  p =  5 ( x , O ) 5 ( z , O )  exp[  ( ~ t - -  2 2 2 2 
2o-2 ] 

the solution is: 

1 1 
p = i ~ ) 4  d v / - ~ 7 - - ~ e a g p [ - ~ ( y i  - -  m i ) m ~ j l ( y j  - -  m j ) ] .  

The Yi denote coordinates in phase space (x ,  u,  z,  w); the rni expected values for 
the particle coordinates at time t ( m z  = m~o = O, m x  = Uot, rn~ = Uo); and m i j  

and m~. 1 are the elements of the covariance matrix M (given in the Appendix) and 
its inverse. 

An alternative expression of the solution is: 

1 

�9 exp[ m ~ z 2 + m = ( x - U ~  ] (u+ A)2 (w + ft)21 
2(m~=m~z - rn2xz) V~  4ff~ 4 X  

where the velocity moments are: 

h(x, z, t) = (x  - Uot ) (m~zm~z  - m ~ r n ~ x )  + z ( m ~ : ~ m ~  - m ~ m ~ )  _ Uo 
m x x m z z  - m~z 

??~ x z ) 2 2 _ _ l n u x ( ? ? Z x x m z z  --  _ m~z)  ( m z ~ m ~  - m x ~ m ~ )  2 q2(t) = m ~ m ~ ( m ~ x m ~  2 

2 m x x ( m x x m z z  - m~z)  

f t (x ,  z, u, t) = (x - U o t ) ( m ~ m ~ z  - m z ~ r n ~ )  + z (m~zrn~x  - m ~ m ~ )  + u(u + A) 
m x x m z z  - rn~z 

- -  7Ttwx X ( t )  = [ m ~ m ~  2 _ ( m ~ m ~  - m ~ = ' r n ~ ) 2 ] _  

2 m ~  2 m ~ ( m ~ m ~  - m ~ )  j 

- m~z) (m~x  ~ m ~ r n  -ur(m~zm~t - m ~ m ~ ) ( m ~ m ~ x  m ~ m ~ z )  + ( m ~ m ~  - 2 m - 

where: 

~ ( t )  = 

m x x ( r n x x m z z  - m~z ) 

2 (mxzmwx - mx~mwz)(mxzmux - mx~muz) + (mu~mwx - mxxmuw)(mx~mzz - m x 
( m x x m z z  - m ~ ) ( ~ = , ~ u u  - . ~ )  - ( m = ~  - ~ ) ~  
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Mean concentration is obtained from the joint position-velocity pdf by integrating 
out the velocity dependence: 

C ( x ,  z,  t) = e. 2 ( m z z r n z z  - - m 2 z  ) 

- 

By calculating f Cdx, one correctly recovers the Gaussian distribution in z with 
variance mzz(t). Similarly, f Cdz yields a Gaussian for the distribution about the 
mass-weighted mean streamwise position 

f F  < x > =  xC(x ,  z, t)dxdz = Uot 
oo  oo  

with variance mxx(t).  In the eventuality that c~=0, u .  = 0, (no mean shear and 
no covariance), mxz(t) = 0 and C(x,  z, t) reduces to a product of independent 
Gaussian distributions about the drifting point z = 0, x = Uot. This is a Taylor 
solution with independent diffusion in z and x. Should ~u ~ 0, the Gaussian in 
x reduces to (5 (x - Uot), and Taylor's solution (strictly speaking, the Gaussian 
distribution with Taylor's solution for the variance) is again recovered. 

For large t, the dominant term in the streamwise position-variance mxx (t) about 
the centre of mass is (2/3)a2U2oaawrt3 (see Appendix). Streamwise spread is domi- 
nated not by alongwind "diffusion" (which would involve the streamwise velocity 
variance ~r 2) but by the joint action of vertical turbulent convection and differential 
advection in the mean shear. The earliest demonstrations that the alongwind vari- 
ance of a puff released into an unbounded, linearly-sheared atmosphere increases 
with t 3 were given by Saffman (1962) and Smith (1965). 

In the next section solutions for a continuous source are obtained by integrating 
in time the instantaneous-source solution for unit release at all previous release 
times. Similarly, fluxes for a steady source are built from the instantaneous flux 
densities, eg. the instantaneous along-stream turbulent flux density is 

SF Fx = [u - U(z)]p(x, z, u, w, t)dwdu. 

3. Comparison with Observations 

Measurements of the heat plume from a continuous line source in uniformly- 
sheared, approximately homogeneous turbulence have been reported by Tavoularis 
and Corr- sin (1981; TC), Stapountzis and Britter (1989; SB), Kamik and Tavoularis 
(1989); KT), and Chung and Kyong (1989); CK). But the data do not provide a 
useful test of  the present solution with respect to Durbin's, due to factors such as 
(i) flow disturbance by the source wire (CK); (if) unreported source strength (TC); 
(iii) use of scaling that cannot be "undone" and forces the model and observed 



DISPERSION IN SHEARED HOMOGENEOUS TURBULENCE 285 

concentrations to overlap (KT); (iv) horizontal inhomogeneity; (v) very small tur- 
bulence intensity cry/U; and (vi) incompletely reported flow statistics. All solutions 
we have examined (ours, Durbin's, or our implementation of the numerical model 
of SB) predict displacement of  the plume centreline (location of maximum tem- 
perature) in the direction of lower mean velocity. The opposite displacement was 
observed by SB and KT near the source (buoyancy was a possible factor). If the 
observed asymmetry is not due to buoyancy, it is also not due to any mechanism 
encapsulated in our model or that of SB, and the simulation reported by SB is 
puzzling. 

Flow properties for simulating the KT experiments, derived from KT and 
companion papers, were: c~ = 0.06, aw = 0.04, Uo = 1, a = 0.016, u.  = 
0.021, -r = 13, where numbers are dimensionless on the mean centreline veloc- 
ity Uo (varying from run to run) and the constant "mesh length" M=0.0254m. 
The small turbulence intensity implies little advantage of our model relative to 
Durbin's. Figure 1 compares our solutions with the KT data, at scaled downstream 
distances (measured from the source) of x/M=0.25, 10, 80. KT gave their data 
in the form of a dimensionless temperature perturbation X formed by scaling the 
observed perturbation temperature on the maximum observed perturbation tem- 
perature for that cross-section of the flow. The cross-stream position was scaled on 
the local half-width of the plume ("x2/w"). Unfortunately that presentation dis- 
carded much information (centreline temperature, plume width), leaving a shape 
largely constrained by the scaling. Differences between the different models are 
invisible. However at x/M=80 there is a fourfold difference between the present 
and the Taylor (cross-stream dispersion only) solution for (unscaled) centreline 
perturbation temperature. 

Legg et al. (1988; LRC) performed dispersion experiments in the vertically- 
inhomogeneous flow about an artificial crop in a boundary-layer wind tunnel. 
Flow statistics were well-specified and adequately uniform alongstream, and all 
information needed to predict actual temperature rise in the tunnel can be gleaned 
from LRC and related work cited below. The features of the LRC experiment 
useful to us are the large turbulence intensity ( a J U  at the source was 0.67) and 
shear stress, which might allow discrimination between models. The objection that 
homogeneous flow models should not be compared with data from inhomogeneous 
flows can be subdued by comparing model and observation near the source (where 
the plume has sampled a narrow range on the inhomogeneous axis). But a short 
flight does not exclude the influence of other factors not accounted for in the present 
model, eg. velocity skewness. 

Details of the experiments are found in Legg et al. (1986), Raupach et al. 
(1986), and Raupach et al. (1987). A heating wire was stretched across the flow 
at height z~=51 mm, within a canopy of height he=60 ram. At the source height 
U=2.6 ms -1, < ulw I > =  -0 .8  m 2 8  - 2 ,  O u ~- 1.7 ms -1, and ~ = 1.3 ms -1. 
We formed dimensionless variables using a friction velocity u.~ = 0.9 ms -1 
based on the shear stress at the source height, and on LRC's estimate for the 
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Fig. 1. Comparison of solution with the observations of Karnik and Tavoularis (1989) of the 
normalised mean temperature rise downstream of a heater-wire in uniformly-sheared homogeneous 
turbulence, x2/w is the cross-stream coordinate scaled on the plume half-width. Comparisons at 
distances from the source (scaled on mesh length) x/M=0.25, 10, 80. 

Lagrangian timescale within the crop (derived from the dispersion data), namely 
7- = 0.3hc/u,c=O.018 s, where u,e = 1.Ores -1 is the friction velocity based on the 
shear stress measured immediately above the crop. The dimensionless variables 
a r e :Uo=2 .8 ,  o :=0 .44 ,  cr~=1.9,  c rw=l .4 ,  u , = l ,  7 -=1 .  We examine 
LRC's results at the closest point of observation downwind from the source, in 
their terminology xz=0.023m, or in our dimensionless notation x= 1.44. Advection 
time from the source to this station is 0.5 (i.e. half a timescale). Even at this short 
fetch, the plume covers roughly a height range of 20 to 80 mm. Inspection of the 
velocity statistics given by the experimenters shows that plume depth is too great 
to justify a claim of homogeneity. Down at 20 mm the plume has encountered a 
mean velocity larger (by about 50%) than given by our linear profile, and much 
attenuated turbulent velocities. 

It is necessary to multiply our dimensionless concentration and turbulent along- 
wind flux by Uozs/(ru2s)=9.0 to obtain the normalised mean temperature 0/0.  
and flux < u101 > / u , O ,  presented by LRC (their Figure 16a). Figure 2a compares 
our solution, Durbin's, and Taylor's (1-dimensional) against the data. Though it 
accounts for shear, Durbin's solution performs little better than Taylor's. Its over- 
prediction at low heights may be because, omitting u',  it is more sensitive to 
underestimation of true windspeed by our shear profile. 

Figure 2b shows improvements (relative to the 1-dimensional Taylor solution) 
as first streamwise diffusion is accounted for (using the present solution with 
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Fig. 3. Comparison of the present solution for the turbulent streamwise heat flux with the observations 
of Legg et al. (1986). 

o~ = ~.  = 0; equivalently Taylor's solution both for vertical diffusion and for 
streamwise diffusion about the advected centre of mass), then wind shear, and 
finally velocity covariance are introduced. Comparing with the Durbin solution we 
see that it is better (in this case) to account for shear and alongwind turbulence 
than shear alone. In Figure 2c the LRC data are compared with our model and 
with numerical simulations using the random flight models of Haworth and Pope 
(1986) and Thomson (1987; multi-dimensional Gaussian model). Homogeneous 
flow properties were used in the random flight simulations. Collectively Figures 
2a-2c indicate that for this experiment it is advantageous to account for streamwise 
dispersion, mean shear and velocity covariance, and that the present solution is as 
good as alternative models permitting these complications. In fact comparing with 
LRC's Figure 16a, our solution is better than the prediction of LRC's numerical, 
height-dependent LS model. 

Figure 3 compares LRC's observations of the turbulent streamwise heat flux 
density at xr=0.023 m with our solution. The mean streamwise flux densities 
UC are an order of magnitude larger than the turbulent, and the height-integrated 
lateral flux at this position is (according to our solution) composed of 116% due 
to advection by the mean flow and -16% due to the turbulent component. Our 
solution overestimates the height at which the turbulent flux changes sign, as did 
the numerical, height-dependent LS model of LRC. 
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4. Conclusion 

Although the Langevin model we assumed is open to criticism, the solution it 
implies matches the observed near-field of  a source in high-intensity turbulence 
better than simpler solutions (Taylor, 1921; Durbin, 1983) and as well as any 
numerical Lagrangian stochastic model yet reported. Models (like Raupach, 1989) 
which for simplicity use an assumption of  local homogeneity, could in principle be 
improved by adopting this extended Gaussian solution. 
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Appendix 

Determination ofthe moments m = ( t )  = <  x z  > - < x > <  z > (etc) is laborious 
but straightforward. We give the results for the case r~ = ~-~ = r. In none of  the 
experiments that we considered was there any benefit from distinguishing the 
timescales. 

mzz = 2cr2 r ( t  - r(1 - e - t ~ ' ) )  

m** = 2 ~ 2 r ( t -  r(1 - e - t~ ' ) )+  

2 2  2 2 2  2 2 2 2 2  3 +4c~Uou.r t -2(c~UouZ.r  + ~ Uoerwr )t + (2 /3 )a  Uo~wrt  + 

+(4c~Uou2r3 . 2 . . 2 2  4 ,  --el ,  ~ 2 - ~ 2 2  3 . - - t / ' c  --~o~ Uo~rwr  )e - - o c t  O o f f w T  ~e 

, ,  2T~2 2 2 . 2 - t / r  2 2 2 4 -zc~ voo-~r ~ e +8oL U ; a w r  --4aUou2.r 3 

2 2 2 / m ~  = c%,, mu,, = a,,, rn~z = cr~r~l - e-t/~'), 

2 2 2 2 . < x  = ~2~(1 - ~ -~ / ' )  - 2 ~ u o ~ ( ~  2 + ~ U o ~ . 2 ) t  + ~ ~ 7 o ~  + 

2 2 2  2 - t / r - -  2 T ~ 2 2  - 2 - t / r  + 2 ~  U~cr~r te 2 2 2aUou . r  ( 1 -  + c~ u o c~r~ e + e -~1~) 

2 - t / r  mwz = ( ~ o ~ 2 r  2 - u 2 . r ) ( 1  - e - t / r )  - ~Vo~rte 

rn.~ = -(3aOocr2 r 2 + u2r)(1 - e-t~ ~) + a V o , 2  r~e-t /~ + 2c~Vo~r2 r~ 

m.~  = -2(u2.r  + c~Uo~r2~r2)(t - 7(1 - e- t /~))  + c~Vo~rZ r~ 2 
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2 c~Vo~2r(1 e-t/~-). 17~uw = --U,  + 

2 for large On first sight it may confuse the reader that muw does not tend to -% 
~. The explanation is that 

7nuw = < u w > - -  < u  > < w  > = < u w  > 

since < w > =  0. Therefore 

m ~  = <  (u - U)w  > + < Uw > : <  u 'w > + < Uo(1 + o~z)w > =  

= <  utW I > +oLUorr~wz, 

i .e. the  t e rm < U w  > con t r i bu t ing  to m~w does  no t  v a n i s h  at  la rge  ~. 
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